add code
Browse files- app.py +503 -0
- requirements.txt +19 -0
app.py
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#%%
|
2 |
+
import xarray as xr
|
3 |
+
from siphon.catalog import TDSCatalog
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import pandas as pd
|
7 |
+
import matplotlib.colors as mcolors
|
8 |
+
import streamlit as st
|
9 |
+
import datetime
|
10 |
+
import matplotlib.dates as mdates
|
11 |
+
from scipy.interpolate import griddata
|
12 |
+
import folium
|
13 |
+
import branca.colormap as cm
|
14 |
+
|
15 |
+
@st.cache_data(ttl=60)
|
16 |
+
def find_latest_meps_file():
|
17 |
+
# The MEPS dataset: https://github.com/metno/NWPdocs/wiki/MEPS-dataset
|
18 |
+
today = datetime.datetime.today()
|
19 |
+
catalog_url = f"https://thredds.met.no/thredds/catalog/meps25epsarchive/{today.year}/{today.month:02d}/{today.day:02d}/catalog.xml"
|
20 |
+
file_url_base = f"https://thredds.met.no/thredds/dodsC/meps25epsarchive/{today.year}/{today.month:02d}/{today.day:02d}"
|
21 |
+
# Get the datasets from the catalog
|
22 |
+
catalog = TDSCatalog(catalog_url)
|
23 |
+
datasets = [s for s in catalog.datasets if "meps_det_ml" in s]
|
24 |
+
file_path = f"{file_url_base}/{sorted(datasets)[-1]}"
|
25 |
+
return file_path
|
26 |
+
|
27 |
+
|
28 |
+
@st.cache_data()
|
29 |
+
def load_meps_for_location(file_path=None, altitude_min=0, altitude_max=3000):
|
30 |
+
"""
|
31 |
+
file_path=None
|
32 |
+
altitude_min=0
|
33 |
+
altitude_max=3000
|
34 |
+
"""
|
35 |
+
|
36 |
+
if file_path is None:
|
37 |
+
file_path = find_latest_meps_file()
|
38 |
+
|
39 |
+
x_range= "[220:1:300]"
|
40 |
+
y_range= "[420:1:500]"
|
41 |
+
time_range = "[0:1:66]"
|
42 |
+
hybrid_range = "[25:1:64]"
|
43 |
+
height_range = "[0:1:0]"
|
44 |
+
|
45 |
+
params = {
|
46 |
+
"x": x_range,
|
47 |
+
"y": y_range,
|
48 |
+
"time": time_range,
|
49 |
+
"hybrid": hybrid_range,
|
50 |
+
"height": height_range,
|
51 |
+
"longitude": f"{y_range}{x_range}",
|
52 |
+
"latitude": f"{y_range}{x_range}",
|
53 |
+
"air_temperature_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
|
54 |
+
"ap" : f"{hybrid_range}",
|
55 |
+
"b" : f"{hybrid_range}",
|
56 |
+
"surface_air_pressure": f"{time_range}{height_range}{y_range}{x_range}",
|
57 |
+
"x_wind_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
|
58 |
+
"y_wind_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
|
59 |
+
}
|
60 |
+
|
61 |
+
path = f"{file_path}?{','.join(f'{k}{v}' for k, v in params.items())}"
|
62 |
+
|
63 |
+
subset = xr.open_dataset(path, cache=True)
|
64 |
+
subset.load()
|
65 |
+
|
66 |
+
#%% get geopotential
|
67 |
+
time_range_sfc = "[0:1:0]"
|
68 |
+
surf_params = {
|
69 |
+
"x": x_range,
|
70 |
+
"y": y_range,
|
71 |
+
"time": f"{time_range}",
|
72 |
+
"surface_geopotential": f"{time_range_sfc}[0:1:0]{y_range}{x_range}",
|
73 |
+
"air_temperature_0m": f"{time_range}[0:1:0]{y_range}{x_range}",
|
74 |
+
}
|
75 |
+
file_path_surf = f"{file_path.replace('meps_det_ml','meps_det_sfc')}?{','.join(f'{k}{v}' for k, v in surf_params.items())}"
|
76 |
+
|
77 |
+
# Load surface parameters and merge into the main dataset
|
78 |
+
