import json import os from datetime import datetime, timezone from src.display.formatting import styled_error, styled_message, styled_warning from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO from src.submission.check_validity import ( already_submitted_models, check_model_card, get_model_size, is_model_on_hub, ) from huggingface_hub import hf_hub_download REQUESTED_MODELS = None USERS_TO_SUBMISSION_DATES = None def add_new_eval( model: str, #base_model: str, #revision: str, #precision: str, #weight_type: str, #model_type: str, ): global REQUESTED_MODELS global USERS_TO_SUBMISSION_DATES if not REQUESTED_MODELS: REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) user_name = "" model_path = model if "/" in model: user_name = model.split("/")[0] model_path = model.split("/")[1] #precision = precision.split(" ")[0] current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") if not is_model_on_hub(model_name=model, token=TOKEN, test_tokenizer=True): #revision=revision return styled_error("Model does not exist on HF Hub. Please select a valid model name.") """ if model_type is None or model_type == "": return styled_error("Please select a model type.") # Does the model actually exist? if revision == "": revision = "main" # Is the model on the hub? if weight_type in ["Delta", "Adapter"]: base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True) if not base_model_on_hub: return styled_error(f'Base model "{base_model}" {error}') if not weight_type == "Adapter": model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True) if not model_on_hub: return styled_error(f'Model "{model}" {error}') """ # Is the model info correctly filled? try: model_info = API.model_info(repo_id=model)#, revision=revision except Exception: return styled_error("Could not get your model information. Please fill it up properly.") model_size = get_model_size(model_info=model_info)#, precision=precision if model_size>30: return styled_error("Due to limited GPU availability, evaluations for models larger than 30B are currently not automated. Please open a ticket here so we do it manually for you. https://huggingface.co/spaces/silma-ai/Arabic-Broad-Leaderboard/discussions") # Were the model card and license filled? try: license = model_info.cardData["license"] except Exception: return styled_error("Please select a license for your model") modelcard_OK, error_msg = check_model_card(model) if not modelcard_OK: return styled_error(error_msg) # Seems good, creating the eval print("Preparing a new eval") eval_entry = { "model": model, "model_sha": model_info.sha, #"base_model": base_model, #"revision": revision, #"precision": precision, #"weight_type": weight_type, "status": "PENDING", "submitted_time": current_time, #"model_type": model_type, "likes": model_info.likes, "params": model_size, "license": license, #"private": False, } # Check for duplicate submission if f"{model}" in REQUESTED_MODELS: #_{revision}_{precision} return styled_warning("This model has been already submitted.") print("Creating eval file") OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" os.makedirs(OUT_DIR, exist_ok=True) out_path = f"{OUT_DIR}/{model_path}_eval_request.json" #_{precision}_{weight_type} with open(out_path, "w") as f: f.write(json.dumps(eval_entry)) ##update queue file queue_file_path = "./eval_queue.json" ## download queue_file from repo using HuggingFace hub API, update it and upload again queue_file = hf_hub_download( filename=queue_file_path, repo_id=QUEUE_REPO, repo_type="space", token=TOKEN ) with open(queue_file, "r") as f: queue_data = json.load(f) if len(queue_data) == 0: queue_data = [] queue_data.append(eval_entry) print(queue_data) #with open(queue_file, "w") as f: # json.dump(queue_data, f) print("Updating eval queue file") API.upload_file( path_or_fileobj=json.dumps(queue_data, indent=2).encode("utf-8"), path_in_repo=queue_file_path, repo_id=QUEUE_REPO, repo_type="space", commit_message=f"Add {model} to eval queue" ) print("Uploading eval file") API.upload_file( path_or_fileobj=out_path, path_in_repo=out_path, repo_id=QUEUE_REPO, repo_type="space", commit_message=f"Add {model} request file", ) # Remove the local file os.remove(out_path) return styled_message( "Your request has been submitted to the evaluation queue!\nPlease wait for up to an 15 minutes for the model to show in the PENDING list." )