dwhitena commited on
Commit
144e6c6
·
1 Parent(s): b4efbbf
Files changed (2) hide show
  1. app.py +46 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from statistics import mean
2
+ import random
3
+
4
+ import torch
5
+ from transformers import BertModel, BertTokenizerFast
6
+ import numpy as np
7
+ import torch.nn.functional as F
8
+ import gradio as gr
9
+
10
+ tokenizer = BertTokenizerFast.from_pretrained("setu4993/LaBSE")
11
+ model = BertModel.from_pretrained("setu4993/LaBSE")
12
+ model = model.eval()
13
+
14
+ def embed(text, tokenizer, model):
15
+ inputs = tokenizer(text, return_tensors="pt", padding=True)
16
+ with torch.no_grad():
17
+ outputs = model(**inputs)
18
+ return outputs.pooler_output
19
+
20
+ def similarity(embeddings_1, embeddings_2):
21
+ normalized_embeddings_1 = F.normalize(embeddings_1, p=2)
22
+ normalized_embeddings_2 = F.normalize(embeddings_2, p=2)
23
+ return torch.matmul(
24
+ normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1)
25
+ )
26
+
27
+ def semantic_sim(sentence1, sentence2):
28
+ em1 = embed(sentence1, tokenizer, model)
29
+ em2 = embed(sentence2, tokenizer, model)
30
+ sim = int(float(similarity(em1, em2)*5))
31
+ out = ""
32
+ if sim == 5:
33
+ out = "Equivalent"
34
+ elif sim == 4:
35
+ out = "Mostly equivalent, unimportant details differ"
36
+ elif sim == 3:
37
+ out = "Roughly equivalent, important details differ or are missing"
38
+ elif sim == 2:
39
+ out = "Not equivalent, but share some details"
40
+ elif sim == 1:
41
+ out = "Same general topic, but not equivalent"
42
+ elif sim == 0:
43
+ out = "Completely dissimilar"
44
+ return out
45
+
46
+ iface = gr.Interface(fn=semantic_sim, inputs=["text", "text"], outputs=["text"]).launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ numpy
4
+ gradio
5
+