karimouda commited on
Commit
eec2226
·
1 Parent(s): 8be92b7

Rank + others

Browse files
app.py CHANGED
@@ -75,17 +75,7 @@ def init_leaderboard(dataframe):
75
 
76
  ColumnFilter(AutoEvalColumn.model_source.name, type="checkboxgroup", label="Model Source"),
77
  ColumnFilter(AutoEvalColumn.model_category.name, type="checkboxgroup", label="Model Category"),
78
- #ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
79
- ColumnFilter(
80
- AutoEvalColumn.params.name,
81
- type="slider",
82
- min=0.01,
83
- max=150,
84
- label="Select the number of parameters (B)",
85
- ),
86
- #ColumnFilter(
87
- # AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
88
- #),
89
  ],
90
  bool_checkboxgroup_label="Hide models",
91
  interactive=True,
 
75
 
76
  ColumnFilter(AutoEvalColumn.model_source.name, type="checkboxgroup", label="Model Source"),
77
  ColumnFilter(AutoEvalColumn.model_category.name, type="checkboxgroup", label="Model Category"),
78
+
 
 
 
 
 
 
 
 
 
 
79
  ],
80
  bool_checkboxgroup_label="Hide models",
81
  interactive=True,
results/open-ai/chatgpt-3.5-turbo_results_2025-04-21 16:28:50.730625.json CHANGED
@@ -30,7 +30,7 @@
30
  "model_sha": "NA",
31
  "submitted_time": "2025-04-21 16:28:38",
32
  "likes": -1,
33
- "params": 1000,
34
  "license": "closed",
35
  "model_source": "API",
36
  "model_category": "Large"
 
30
  "model_sha": "NA",
31
  "submitted_time": "2025-04-21 16:28:38",
32
  "likes": -1,
33
+ "params": 999,
34
  "license": "closed",
35
  "model_source": "API",
36
  "model_category": "Large"
src/display/utils.py CHANGED
@@ -23,6 +23,8 @@ class ColumnContent:
23
  ## Leaderboard columns
24
  auto_eval_column_dict = []
25
  # Init
 
 
26
  auto_eval_column_dict.append(["model_source", ColumnContent, ColumnContent("Source", "str", True, False)])
27
  auto_eval_column_dict.append(["model_category", ColumnContent, ColumnContent("Category", "str", True, False)])
28
 
@@ -30,7 +32,7 @@ auto_eval_column_dict.append(["model_category", ColumnContent, ColumnContent("Ca
30
  #auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
31
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
32
  #Scores
33
- auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
34
  for eval_dim in EvalDimensions:
35
  auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", True)])
36
  # Model information
@@ -39,9 +41,9 @@ for eval_dim in EvalDimensions:
39
  #auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
40
  #auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
41
  #auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
42
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
43
  auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
44
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
45
  #auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
46
  #auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
47
 
 
23
  ## Leaderboard columns
24
  auto_eval_column_dict = []
25
  # Init
26
+ auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("Rank", "str", True, False)])
27
+
28
  auto_eval_column_dict.append(["model_source", ColumnContent, ColumnContent("Source", "str", True, False)])
29
  auto_eval_column_dict.append(["model_category", ColumnContent, ColumnContent("Category", "str", True, False)])
30
 
 
32
  #auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
33
  auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
34
  #Scores
35
+ auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True)])
36
  for eval_dim in EvalDimensions:
37
  auto_eval_column_dict.append([eval_dim.name, ColumnContent, ColumnContent(eval_dim.value.col_name, "number", True)])
38
  # Model information
 
41
  #auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
42
  #auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
43
  #auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
44
+ auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("License", "str", False)])
45
  auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
46
+ auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Popularity (Likes)", "number", False)])
47
  #auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
48
  #auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
49
 
src/leaderboard/read_evals.py CHANGED
@@ -88,6 +88,9 @@ class EvalResult:
88
  model=model,
89
  model_source=config.get("model_source", ""),
90
  model_category=config.get("model_category", ""),
 
 
 
91
  results=results,
92
  #precision=precision,
93
  #revision= config.get("model_sha", ""),
@@ -104,9 +107,9 @@ class EvalResult:
104
 
105
  #self.model_type = ModelType.from_str(request.get("model_type", ""))
106
  #self.weight_type = WeightType[request.get("weight_type", "Original")]
107
- self.license = request.get("license", "?")
108
- self.likes = request.get("likes", 0)
109
- self.num_params = request.get("params", 0)
110
  self.date = request.get("submitted_time", "")
111
  except Exception:
112
  print(f"Could not find request file for {self.org}/{self.model}") # with precision {self.precision.value.name}
 
88
  model=model,
89
  model_source=config.get("model_source", ""),
90
  model_category=config.get("model_category", ""),
91
+ num_params=config.get("params", 0),
92
+ license=config.get("license", "?"),
93
+ likes=config.get("likes", -1),
94
  results=results,
95
  #precision=precision,
96
  #revision= config.get("model_sha", ""),
 
107
 
108
  #self.model_type = ModelType.from_str(request.get("model_type", ""))
109
  #self.weight_type = WeightType[request.get("weight_type", "Original")]
110
+ #self.license = request.get("license", "?")
111
+ #self.likes = request.get("likes", 0)
112
+ #self.params = request.get("params", 0)
113
  self.date = request.get("submitted_time", "")
114
  except Exception:
115
  print(f"Could not find request file for {self.org}/{self.model}") # with precision {self.precision.value.name}
src/populate.py CHANGED
@@ -14,13 +14,17 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
14
  all_data_json = [v.to_dict() for v in raw_data]
15
 
16
  df = pd.DataFrame.from_records(all_data_json)
17
- print(df)
18
  if not df.empty:
19
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
20
- df = df[cols].round(decimals=2)
21
 
22
  # filter out if any of the benchmarks have not been produced
23
  df = df[has_no_nan_values(df, benchmark_cols)]
 
 
 
 
24
  return df
25
  else:
26
  return pd.DataFrame(columns=cols)
 
14
  all_data_json = [v.to_dict() for v in raw_data]
15
 
16
  df = pd.DataFrame.from_records(all_data_json)
17
+
18
  if not df.empty:
19
  df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
20
+
21
 
22
  # filter out if any of the benchmarks have not been produced
23
  df = df[has_no_nan_values(df, benchmark_cols)]
24
+
25
+ df.insert(0, "Rank", range(1, len(df) + 1))
26
+ df = df[cols].round(decimals=2)
27
+ print(df)
28
  return df
29
  else:
30
  return pd.DataFrame(columns=cols)