surf = xr.open_dataset(file_path_surf, cache=True)
|
79 |
+
# Convert the surface geopotential to elevation
|
80 |
+
elevation = (surf.surface_geopotential / 9.80665).squeeze()
|
81 |
+
#elevation.plot()
|
82 |
+
subset['elevation'] = elevation
|
83 |
+
air_temperature_0m = surf.air_temperature_0m.squeeze()
|
84 |
+
subset['air_temperature_0m'] = air_temperature_0m
|
85 |
+
# subset.elevation.plot()
|
86 |
+
#%%
|
87 |
+
def hybrid_to_height(ds):
|
88 |
+
"""
|
89 |
+
ds = subset
|
90 |
+
"""
|
91 |
+
# Constants
|
92 |
+
R = 287.05 # Gas constant for dry air
|
93 |
+
g = 9.80665 # Gravitational acceleration
|
94 |
+
|
95 |
+
# Calculate the pressure at each level
|
96 |
+
p = ds['ap'] + ds['b'] * ds['surface_air_pressure']#.mean("ensemble_member")
|
97 |
+
|
98 |
+
# Get the temperature at each level
|
99 |
+
T = ds['air_temperature_ml']#.mean("ensemble_member")
|
100 |
+
|
101 |
+
# Calculate the height difference between each level and the surface
|
102 |
+
dp = ds['surface_air_pressure'] - p # Pressure difference
|
103 |
+
dT = T - T.isel(hybrid=-1) # Temperature difference relative to the surface
|
104 |
+
dT_mean = 0.5 * (T + T.isel(hybrid=-1)) # Mean temperature
|
105 |
+
|
106 |
+
# Calculate the height using the hypsometric equation
|
107 |
+
dz = (R * dT_mean / g) * np.log(ds['surface_air_pressure'] / p)
|
108 |
+
|
109 |
+
return dz
|
110 |
+
|
111 |
+
|
112 |
+
altitude = hybrid_to_height(subset).mean("time").squeeze().mean("x").mean("y")
|
113 |
+
subset = subset.assign_coords(altitude=('hybrid', altitude.data))
|
114 |
+
subset = subset.swap_dims({'hybrid': 'altitude'})
|
115 |
+
|
116 |
+
# filter subset on altitude ranges
|
117 |
+
subset = subset.where((subset.altitude >= altitude_min) & (subset.altitude <= altitude_max), drop=True).squeeze()
|
118 |
+
|
119 |
+
wind_speed = np.sqrt(subset['x_wind_ml']**2 + subset['y_wind_ml']**2)
|
120 |
+
subset = subset.assign(wind_speed=(('time', 'altitude','y','x'), wind_speed.data))
|
121 |
+
|
122 |
+
|
123 |
+
subset['thermal_temp_diff'] = compute_thermal_temp_difference(subset)
|
124 |
+
#subset = subset.assign(thermal_temp_diff=(('time', 'altitude','y','x'), thermal_temp_diff.data))
|
125 |
+
|
126 |
+
# Find the indices where the thermal temperature difference is zero or negative
|
127 |
+
# Create tiny value at ground level to avoid finding the ground as the thermal top
|
128 |
+
thermal_temp_diff = subset['thermal_temp_diff']
|
129 |
+
thermal_temp_diff = thermal_temp_diff.where(
|
130 |
+
(thermal_temp_diff.sum("altitude")>0)|(subset['altitude']!=subset.altitude.min()),
|
131 |
+
thermal_temp_diff + 1e-6)
|
132 |
+
indices = (thermal_temp_diff > 0).argmax(dim="altitude")
|
133 |
+
# Get the altitudes corresponding to these indices
|
134 |
+
thermal_top = subset.altitude[indices]
|
135 |
+
subset = subset.assign(thermal_top=(('time', 'y', 'x'), thermal_top.data))
|
136 |
+
subset = subset.set_coords(["latitude", "longitude"])
|
137 |
+
|
138 |
+
return subset
|
139 |
+
|
140 |
+
|
141 |
+
#%%
|
142 |
+
def compute_thermal_temp_difference(subset):
|
143 |
+
lapse_rate = 0.0098
|
144 |
+
ground_temp = subset.air_temperature_0m-273.3
