import os import logging from logging.handlers import RotatingFileHandler # Add this import statement from flask import Flask, render_template, request, jsonify, send_file import requests import pandas as pd from datetime import datetime import plotly.express as px import plotly.io as pio import numpy as np import dotenv import json import gtts import uuid from pathlib import Path dotenv.load_dotenv() app = Flask(__name__) # Create audio directory if it doesn't exist using absolute path AUDIO_DIR = Path(__file__).parent.absolute() / "static" / "audio" AUDIO_DIR.mkdir(parents=True, exist_ok=True) # Configure static folder explicitly app.static_folder = str(Path(__file__).parent.absolute() / "static") def fetch_market_data(state=None, district=None, market=None, commodity=None): """Fetch data from the agricultural market API. If the API fails or returns empty data, fallback to the CSV file. Filters (state, district, market, commodity) are applied manually on CSV data. """ api_key = "579b464db66ec23bdd000001189bbb99e979428764bdbe8fdd44ebb7" base_url = "https://api.data.gov.in/resource/9ef84268-d588-465a-a308-a864a43d007" params = { "api-key": api_key, "format": "json", "limit": 1000, } if state: params["filters[state]"] = state if district: params["filters[district]"] = district if market: params["filters[market]"] = market if commodity: params["filters[commodity]"] = commodity try: response = requests.get(base_url, params=params) if response.status_code == 200: data = response.json() records = data.get("records", []) df = pd.DataFrame(records) else: print(f"API Error: {response.status_code}") raise Exception(f"API Error: {response.status_code}") except Exception as e: print(f"Error fetching data from API: {str(e)}. Falling back to CSV file.") df = pd.read_csv("final_price_data.csv") if 'min_price' not in df.columns: rename_mapping = { 'State': 'state', 'District': 'district', 'Market': 'market', 'Commodity': 'commodity', 'Variety': 'variety', 'Grade': 'grade', 'Arrival_Date': 'arrival_date', 'Min_x0020_Price': 'min_price', 'Max_x0020_Price': 'max_price', 'Modal_x0020_Price': 'modal_price' } df.rename(columns=rename_mapping, inplace=True) if df.empty: print("API returned empty data. Falling back to CSV file.") df = pd.read_csv("final_price_data.csv") if 'min_price' not in df.columns: rename_mapping = { 'State': 'state', 'District': 'district', 'Market': 'market', 'Commodity': 'commodity', 'Variety': 'variety', 'Grade': 'grade', 'Arrival_Date': 'arrival_date', 'Min_x0020_Price': 'min_price', 'Max_x0020_Price': 'max_price', 'Modal_x0020_Price': 'modal_price' } df.rename(columns=rename_mapping, inplace=True) if state: df = df[df['state'] == state] if district: df = df[df['district'] == district] if market: df = df[df['market'] == market] if commodity: df = df[df['commodity'] == commodity] return df def get_ai_insights(market_data, state, district, market=None, commodity=None, language="English"): """Get enhanced insights from Gemini API with focus on profitable suggestions for farmers. Supports multiple languages through the prompt. Returns dynamic insights only. If something goes wrong, returns an empty string. """ if not state or not district or market_data.empty: return "" try: # Filter data based on provided parameters district_data = market_data[market_data['district'] == district] if district_data.empty: return "" # Apply market filter if provided if market and not market_data[market_data['market'] == market].empty: market_specific = True district_data = district_data[district_data['market'] == market] else: market_specific = False # Apply commodity filter if provided if commodity and not market_data[market_data['commodity'] == commodity].empty: commodity_specific = True district_data = district_data[district_data['commodity'] == commodity] else: commodity_specific = False # Calculate price trends price_trends = district_data.groupby('commodity').agg({ 'modal_price': ['mean', 'min', 'max', 'std'] }).round(2) # Using environment variable for Gemini API key GEMINI_API = os.getenv("GEMINI_API") if not GEMINI_API: print("Warning: Gemini API key not set") return "" price_trends['price_stability'] = (price_trends['modal_price']['std'] / price_trends['modal_price']['mean']).round(2) district_data['arrival_date'] = pd.to_datetime(district_data['arrival_date']) district_data['month'] = district_data['arrival_date'].dt.month monthly_trends = district_data.groupby(['commodity', 'month'])['modal_price'].mean().round(2) market_competition = len(district_data['market'].unique()) top_commodities = district_data.groupby('commodity')['modal_price'].mean().nlargest(5).index.tolist() # Get min and max prices for key commodities price_range_info = {} for commodity in top_commodities[:3]: comm_data = district_data[district_data['commodity'] == commodity] if not comm_data.empty: price_range_info[commodity] = { 'min': comm_data['modal_price'].min(), 'max': comm_data['modal_price'].max(), 'avg': comm_data['modal_price'].mean() } # Calculate market-specific metrics if market is selected market_details = "" if market_specific: market_details = f""" Market-specific information for {market}: - Number of commodities: {len(district_data['commodity'].unique())} - Most expensive commodity: {district_data.groupby('commodity')['modal_price'].mean().idxmax()} - Cheapest commodity: {district_data.groupby('commodity')['modal_price'].mean().idxmin()} """ # Commodity-specific details if commodity is selected commodity_details = "" if commodity_specific: commodity_data = district_data[district_data['commodity'] == commodity] best_market = commodity_data.loc[commodity_data['modal_price'].idxmin()]['market'] worst_market = commodity_data.loc[commodity_data['modal_price'].idxmax()]['market'] commodity_details = f""" Commodity-specific information for {commodity}: - Best market to buy (lowest price): {best_market} - Highest priced market: {worst_market} - Price variance across markets: {commodity_data['modal_price'].std().round(2)} """ # Improved prompt for better structured output with language support prompt = f""" Analyze the following agricultural market data for {district}, {state} and provide insights in {language} language. Market data: - Active markets: {market_competition} - Top crops: {', '.join(top_commodities[:5])} - Data from {len(price_trends.index)} crops and {len(monthly_trends)} monthly entries. Price information: {json.dumps(price_range_info, indent=2)} {market_details} {commodity_details} Analyze this data and provide insights about crop market trends and profitability. Include specific numbers from the data about prices. Provide structured insights with clear sections. Use this exact format with bullet points: Crop Profitability Analysis: * [First insight about profitable crops with specific prices mentioned] * [Second insight] Market Price Analysis: * [First insight about markets with specific price ranges] * [Second insight] Recommendations for Farmers: * [Action item 1] * [Action item 2] """ api_url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-pro:generateContent" headers = {"Content-Type": "application/json"} payload = { "contents": [ { "parts": [ {"text": prompt} ] } ], "generationConfig": { "temperature": 0.4, "maxOutputTokens": 1024 } } response = requests.post( f"{api_url}?key={api_key}", headers=headers, json=payload, timeout=20 ) if response.status_code == 200: response_data = response.json() if 'candidates' in response_data and len(response_data['candidates']) > 0: content = response_data['candidates'][0]['content'] if 'parts' in content and len(content['parts']) > 0: insights = content['parts'][0]['text'] return format_ai_insights(insights, language) print(f"API Response issue: {response.text[:100]}") else: print(f"Gemini API Error: {response.status_code} - {response.text[:100]}") return "" except Exception as e: print(f"Error generating insights: {str(e)}") return "" def extract_text_from_insights(insights_html): """Extract pure text content from HTML insights for text-to-speech conversion.""" # Simple HTML tag removal - for production, consider using BeautifulSoup for better parsing import re text = re.sub(r'<.*?>', ' ', insights_html) text = re.sub(r'\s+', ' ', text) # Remove extra whitespace return text.strip() def create_audio_from_text(text, language_code="en"): """Generate audio file from text using gTTS.""" if not text: return None # Map UI language selection to gTTS language codes language_map = { "English": "en", "Hindi": "hi", "Tamil": "ta", "Telugu": "te", "Marathi": "mr", "Bengali": "bn", "Gujarati": "gu", "Kannada": "kn", "Malayalam": "ml", "Punjabi": "pa" } tts_lang = language_map.get(language_code, "en") # Generate unique filename filename = f"{uuid.uuid4()}.mp3" filepath = AUDIO_DIR / filename try: tts = gtts.gTTS(text, lang=tts_lang, slow=False) tts.save(str(filepath)) return f"/static/audio/{filename}" except Exception as e: print(f"Error creating audio: {str(e)}") return None def create_audio_local_fallback(text, language_code="en"): """Local fallback for TTS when network is unavailable.""" try: # This requires pyttsx3 to be installed import pyttsx3 engine = pyttsx3.init() # Generate unique filename filename = f"{uuid.uuid4()}.mp3" filepath = AUDIO_DIR / filename engine.save_to_file(text, str(filepath)) engine.runAndWait() return f"/static/audio/{filename}" except Exception as e: print(f"Local TTS fallback failed: {str(e)}") return None def format_ai_insights(insights_data, language="English"): """Format AI insights into structured HTML. Returns an empty string if no valid insights are provided. """ if not insights_data or not insights_data.strip(): return "" # Process the insights text - each bullet point becomes a formatted item formatted_content = "" # Split by bullet points bullet_points = insights_data.split('*') # Filter out empty items and process each bullet point bullet_points = [point.strip() for point in bullet_points if point.strip()] # Check if any section headers exist in the content sections = {} current_section = "Recommendations" for point in bullet_points: if ":" in point and len(point.split(":")[0]) < 30: # Likely a section header current_section = point.split(":")[0].strip() # Start a new section if current_section not in sections: sections[current_section] = [] else: # Add to current section if current_section not in sections: sections[current_section] = [] sections[current_section].append(point) # Now build the HTML with proper sections for section, points in sections.items(): formatted_content += f'
