Spaces:
Runtime error
Runtime error
File size: 25,782 Bytes
19c4ddf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
"""
Script to run within blender.
Provide arguments after `--`.
For example: `blender -b -P blender_script.py -- --help`
"""
import argparse
import json
import math
import os
import random
import sys
import bpy
from mathutils import Vector
from mathutils.noise import random_unit_vector
MAX_DEPTH = 5.0
FORMAT_VERSION = 6
# Set by main(), these constants are passed to the script to avoid
# duplicating them across multiple files.
UNIFORM_LIGHT_DIRECTION = None
BASIC_AMBIENT_COLOR = None
BASIC_DIFFUSE_COLOR = None
def clear_scene():
bpy.ops.object.select_all(action="SELECT")
bpy.ops.object.delete()
def clear_lights():
bpy.ops.object.select_all(action="DESELECT")
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, bpy.types.Light):
obj.select_set(True)
bpy.ops.object.delete()
def import_model(path):
clear_scene()
_, ext = os.path.splitext(path)
ext = ext.lower()
if ext == ".obj":
bpy.ops.import_scene.obj(filepath=path)
elif ext in [".glb", ".gltf"]:
bpy.ops.import_scene.gltf(filepath=path)
elif ext == ".stl":
bpy.ops.import_mesh.stl(filepath=path)
elif ext == ".fbx":
bpy.ops.import_scene.fbx(filepath=path)
elif ext == ".dae":
bpy.ops.wm.collada_import(filepath=path)
elif ext == ".ply":
bpy.ops.import_mesh.ply(filepath=path)
else:
raise RuntimeError(f"unexpected extension: {ext}")
def scene_root_objects():
for obj in bpy.context.scene.objects.values():
if not obj.parent:
yield obj
def scene_bbox(single_obj=None, ignore_matrix=False):
bbox_min = (math.inf,) * 3
bbox_max = (-math.inf,) * 3
found = False
for obj in scene_meshes() if single_obj is None else [single_obj]:
found = True
for coord in obj.bound_box:
coord = Vector(coord)
if not ignore_matrix:
coord = obj.matrix_world @ coord
bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
if not found:
raise RuntimeError("no objects in scene to compute bounding box for")
return Vector(bbox_min), Vector(bbox_max)
def scene_meshes():
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
yield obj
def normalize_scene():
bbox_min, bbox_max = scene_bbox()
scale = 1 / max(bbox_max - bbox_min)
for obj in scene_root_objects():
obj.scale = obj.scale * scale
# Apply scale to matrix_world.
bpy.context.view_layer.update()
bbox_min, bbox_max = scene_bbox()
offset = -(bbox_min + bbox_max) / 2
for obj in scene_root_objects():
obj.matrix_world.translation += offset
bpy.ops.object.select_all(action="DESELECT")
def create_camera():
# https://b3d.interplanety.org/en/how-to-create-camera-through-the-blender-python-api/
camera_data = bpy.data.cameras.new(name="Camera")
camera_object = bpy.data.objects.new("Camera", camera_data)
bpy.context.scene.collection.objects.link(camera_object)
bpy.context.scene.camera = camera_object
def set_camera(direction, camera_dist=2.0):
camera_pos = -camera_dist * direction
bpy.context.scene.camera.location = camera_pos
# https://blender.stackexchange.com/questions/5210/pointing-the-camera-in-a-particular-direction-programmatically
rot_quat = direction.to_track_quat("-Z", "Y")
bpy.context.scene.camera.rotation_euler = rot_quat.to_euler()
bpy.context.view_layer.update()
def randomize_camera(camera_dist=2.0):
direction = random_unit_vector()
set_camera(direction, camera_dist=camera_dist)
def pan_camera(time, axis="Z", camera_dist=2.0, elevation=0.1):
angle = time * math.pi * 2
direction = [-math.cos(angle), -math.sin(angle), elevation]
assert axis in ["X", "Y", "Z"]
if axis == "X":
direction = [direction[2], *direction[:2]]
elif axis == "Y":
direction = [direction[0], elevation, direction[1]]
direction = Vector(direction).normalized()
set_camera(direction, camera_dist=camera_dist)
def place_camera(time, camera_pose_mode="random", camera_dist_min=2.0, camera_dist_max=2.0):
