import time import json import pandas as pd import gradio as gr import openai from src.semantle import get_guess, get_secret from src.functions import get_functions from src.utils import add_guess GPT_MODEL = "gpt-3.5-turbo" TITLE = "やりとりSemantle" system_content = task_background+task_description system_message = [{"role": "system", "content": system_content}] def create_chat(user_input, chat_history, api_key): openai.api_key = api_key chat_messages = [{"role": "user", "content": user_input}] response = openai.ChatCompletion.create( model=GPT_MODEL, messages=system_message+chat_messages, functions=get_functions() ) response_message = response.choices[0].message # Step 2: check if CPT wanted to call a function if response_message.get("function_call"): # Step 3: call the function # Note: the JSON response may not always be valid; be sure to handle errors available_functions = { "evaluate_score": get_guess, "get_data_for_hint": get_play_data, } function_name = response_message["function_call"]["name"] function_to_call = available_functions[function_name] function_args = json.loads(response_message["function_call"]["arguments"]) function_response = function_to_call( word=function_args.get("word"), puzzle_num=puzzle_num ) guess_result = update_guess(function_response, guessed, guesses) print(guess_result) # Step 4: send the info on the function call and function response to GPT chat_messages.append(response_message.to_dict()) # extend conversation with assistant's reply chat_messages.append( {"role": "function", "name": function_name, "content": guess_result} ) # extend conversation with function response second_response = openai.ChatCompletion.create( model=GPT_MODEL, messages=system_message+chat_history+chat_messages, ) # get a new response from GPT where it can se the function response chat_messages.append(second_response["choices"][0]["message"].to_dict()) chat_history = chat_history[-8:] + chat_messages return chat_messages[-1] chat_messages.append(response_message.to_dict()) chat_history = chat_history[-8:] + chat_messages return chat_messages[-1] with gr.Blocks() as demo: with gr.Row(): gr.Markdown( """ # やりとりSemantle [semantle日本語版](https://semantoru.com/)をchatbotと楽しめるspaceです。 ## ゲームのやり方 - 正解は一つの単語で、これを答えるとゲームの勝利になります。 - 推測した単語が正解じゃない場合、類似度スコアと順位が表示されます。それは正解を推測する大事なヒントになります。 ## chatbotの仕事 - 単語のスコアとランク以外に他のヒントがもらえます。 - ゲームに関して困っている時、何か質問してみてください。 """ ) with gr.Row(): with gr.Column(): api_key = gr.Textbox(placeholder="sk-...", label="OPENAI_API_KEY", value=None, type="password") idx = gr.State(value=0) guessed = gr.State(value=set()) guesses = gr.State(value=list()) cur_guess = gr.State() guesses_table = gr.DataFrame( value=pd.DataFrame(columns=["#", "答え", "スコア", "ランク"]), headers=["#", "答え", "score", "score"], datatype=["number", "str", "number", "str"], elem_id="guesses-table", interactive=False ) with gr.Column(elem_id="chat_container"): msg = gr.Textbox( placeholder="ゲームをするため、まずはAPI KEYを入れてください。", label="答え", interactive=False, max_lines=1 ) chatbot = gr.Chatbot(elem_id="chatbot") def unfreeze(): return msg.update(interactive=True, placeholder="正解と思う言葉を答えてください。") def greet(): return "", [("[START]", "ゲームを始まります!好きな言葉をひとつだけいってみてください。")] def respond(key, user_input): reply = create_chat(key, user_input) chatbot.append((user_input, reply["content"])) time.sleep(2) return "", chatbot def update_guesses(cur, i, guessed_words, guesses_df): if cur[0] not in guessed_words: guessed_words.add(cur[0]) guesses_df.loc[i] = [i+1] + cur i += 1 guesses_df = guesses_df.sort_values(by=["score"], ascending=False) return i, guessed_words, guesses_df api_key.change(unfreeze, [], [msg]).then(greet, [], [msg, chatbot]) msg.submit(respond, [api_key, msg, chatbot, cur_guess], [msg, chatbot, cur_guess]).then( update_guesses, [cur_guess, idx, guessed, guesses_table], [idx, guessed, guesses_table] ) gr.Examples( [ ["猫"], ["どんなヒントが貰える?"], ["正解と「近い」とはどういう意味?"], ["何から始めたらいい?"], ["今日の正解は何?"], ], inputs=msg, label="こちらから選んで話すこともできます." ) if __name__ == "__main__": demo.queue(concurrency_count=20).launch()