sim-so's picture
update
e6b75fb
raw
history blame
5.81 kB
import time
import json
import pandas as pd
import gradio as gr
import openai
from src.semantle import get_guess, get_secret
from src.functions import get_functions
from src.utils import add_guess
GPT_MODEL = "gpt-3.5-turbo"
TITLE = "やりとりSemantle"
system_content = task_background+task_description
system_message = [{"role": "system", "content": system_content}]
def create_chat(user_input, chat_history, api_key):
openai.api_key = api_key
chat_messages = [{"role": "user", "content": user_input}]
response = openai.ChatCompletion.create(
model=GPT_MODEL,
messages=system_message+chat_messages,
functions=get_functions()
)
response_message = response.choices[0].message
# Step 2: check if CPT wanted to call a function
if response_message.get("function_call"):
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"evaluate_score": get_guess,
"get_data_for_hint": get_play_data,
}
function_name = response_message["function_call"]["name"]
function_to_call = available_functions[function_name]
function_args = json.loads(response_message["function_call"]["arguments"])
function_response = function_to_call(
word=function_args.get("word"),
puzzle_num=puzzle_num
)
guess_result = update_guess(function_response, guessed, guesses)
print(guess_result)
# Step 4: send the info on the function call and function response to GPT
chat_messages.append(response_message.to_dict()) # extend conversation with assistant's reply
chat_messages.append(
{"role": "function",
"name": function_name,
"content": guess_result}
) # extend conversation with function response
second_response = openai.ChatCompletion.create(
model=GPT_MODEL,
messages=system_message+chat_history+chat_messages,
) # get a new response from GPT where it can se the function response
chat_messages.append(second_response["choices"][0]["message"].to_dict())
chat_history = chat_history[-8:] + chat_messages
return chat_messages[-1]
chat_messages.append(response_message.to_dict())
chat_history = chat_history[-8:] + chat_messages
return chat_messages[-1]
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(
"""
# やりとりSemantle
[semantle日本語版](https://semantoru.com/)をchatbotと楽しめるspaceです。
## ゲームのやり方
- 正解は一つの単語で、これを答えるとゲームの勝利になります。
- 推測した単語が正解じゃない場合、類似度スコアと順位が表示されます。それは正解を推測する大事なヒントになります。
## chatbotの仕事
- 単語のスコアとランク以外に他のヒントがもらえます。
- ゲームに関して困っている時、何か質問してみてください。
"""
)
with gr.Row():
with gr.Column():
api_key = gr.Textbox(placeholder="sk-...", label="OPENAI_API_KEY", value=None, type="password")
idx = gr.State(value=0)
guessed = gr.State(value=set())
guesses = gr.State(value=list())
cur_guess = gr.State()
guesses_table = gr.DataFrame(
value=pd.DataFrame(columns=["#", "答え", "スコア", "ランク"]),
headers=["#", "答え", "score", "score"],
datatype=["number", "str", "number", "str"],
elem_id="guesses-table",
interactive=False
)
with gr.Column(elem_id="chat_container"):
msg = gr.Textbox(
placeholder="ゲームをするため、まずはAPI KEYを入れてください。",
label="答え",
interactive=False,
max_lines=1
)
chatbot = gr.Chatbot(elem_id="chatbot")
def unfreeze():
return msg.update(interactive=True, placeholder="正解と思う言葉を答えてください。")
def greet():
return "", [("[START]", "ゲームを始まります!好きな言葉をひとつだけいってみてください。")]
def respond(key, user_input):
reply = create_chat(key, user_input)
chatbot.append((user_input, reply["content"]))
time.sleep(2)
return "", chatbot
def update_guesses(cur, i, guessed_words, guesses_df):
if cur[0] not in guessed_words:
guessed_words.add(cur[0])
guesses_df.loc[i] = [i+1] + cur
i += 1
guesses_df = guesses_df.sort_values(by=["score"], ascending=False)
return i, guessed_words, guesses_df
api_key.change(unfreeze, [], [msg]).then(greet, [], [msg, chatbot])
msg.submit(respond, [api_key, msg, chatbot, cur_guess], [msg, chatbot, cur_guess]).then(
update_guesses, [cur_guess, idx, guessed, guesses_table], [idx, guessed, guesses_table]
)
gr.Examples(
[
["猫"],
["どんなヒントが貰える?"],
["正解と「近い」とはどういう意味?"],
["何から始めたらいい?"],
["今日の正解は何?"],
],
inputs=msg,
label="こちらから選んで話すこともできます."
)
if __name__ == "__main__":
demo.queue(concurrency_count=20).launch()