|
145 |
+
air_temp = (subset['air_temperature_ml']-273.3)#.ffill(dim='altitude')
|
146 |
+
|
147 |
+
# dimensions
|
148 |
+
# 'air_temperature_ml' altitude: 4 y: 3, x: 3
|
149 |
+
# 'elevation' y: 3 x: 3
|
150 |
+
# 'altitude' altitude: 4
|
151 |
+
|
152 |
+
# broadcast ground temperature to all altitudes, but let it decrease by lapse rate
|
153 |
+
altitude_diff = subset.altitude - subset.elevation
|
154 |
+
altitude_diff = altitude_diff.where(altitude_diff >= 0, 0)
|
155 |
+
temp_decrease = lapse_rate * altitude_diff
|
156 |
+
ground_parcel_temp = ground_temp - temp_decrease
|
157 |
+
thermal_temp_diff = (ground_parcel_temp - air_temp).clip(min=0)
|
158 |
+
return thermal_temp_diff
|
159 |
+
|
160 |
+
def wind_and_temp_colorscales(wind_max=20, tempdiff_max=8):
|
161 |
+
# build colorscale for thermal temperature difference
|
162 |
+
wind_colors = ["grey", "blue", "green", "yellow", "red", "purple"]
|
163 |
+
wind_positions = [0, 0.5, 3, 7, 12, 20] # transition points
|
164 |
+
wind_positions_norm = [i/wind_max for i in wind_positions]
|
165 |
+
|
166 |
+
# Create the colormap
|
167 |
+
windcolors = mcolors.LinearSegmentedColormap.from_list("", list(zip(wind_positions_norm, wind_colors)))
|
168 |
+
|
169 |
+
|
170 |
+
# build colorscale for thermal temperature difference
|
171 |
+
thermal_colors = ['white', 'white', 'red', 'violet', "darkviolet"]
|
172 |
+
thermal_positions = [0, 0.2, 2.0, 4, 8]
|
173 |
+
thermal_positions_norm = [i/tempdiff_max for i in thermal_positions]
|
174 |
+
|
175 |
+
# Create the colormap
|
176 |
+
tempcolors = mcolors.LinearSegmentedColormap.from_list("", list(zip(thermal_positions_norm, thermal_colors)))
|
177 |
+
return windcolors, tempcolors
|
178 |
+
|
179 |
+
@st.cache_data(ttl=60)
|
180 |
+
def create_wind_map(_subset, x_target, y_target, altitude_max=4000, date_start=None, date_end=None):
|
181 |
+
"""
|
182 |
+
altitude_max = 3000
|
183 |
+
date_start = None
|
184 |
+
date_end = None
|
185 |
+
"""
|
186 |
+
subset = _subset
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
wind_min, wind_max = 0.3, 20
|
191 |
+
tempdiff_min, tempdiff_max = 0, 8
|
192 |
+
windcolors, tempcolors = wind_and_temp_colorscales(wind_max, tempdiff_max)
|
193 |
+
# Filter location
|
194 |
+
windplot_data = subset.sel(x=x_target, y=y_target, method="nearest")
|
195 |
+
|
196 |
+
# Filter time periods and altitudes
|
197 |
+
if date_start is None:
|
198 |
+
date_start = datetime.datetime.fromtimestamp(subset.time.min().values.astype('int64') / 1e9)
|
199 |
+
if date_end is None:
|
200 |
+
date_end = datetime.datetime.fromtimestamp(subset.time.max().values.astype('int64') / 1e9)
|
201 |
+
new_timestamps = pd.date_range(date_start, date_end, 20)
|
202 |
+
|
203 |
+
new_altitude = np.arange(windplot_data.elevation.mean(), altitude_max, altitude_max/20)
|
204 |
+
windplot_data = windplot_data.interp(altitude=new_altitude, time=new_timestamps)
|
205 |
+
|
206 |
+
# BUILD PLOT
|
207 |
+
fig, ax = plt.subplots(figsize=(15, 7))
|
208 |
+
contourf = ax.contourf(windplot_data.time, windplot_data.altitude, windplot_data.thermal_temp_diff.T, cmap=tempcolors, alpha=0.5, vmin=0, vmax=8)