camera_dist = random.uniform(camera_dist_min, camera_dist_max)
if camera_pose_mode == "random":
randomize_camera(camera_dist=camera_dist)
elif camera_pose_mode == "z-circular":
pan_camera(time, axis="Z", camera_dist=camera_dist)
elif camera_pose_mode == "z-circular-elevated":
pan_camera(time, axis="Z", camera_dist=camera_dist, elevation=-0.2617993878)
else:
raise ValueError(f"Unknown camera pose mode: {camera_pose_mode}")
def create_light(location, energy=1.0, angle=0.5 * math.pi / 180):
# https://blender.stackexchange.com/questions/215624/how-to-create-a-light-with-the-python-api-in-blender-2-92
light_data = bpy.data.lights.new(name="Light", type="SUN")
light_data.energy = energy
light_data.angle = angle
light_object = bpy.data.objects.new(name="Light", object_data=light_data)
direction = -location
rot_quat = direction.to_track_quat("-Z", "Y")
light_object.rotation_euler = rot_quat.to_euler()
bpy.context.view_layer.update()
bpy.context.collection.objects.link(light_object)
light_object.location = location
def create_random_lights(count=4, distance=2.0, energy=1.5):
clear_lights()
for _ in range(count):
create_light(random_unit_vector() * distance, energy=energy)
def create_camera_light():
clear_lights()
create_light(bpy.context.scene.camera.location, energy=5.0)
def create_uniform_light(backend):
clear_lights()
# Random direction to decorrelate axis-aligned sides.
pos = Vector(UNIFORM_LIGHT_DIRECTION)
angle = 0.0092 if backend == "CYCLES" else math.pi
create_light(pos, energy=5.0, angle=angle)
create_light(-pos, energy=5.0, angle=angle)
def create_vertex_color_shaders():
# By default, Blender will ignore vertex colors in both the
# Eevee and Cycles backends, since these colors aren't
# associated with a material.
#
# What we do here is create a simple material shader and link
# the vertex color to the material color.
for obj in bpy.context.scene.objects.values():
if not isinstance(obj.data, (bpy.types.Mesh)):
continue
if len(obj.data.materials):
# We don't want to override any existing materials.
continue
color_keys = (obj.data.vertex_colors or {}).keys()
if not len(color_keys):
# Many objects will have no materials *or* vertex colors.
continue
mat = bpy.data.materials.new(name="VertexColored")
mat.use_nodes = True
# There should be a Principled BSDF by default.
bsdf_node = None
for node in mat.node_tree.nodes:
if node.type == "BSDF_PRINCIPLED":
bsdf_node = node
assert bsdf_node is not None, "material has no Principled BSDF node to modify"
socket_map = {}
for input in bsdf_node.inputs:
socket_map[input.name] = input
# Make sure nothing lights the object except for the diffuse color.
socket_map["Specular"].default_value = 0.0
socket_map["Roughness"].default_value = 1.0
v_color = mat.node_tree.nodes.new("ShaderNodeVertexColor")
v_color.layer_name = color_keys[0]
mat.node_tree.links.new(v_color.outputs[0], socket_map["Base Color"])
obj.data.materials.append(mat)
def create_default_materials():
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
if not len(obj.data.materials):
mat = bpy.data.materials.new(name="DefaultMaterial")
mat.use_nodes = True
obj.data.materials.append(mat)
def find_materials():
all_materials = set()
for obj in bpy.context.scene.objects.values():
if not isinstance(obj.data, bpy.types.Mesh):
continue
for mat in obj.data.materials:
all_materials.add(mat)
return all_materials
def delete_all_materials():
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, bpy.types.Mesh):
# https://blender.stackexchange.com/questions/146714/removing-all-material-slots-in-one-go
obj.data.materials.clear()
def setup_material_extraction_shaders(capturing_material_alpha: bool):
"""
Change every material to emit texture colors (or alpha) rather than having
an actual reflective color. Returns a function to undo the changes to the
materials.