{section}
' # Create the plain text version for audio generation plain_text = f"Market Insights for {language}.\n\n" for section, points in sections.items(): plain_text += f"{section}:\n" for point in points: # Clean up for speech clean_point = point.replace("₹", " rupees ") plain_text += f"• {clean_point}\n" plain_text += "\n" # Generate audio file audio_path = create_audio_from_text(plain_text, language) if audio_path is None: audio_path = create_audio_local_fallback(plain_text) # Add a wrapper for the insights with audio player audio_player = "" if audio_path: audio_player = f"""

Listen to Insights

""" html = f"""

AI Market Insights

{audio_player}
{formatted_content}
""" return html def generate_plots(df): """Generate all plots in English""" if df.empty: return {}, "No data available" price_cols = ['min_price', 'max_price', 'modal_price'] for col in price_cols: df[col] = pd.to_numeric(df[col], errors='coerce') colors = ["#4CAF50", "#8BC34A", "#CDDC39", "#FFC107", "#FF5722"] df_bar = df.groupby('commodity')['modal_price'].mean().reset_index() fig_bar = px.bar(df_bar, x='commodity', y='modal_price', title="Average Price by Commodity", color_discrete_sequence=colors) fig_line = None if 'commodity' in df.columns and len(df['commodity'].unique()) == 1: df['arrival_date'] = pd.to_datetime(df['arrival_date']) df_line = df.sort_values('arrival_date') fig_line = px.line(df_line, x='arrival_date', y='modal_price', title="Price Trend", color_discrete_sequence=colors) fig_box = px.box(df, x='commodity', y='modal_price', title="Price Distribution", color='commodity', color_discrete_sequence=colors) plots = { 'bar': pio.to_html(fig_bar, full_html=False), 'box': pio.to_html(fig_box, full_html=False) } if fig_line: plots['line'] = pio.to_html(fig_line, full_html=False) return plots # Configure logging logging.basicConfig(level=logging.INFO) handler = logging.handlers.RotatingFileHandler('app.log', maxBytes=10000, backupCount=1) handler.setLevel(logging.INFO) app.logger.addHandler(handler) @app.route('/') def index(): try: app.logger.info("Fetching initial market data") initial_data = fetch_market_data() states = sorted(initial_data['state'].dropna().unique()) if not initial_data.empty else [] except Exception as e: app.logger.error(f"Error fetching initial data: {str(e)}") states = [] try: app.logger.info("Rendering index template") return render_template('index.html', states=states, today=datetime.today().strftime('%Y-%m-%d')) except Exception as e: app.logger.error(f"Template rendering error: {str(e)}") return f"Error loading application: {str(e)}", 500 @app.route('/filter_data', methods=['POST']) def filter_data(): app.logger.info("Received filter_data request") state = request.form.get('state') district = request.form.get('district') market = request.form.get('market') commodity = request.form.get('commodity') language = request.form.get('language', 'English') # Default to English try: df = fetch_market_data(state, district, market, commodity) plots = generate_plots(df) insights = get_ai_insights(df, state, district, market, commodity, language) if state and district and not df.empty else "" app.logger.info("Successfully processed filter_data request") response = { 'plots': plots, 'insights': insights, 'success': not df.empty, 'hasStateDistrict': bool(state and district), 'market_html': market_table_html, 'cheapest_html': cheapest_table_html, 'costliest_html': costliest_table_html, 'market_stats': market_stats } return jsonify(response) except Exception as e: app.logger.error(f"Error processing filter_data request: {str(e)}") return jsonify({'success': False, 'error': str(e)}), 500 @app.route('/get_districts', methods=['POST']) def get_districts(): state = request.form.get('state') df = fetch_market_data(state=state) districts = sorted(df['district'].dropna().unique()) return jsonify(districts) @app.route('/get_markets', methods=['POST']) def get_markets(): district = request.form.get('district') df = fetch_market_data(district=district) markets = sorted(df['market'].dropna().unique()) return jsonify(markets) @app.route('/get_commodities', methods=['POST']) def get_commodities(): market = request.form.get('market') df = fetch_market_data(market=market) commodities = sorted(df['commodity'].dropna().unique()) return jsonify(commodities) @app.route('/static/audio/') def serve_audio(filename): try: audio_path = AUDIO_DIR / filename if not audio_path.is_file(): return "Audio file not found", 404 return send_file(str(audio_path), mimetype="audio/mpeg") except Exception as e: print(f"Error serving audio file: {str(e)}") return "Error serving audio file", 500 if __name__ == '__main__': # pio.templates.default = "plotly_white" app.run(debug=True, host='0.0.0.0', port=7860)