|
209 |
+
fig.colorbar(contourf, ax=ax, label='Thermal Temperature Difference (°C)', pad=0.01, orientation='vertical')
|
210 |
+
|
211 |
+
# Wind quiver plot
|
212 |
+
quiverplot = windplot_data.plot.quiver(
|
213 |
+
x='time', y='altitude', u='x_wind_ml', v='y_wind_ml',
|
214 |
+
hue="wind_speed",
|
215 |
+
cmap = windcolors,
|
216 |
+
vmin=wind_min, vmax=wind_max,
|
217 |
+
alpha=0.5,
|
218 |
+
pivot="middle",# headwidth=4, headlength=6,
|
219 |
+
ax=ax # Add this line to plot on the created axes
|
220 |
+
)
|
221 |
+
quiverplot.colorbar.set_label("Wind Speed [m/s]")
|
222 |
+
quiverplot.colorbar.pad = 0.01
|
223 |
+
|
224 |
+
# fill bottom with brown color
|
225 |
+
plt.ylim(bottom=0)
|
226 |
+
ax.fill_between(windplot_data.time, 0, windplot_data.elevation.mean(), color="brown", alpha=0.5)
|
227 |
+
|
228 |
+
|
229 |
+
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
|
230 |
+
# normalize wind speed for color mapping
|
231 |
+
norm = plt.Normalize(wind_min, wind_max)
|
232 |
+
|
233 |
+
# add numerical labels to the plot
|
234 |
+
for x, t in enumerate(windplot_data.time.values):
|
235 |
+
for y, alt in enumerate(windplot_data.altitude.values):
|
236 |
+
color = windcolors(norm(windplot_data.wind_speed[x,y]))
|
237 |
+
ax.text(t+5, alt+20, f"{windplot_data.wind_speed[x,y]:.1f}", size=6, color=color)
|
238 |
+
plt.title(f"Wind and thermals in point starting at {date_start.strftime('%Y-%m-%d')} (UTC)")
|
239 |
+
plt.yscale("linear")
|
240 |
+
return fig
|
241 |
+
|
242 |
+
#%%
|
243 |
+
@st.cache_data(ttl=7200)
|
244 |
+
def create_sounding(_subset, date, hour, x_target, y_target, altitude_max=3000):
|
245 |
+
"""
|
246 |
+
date = "2024-05-12"
|
247 |
+
hour = "15"
|
248 |
+
x_target = 5
|
249 |
+
y_target = 5
|
250 |
+
"""
|
251 |
+
subset = _subset
|
252 |
+
lapse_rate = 0.0098 # in degrees Celsius per meter
|
253 |
+
subset = subset.where(subset.altitude< altitude_max,drop=True)
|
254 |
+
# Create a figure object
|
255 |
+
fig, ax = plt.subplots()
|
256 |
+
|
257 |
+
# Define the dry adiabatic lapse rate
|
258 |
+
def add_dry_adiabatic_lines(ds):
|
259 |
+
# Define a range of temperatures at sea level
|
260 |
+
T0 = np.arange(-40, 40, 5) # temperatures from -40°C to 40°C in steps of 10°C
|
261 |
+
|
262 |
+
# Create a 2D grid of temperatures and altitudes
|
263 |
+
T0, altitude = np.meshgrid(T0, ds.altitude)
|
264 |
+
|
265 |
+
# Calculate the temperatures at each altitude
|
266 |
+
T_adiabatic = T0 - lapse_rate * altitude
|
267 |
+
|
268 |
+
# Plot the dry adiabatic lines
|
269 |
+
for i in range(T0.shape[1]):
|
270 |
+
ax.plot(T_adiabatic[:, i], ds.altitude, 'r:', alpha=0.5)
|
271 |
+
|
272 |
+
# Plot the actual temperature profiles
|
273 |
+
time_str = f"{date} {hour}:00:00"
|
274 |
+
# find x and y values cloeset to given latitude and longitude
|
275 |
+
|
276 |
+
ds_time = subset.sel(time=time_str, x=x_target,y=y_target, method="nearest")
|
277 |
+
T = (ds_time['air_temperature_ml'].values-273.3) # in degrees Celsius
|
278 |
+
ax.plot(T, ds_time.altitude, label=f"temp {pd.to_datetime(time_str).strftime('%H:%M')}")
|
279 |
+