"""
# Objects can share materials, so we first find all of the
# materials in the project, and then modify them each once.
undo_fns = []
for mat in find_materials():
undo_fn = setup_material_extraction_shader_for_material(mat, capturing_material_alpha)
if undo_fn is not None:
undo_fns.append(undo_fn)
return lambda: [undo_fn() for undo_fn in undo_fns]
def setup_material_extraction_shader_for_material(mat, capturing_material_alpha: bool):
mat.use_nodes = True
# By default, most imported models should use the regular
# "Principled BSDF" material, so we should always find this.
# If not, this shader manipulation logic won't work.
bsdf_node = None
for node in mat.node_tree.nodes:
if node.type == "BSDF_PRINCIPLED":
bsdf_node = node
assert bsdf_node is not None, "material has no Principled BSDF node to modify"
socket_map = {}
for input in bsdf_node.inputs:
socket_map[input.name] = input
for name in ["Base Color", "Emission", "Emission Strength", "Alpha", "Specular"]:
assert name in socket_map.keys(), f"{name} not in {list(socket_map.keys())}"
old_base_color = get_socket_value(mat.node_tree, socket_map["Base Color"])
old_alpha = get_socket_value(mat.node_tree, socket_map["Alpha"])
old_emission = get_socket_value(mat.node_tree, socket_map["Emission"])
old_emission_strength = get_socket_value(mat.node_tree, socket_map["Emission Strength"])
old_specular = get_socket_value(mat.node_tree, socket_map["Specular"])
# Make sure the base color of all objects is black and the opacity
# is 1, so that we are effectively just telling the shader what color
# to make the pixels.
clear_socket_input(mat.node_tree, socket_map["Base Color"])
socket_map["Base Color"].default_value = [0, 0, 0, 1]
clear_socket_input(mat.node_tree, socket_map["Alpha"])
socket_map["Alpha"].default_value = 1
clear_socket_input(mat.node_tree, socket_map["Specular"])
socket_map["Specular"].default_value = 0.0
old_blend_method = mat.blend_method
mat.blend_method = "OPAQUE"
if capturing_material_alpha:
set_socket_value(mat.node_tree, socket_map["Emission"], old_alpha)
else:
set_socket_value(mat.node_tree, socket_map["Emission"], old_base_color)
clear_socket_input(mat.node_tree, socket_map["Emission Strength"])
socket_map["Emission Strength"].default_value = 1.0
def undo_fn():
mat.blend_method = old_blend_method
set_socket_value(mat.node_tree, socket_map["Base Color"], old_base_color)
set_socket_value(mat.node_tree, socket_map["Alpha"], old_alpha)
set_socket_value(mat.node_tree, socket_map["Emission"], old_emission)
set_socket_value(mat.node_tree, socket_map["Emission Strength"], old_emission_strength)
set_socket_value(mat.node_tree, socket_map["Specular"], old_specular)
return undo_fn
def get_socket_value(tree, socket):
default = socket.default_value
if not isinstance(default, float):
default = list(default)
for link in tree.links:
if link.to_socket == socket:
return (link.from_socket, default)
return (None, default)
def clear_socket_input(tree, socket):
for link in list(tree.links):
if link.to_socket == socket:
tree.links.remove(link)
def set_socket_value(tree, socket, socket_and_default):
clear_socket_input(tree, socket)
old_source_socket, default = socket_and_default
if isinstance(default, float) and not isinstance(socket.default_value, float):
# Codepath for setting Emission to a previous alpha value.
socket.default_value = [default] * 3 + [1.0]
else:
socket.default_value = default
if old_source_socket is not None:
tree.links.new(old_source_socket, socket)
def setup_nodes(output_path, capturing_material_alpha: bool = False, basic_lighting: bool = False):
tree = bpy.context.scene.node_tree
links = tree.links
for node in tree.nodes:
tree.nodes.remove(node)