|
280 |
+
# Define the surface temperature
|
281 |
+
T_surface = T[-1]+3
|
282 |
+
T_parcel = T_surface - lapse_rate * ds_time.altitude
|
283 |
+
|
284 |
+
# Plot the temperature of the rising air parcel
|
285 |
+
filter = T_parcel>T
|
286 |
+
ax.plot(T_parcel[filter], ds_time.altitude[filter], label='Rising air parcel',color="green")
|
287 |
+
|
288 |
+
add_dry_adiabatic_lines(ds_time)
|
289 |
+
|
290 |
+
ax.set_xlabel('Temperature (°C)')
|
291 |
+
ax.set_ylabel('Altitude (m)')
|
292 |
+
ax.set_title(f'Temperature Profile and Dry Adiabatic Lapse Rate for {date} {hour}:00')
|
293 |
+
ax.legend(title='Time')
|
294 |
+
xmin, xmax = ds_time['air_temperature_ml'].min().values-273.3, ds_time['air_temperature_ml'].max().values-273.3+3
|
295 |
+
ax.set_xlim(xmin, xmax)
|
296 |
+
ax.grid(True)
|
297 |
+
|
298 |
+
# Return the figure object
|
299 |
+
return fig
|
300 |
+
|
301 |
+
@st.cache_data(ttl=7200)
|
302 |
+
def build_map_overlays(_subset, date=None, hour=None):
|
303 |
+
"""
|
304 |
+
date = "2024-05-13"
|
305 |
+
hour = "15"
|
306 |
+
x_target=None
|
307 |
+
y_target=None
|
308 |
+
"""
|
309 |
+
subset = _subset
|
310 |
+
|
311 |
+
# Get the latitude and longitude values from the dataset
|
312 |
+
latitude_values = subset.latitude.values.flatten()
|
313 |
+
longitude_values = subset.longitude.values.flatten()
|
314 |
+
thermal_top_values = subset.thermal_top.sel(time=f"{date}T{hour}").values.flatten()
|
315 |
+
#thermal_top_values = subset.elevation.mean("altitude").values.flatten()
|
316 |
+
# Convert the irregular grid data into a regular grid
|
317 |
+
step_lon, step_lat = subset.longitude.diff("x").quantile(0.1).values, subset.latitude.diff("y").quantile(0.1).values
|
318 |
+
grid_x, grid_y = np.mgrid[min(latitude_values):max(latitude_values):step_lat, min(longitude_values):max(longitude_values):step_lon]
|
319 |
+
grid_z = griddata((latitude_values, longitude_values), thermal_top_values, (grid_x, grid_y), method='linear')
|
320 |
+
grid_z = np.nan_to_num(grid_z, copy=False, nan=0)
|
321 |
+
# Normalize the grid data to a range suitable for image display
|
322 |
+
heightcolor = cm.LinearColormap(
|
323 |
+
colors = ['white', 'white', 'green', 'yellow', 'orange','red', 'darkblue'],
|
324 |
+
index = [0, 500, 1000, 1500, 2000, 2500, 3000],
|
325 |
+
vmin=0, vmax=3000,
|
326 |
+
caption='Thermal Height (m)')
|
327 |
+
|
328 |
+
|
329 |
+
bounds = [[min(latitude_values), min(longitude_values)], [max(latitude_values), max(longitude_values)]]
|
330 |
+
img_overlay = folium.raster_layers.ImageOverlay(image=grid_z, bounds=bounds, colormap=heightcolor, opacity=0.4, mercator_project=True, origin="lower",pixelated=False)
|
331 |
+
|
332 |
+
return img_overlay, heightcolor
|
333 |
+
|
334 |
+
#%%
|
335 |
+
import pyproj
|
336 |
+
def latlon_to_xy(lat, lon):
|
337 |
+
crs = pyproj.CRS.from_cf(
|
338 |
+
{
|
339 |
+
"grid_mapping_name": "lambert_conformal_conic",
|
340 |
+
"standard_parallel": [63.3, 63.3],
|
341 |
+
"longitude_of_central_meridian": 15.0,
|
342 |
+
"latitude_of_projection_origin": 63.3,
|
343 |
+
"earth_radius": 6371000.0,
|
344 |
+
}
|
345 |
+
)
|
346 |
+