# Helpers to perform math on links and constants.
def node_op(op: str, *args, clamp=False):
node = tree.nodes.new(type="CompositorNodeMath")
node.operation = op
if clamp:
node.use_clamp = True
for i, arg in enumerate(args):
if isinstance(arg, (int, float)):
node.inputs[i].default_value = arg
else:
links.new(arg, node.inputs[i])
return node.outputs[0]
def node_clamp(x, maximum=1.0):
return node_op("MINIMUM", x, maximum)
def node_mul(x, y, **kwargs):
return node_op("MULTIPLY", x, y, **kwargs)
def node_add(x, y, **kwargs):
return node_op("ADD", x, y, **kwargs)
def node_abs(x, **kwargs):
return node_op("ABSOLUTE", x, **kwargs)
input_node = tree.nodes.new(type="CompositorNodeRLayers")
input_node.scene = bpy.context.scene
input_sockets = {}
for output in input_node.outputs:
input_sockets[output.name] = output
if capturing_material_alpha:
color_socket = input_sockets["Image"]
else:
raw_color_socket = input_sockets["Image"]
if basic_lighting:
# Compute diffuse lighting
normal_xyz = tree.nodes.new(type="CompositorNodeSeparateXYZ")
tree.links.new(input_sockets["Normal"], normal_xyz.inputs[0])
normal_x, normal_y, normal_z = [normal_xyz.outputs[i] for i in range(3)]
dot = node_add(
node_mul(UNIFORM_LIGHT_DIRECTION[0], normal_x),
node_add(
node_mul(UNIFORM_LIGHT_DIRECTION[1], normal_y),
node_mul(UNIFORM_LIGHT_DIRECTION[2], normal_z),
),
)
diffuse = node_abs(dot)
# Compute ambient + diffuse lighting
brightness = node_add(BASIC_AMBIENT_COLOR, node_mul(BASIC_DIFFUSE_COLOR, diffuse))
# Modulate the RGB channels using the total brightness.
rgba_node = tree.nodes.new(type="CompositorNodeSepRGBA")
tree.links.new(raw_color_socket, rgba_node.inputs[0])
combine_node = tree.nodes.new(type="CompositorNodeCombRGBA")
for i in range(3):
tree.links.new(node_mul(rgba_node.outputs[i], brightness), combine_node.inputs[i])
tree.links.new(rgba_node.outputs[3], combine_node.inputs[3])
raw_color_socket = combine_node.outputs[0]
# We apply sRGB here so that our fixed-point depth map and material
# alpha values are not sRGB, and so that we perform ambient+diffuse
# lighting in linear RGB space.
color_node = tree.nodes.new(type="CompositorNodeConvertColorSpace")
color_node.from_color_space = "Linear"
color_node.to_color_space = "sRGB"
tree.links.new(raw_color_socket, color_node.inputs[0])
color_socket = color_node.outputs[0]
split_node = tree.nodes.new(type="CompositorNodeSepRGBA")
tree.links.new(color_socket, split_node.inputs[0])
# Create separate file output nodes for every channel we care about.
# The process calling this script must decide how to recombine these
# channels, possibly into a single image.
for i, channel in enumerate("rgba") if not capturing_material_alpha else [(0, "MatAlpha")]:
output_node = tree.nodes.new(type="CompositorNodeOutputFile")
output_node.base_path = f"{output_path}_{channel}"
links.new(split_node.outputs[i], output_node.inputs[0])
if capturing_material_alpha:
# No need to re-write depth here.
return
depth_out = node_clamp(node_mul(input_sockets["Depth"], 1 / MAX_DEPTH))
output_node = tree.nodes.new(type="CompositorNodeOutputFile")
output_node.base_path = f"{output_path}_depth"
links.new(depth_out, output_node.inputs[0])
def render_scene(output_path, fast_mode: bool, extract_material: bool, basic_lighting: bool):
use_workbench = bpy.context.scene.render.engine == "BLENDER_WORKBENCH"
if use_workbench:
# We must use a different engine to compute depth maps.
print("Switching to EEVEE for depth map computation.")
bpy.context.scene.render.engine = "BLENDER_EEVEE"
bpy.context.scene.eevee.taa_render_samples = 1 # faster, since we discard image.
if fast_mode:
if bpy.context.scene.render.engine == "BLENDER_EEVEE":
bpy.context.scene.eevee.taa_render_samples = 1
elif bpy.context.scene.render.engine == "CYCLES":
bpy.context.scene.cycles.samples = 256
else:
if bpy.context.scene.render.engine == "CYCLES":
# We should still impose a per-frame time limit
# so that we don't timeout completely.
bpy.context.scene.cycles.time_limit = 40
bpy.context.view_layer.update()
bpy.context.scene.use_nodes = True
bpy.context.scene.view_layers["ViewLayer"].use_pass_z = True
if basic_lighting:
bpy.context.scene.view_layers["ViewLayer"].use_pass_normal = True
bpy.context.scene.view_settings.view_transform = "Raw" # sRGB done in graph nodes
bpy.context.scene.render.film_transparent = True
bpy.context.scene.render.resolution_x = 512
bpy.context.scene.render.resolution_y = 512
bpy.context.scene.render.image_settings.file_format = "PNG"
bpy.context.scene.render.image_settings.color_mode = "BW"
bpy.context.scene.render.image_settings.color_depth = "16"
bpy.context.scene.render.filepath = output_path
if extract_material:
for do_alpha in [False, True]:
undo_fn = setup_material_extraction_shaders(capturing_material_alpha=do_alpha)
setup_nodes(output_path, capturing_material_alpha=do_alpha)
bpy.ops.render.render(write_still=True)
undo_fn()
else:
setup_nodes(output_path, basic_lighting=basic_lighting)
bpy.ops.render.render(write_still=True)
# The output images must be moved from their own sub-directories, or
# discarded if we are using workbench for the color.
for channel_name in ["r", "g", "b", "a", "depth", *(["MatAlpha"] if extract_material else [])]:
sub_dir = f"{output_path}_{channel_name}"
image_path = os.path.join(sub_dir, os.listdir(sub_dir)[0])
name, ext = os.path.splitext(output_path)
if channel_name == "depth" or not use_workbench:
os.rename(image_path, f"{name}_{channel_name}{ext}")
else:
os.remove(image_path)
os.removedirs(sub_dir)
if use_workbench:
# Re-render RGBA using workbench with texture mode, since this seems
# to show the most reasonable colors when lighting is broken.
bpy.context.scene.use_nodes = False
bpy.context.scene.render.engine = "BLENDER_WORKBENCH"
bpy.context.scene.render.image_settings.color_mode = "RGBA"
bpy.context.scene.render.image_settings.color_depth = "8"
bpy.context.scene.display.shading.color_type = "TEXTURE"
bpy.context.scene.display.shading.light = "FLAT"
if fast_mode:
# Single pass anti-aliasing.
bpy.context.scene.display.render_aa = "FXAA"
os.remove(output_path)
bpy.ops.render.render(write_still=True)
bpy.context.scene.render.image_settings.color_mode = "BW"
bpy.context.scene.render.image_settings.color_depth = "16"
def scene_fov():
x_fov = bpy.context.scene.camera.data.angle_x
y_fov = bpy.context.scene.camera.data.angle_y
width = bpy.context.scene.render.resolution_x
height = bpy.context.scene.render.resolution_y
if bpy.context.scene.camera.data.angle == x_fov:
y_fov = 2 * math.atan(math.tan(x_fov / 2) * height / width)
else:
x_fov = 2 * math.atan(math.tan(y_fov / 2) * width / height)
return x_fov, y_fov
def write_camera_metadata(path):
x_fov, y_fov = scene_fov()
bbox_min, bbox_max = scene_bbox()
matrix = bpy.context.scene.camera.matrix_world
with open(path, "w") as f:
json.dump(
dict(
format_version=FORMAT_VERSION,
max_depth=MAX_DEPTH,
bbox=[list(bbox_min), list(bbox_max)],
origin=list(matrix.col[3])[:3],
x_fov=x_fov,
y_fov=y_fov,
x=list(matrix.col[0])[:3],
y=list(-matrix.col[1])[:3],
z=list(-matrix.col[2])[:3],
),
f,
)
def save_rendering_dataset(
input_path: str,
output_path: str,
num_images: int,
backend: str,
light_mode: str,
camera_pose: str,
camera_dist_min: float,
camera_dist_max: float,
fast_mode: bool,
extract_material: bool,
delete_material: bool,
):
assert light_mode in ["random", "uniform", "camera", "basic"]
assert camera_pose in ["random", "z-circular", "z-circular-elevated"]
basic_lighting = light_mode == "basic"
assert not (basic_lighting and extract_material), "cannot extract material with basic lighting"
assert not (delete_material and extract_material), "cannot extract material and delete it"
import_model(input_path)
bpy.context.scene.render.engine = backend
normalize_scene()
if light_mode == "random":
create_random_lights()
elif light_mode == "uniform":
create_uniform_light(backend)
create_camera()
create_vertex_color_shaders()
if delete_material:
delete_all_materials()
if extract_material or basic_lighting:
create_default_materials()
if basic_lighting:
# Make sure materials are uniformly lit, so that we can light
# them in the output shader.
setup_material_extraction_shaders(capturing_material_alpha=False)
for i in range(num_images):
t = i / max(num_images - 1, 1) # same as np.linspace(0, 1, num_images)
place_camera(
t,
camera_pose_mode=camera_pose,
camera_dist_min=camera_dist_min,
camera_dist_max=camera_dist_max,
)
if light_mode == "camera":
create_camera_light()
render_scene(
os.path.join(output_path, f"{i:05}.png"),
fast_mode=fast_mode,
extract_material=extract_material,
basic_lighting=basic_lighting,
)
write_camera_metadata(os.path.join(output_path, f"{i:05}.json"))
with open(os.path.join(output_path, "info.json"), "w") as f:
info = dict(
backend=backend,
light_mode=light_mode,
fast_mode=fast_mode,
extract_material=extract_material,
format_version=FORMAT_VERSION,
channels=["R", "G", "B", "A", "D", *(["MatAlpha"] if extract_material else [])],
scale=0.5, # The scene is bounded by [-scale, scale].
)
json.dump(info, f)
def main():
global UNIFORM_LIGHT_DIRECTION, BASIC_AMBIENT_COLOR, BASIC_DIFFUSE_COLOR
try:
dash_index = sys.argv.index("--")
except ValueError as exc:
raise ValueError("arguments must be preceded by '--'") from exc
raw_args = sys.argv[dash_index + 1 :]
parser = argparse.ArgumentParser()
parser.add_argument("--input_path", required=True, type=str)
parser.add_argument("--output_path", required=True, type=str)
parser.add_argument("--num_images", required=True, type=int)
parser.add_argument("--backend", type=str, default="BLENDER_EEVEE")
parser.add_argument("--light_mode", type=str, default="random")
parser.add_argument("--camera_pose", type=str, default="random")
parser.add_argument("--camera_dist_min", type=float, default=2.0)
parser.add_argument("--camera_dist_max", type=float, default=2.0)
parser.add_argument("--fast_mode", action="store_true")
parser.add_argument("--extract_material", action="store_true")
parser.add_argument("--delete_material", action="store_true")
# Prevent constants from being repeated.
parser.add_argument("--uniform_light_direction", required=True, type=float, nargs="+")
parser.add_argument("--basic_ambient", required=True, type=float)
parser.add_argument("--basic_diffuse", required=True, type=float)
args = parser.parse_args(raw_args)
UNIFORM_LIGHT_DIRECTION = args.uniform_light_direction
BASIC_AMBIENT_COLOR = args.basic_ambient
BASIC_DIFFUSE_COLOR = args.basic_diffuse
save_rendering_dataset(
input_path=args.input_path,
output_path=args.output_path,
num_images=args.num_images,
backend=args.backend,
light_mode=args.light_mode,
camera_pose=args.camera_pose,
camera_dist_min=args.camera_dist_min,
camera_dist_max=args.camera_dist_max,
fast_mode=args.fast_mode,
extract_material=args.extract_material,
delete_material=args.delete_material,
)
main()
|