# Transformer to project from ESPG:4368 (WGS:84) to our lambert_conformal_conic
|
347 |
+
proj = pyproj.Proj.from_crs(4326, crs, always_xy=True)
|
348 |
+
|
349 |
+
# Compute projected coordinates of lat/lon point
|
350 |
+
X,Y = proj.transform(lon,lat)
|
351 |
+
return X,Y
|
352 |
+
# %%
|
353 |
+
def show_forecast():
|
354 |
+
|
355 |
+
with st.spinner('Fetching data...'):
|
356 |
+
@st.cache_data
|
357 |
+
def load_data(filepath):
|
358 |
+
local=False
|
359 |
+
if local:
|
360 |
+
subset = xr.open_dataset("subset.nc")
|
361 |
+
else:
|
362 |
+
subset = load_meps_for_location(filepath)
|
363 |
+
subset.to_netcdf("subset.nc")
|
364 |
+
return subset
|
365 |
+
|
366 |
+
if "file_path" not in st.session_state:
|
367 |
+
st.session_state.file_path = find_latest_meps_file()
|
368 |
+
subset = load_data(st.session_state.file_path)
|
369 |
+
|
370 |
+
def date_controls():
|
371 |
+
|
372 |
+
start_stop_time = [subset.time.min().values.astype('M8[ms]').astype('O'), subset.time.max().values.astype('M8[ms]').astype('O')]
|
373 |
+
now = datetime.datetime.now().replace(minute=0, second=0, microsecond=0)
|
374 |
+
|
375 |
+
if "forecast_date" not in st.session_state:
|
376 |
+
st.session_state.forecast_date = now.date()
|
377 |
+
if "forecast_time" not in st.session_state:
|
378 |
+
st.session_state.forecast_time = datetime.time(14,0)
|
379 |
+
if "forecast_length" not in st.session_state:
|
380 |
+
st.session_state.forecast_length = 1
|
381 |
+
if "altitude_max" not in st.session_state:
|
382 |
+
st.session_state.altitude_max = 3000
|
383 |
+
if "target_latitude" not in st.session_state:
|
384 |
+
st.session_state.target_latitude = 61.22908
|
385 |
+
if "target_longitude" not in st.session_state:
|
386 |
+
st.session_state.target_longitude = 7.09674
|
387 |
+
col1, col_date, col_time, col3 = st.columns([0.2,0.6,0.2,0.2])
|
388 |
+
|
389 |
+
with col1:
|
390 |
+
if st.button("⏮️", use_container_width=True):
|
391 |
+
st.session_state.forecast_date -= datetime.timedelta(days=1)
|
392 |
+
with col3:
|
393 |
+
if st.button("⏭️", use_container_width=True, disabled=(st.session_state.forecast_date == start_stop_time[1])):
|
394 |
+
st.session_state.forecast_date += datetime.timedelta(days=1)
|
395 |
+
with col_date:
|
396 |
+
st.session_state.forecast_date = st.date_input(
|
397 |
+
"Start date",
|
398 |
+
value=st.session_state.forecast_date,
|
399 |
+
min_value=start_stop_time[0],
|
400 |
+
max_value=start_stop_time[1],
|
401 |
+
label_visibility="collapsed",
|
402 |
+
disabled=True
|
403 |
+
)
|
404 |
+
with col_time:
|
405 |
+
st.session_state.forecast_time = st.time_input("Start time", value=st.session_state.forecast_time, step=3600,disabled=False,label_visibility="collapsed")
|
406 |
+
|
407 |
+
date_controls()
|
408 |
+
time_start = datetime.time(0, 0)
|
409 |
+
# convert subset.attrs['min_time']='2024-05-11T06:00:00Z' into datetime
|
410 |
+
min_time = datetime.datetime.strptime(subset.attrs['min_time'], "%Y-%m-%dT%H:%M:%SZ")
|
411 |
+
date_start = datetime.datetime.combine(st.session_state.forecast_date, time_start)
|
412 |
+
date_start = max(date_start, min_time)
|
413 |
+
date_end= datetime.datetime.combine(st.session_state.forecast_date+datetime.timedelta(days=st.session_state.forecast_length), datetime.time(0, 0))
|
414 |
+
|
415 |
+
## MAP
|
416 |
+
with st.expander("Map", expanded=True):
|
417 |
+
from streamlit_folium import st_folium
|
418 |
+
st.cache_data(ttl=30)
|
419 |
+
def build_map(date, hour):
|
420 |
+
m = folium.Map(location=[61.22908, 7.09674], zoom_start=9, tiles="openstreetmap")
|
421 |
+
img_overlay, heightcolor = build_map_overlays(subset, date=date, hour=hour)
|
422 |
+
|
423 |
+
img_overlay.add_to(m)
|
424 |
+
m.add_child(heightcolor,name="Thermal Height (m)")
|
425 |
+
m.add_child(folium.LatLngPopup())
|
426 |
+
return m
|
427 |
+
m = build_map(date = st.session_state.forecast_date,hour=st.session_state.forecast_time)
|
428 |
+
map=st_folium(m)
|
429 |
+
def get_pos(lat,lng):
|
430 |
+
return lat,lng
|
431 |
+
if map['last_clicked'] is not None:
|
432 |
+
st.session_state.target_latitude, st.session_state.target_longitude = get_pos(map['last_clicked']['lat'],map['last_clicked']['lng'])
|
433 |
+
|
434 |
+
x_target, y_target = latlon_to_xy(st.session_state.target_latitude, st.session_state.target_longitude)
|
435 |
+
wind_fig = create_wind_map(
|
436 |
+
subset,
|
437 |
+
date_start=date_start,
|
438 |
+
date_end=date_end,
|
439 |
+
altitude_max=st.session_state.altitude_max,
|
440 |
+
x_target=x_target,
|
441 |
+
y_target=y_target)
|
442 |
+
st.pyplot(wind_fig)
|
443 |
+
plt.close()
|
444 |
+
|
445 |
+
|
446 |
+
with st.expander("More settings", expanded=False):
|
447 |
+
st.session_state.forecast_length = st.number_input("multiday", 1, 3, 1, step=1,)
|
448 |
+
st.session_state.altitude_max = st.number_input("Max altitude", 0, 4000, 3000, step=500)
|
449 |
+
|
450 |
+
############################
|
451 |
+
######### SOUNDING #########
|
452 |
+
############################
|
453 |
+
st.markdown("---")
|
454 |
+
with st.expander("Sounding", expanded=False):
|
455 |
+
date = datetime.datetime.combine(st.session_state.forecast_date, st.session_state.forecast_time)
|
456 |
+
|
457 |
+
with st.spinner('Building sounding...'):
|
458 |
+
sounding_fig = create_sounding(
|
459 |
+
subset,
|
460 |
+
date=date.date(),
|
461 |
+
hour=date.hour,
|
462 |
+
altitude_max=st.session_state.altitude_max,
|
463 |
+
x_target=x_target,
|
464 |
+
y_target=y_target)
|
465 |
+
st.pyplot(sounding_fig)
|
466 |
+
plt.close()
|
467 |
+
|
468 |
+
st.markdown("Wind and sounding data from MEPS model (main model used by met.no), including the estimated ground temperature. Ive probably made many errors in this process.")
|
469 |
+
|
470 |
+
# Download new forecast if available
|
471 |
+
st.session_state.file_path = find_latest_meps_file()
|
472 |
+
subset = load_data(st.session_state.file_path)
|
473 |
+
|
474 |
+
|
475 |
+
if __name__ == "__main__":
|
476 |
+
run_streamlit = True
|
477 |
+
if run_streamlit:
|
478 |
+
st.set_page_config(page_title="PGWeather",page_icon="🪂", layout="wide")
|
479 |
+
show_forecast()
|
480 |
+
else:
|
481 |
+
lat = 61.22908
|
482 |
+
lon = 7.09674
|
483 |
+
x_target, y_target = latlon_to_xy(lat, lon)
|
484 |
+
|
485 |
+
dataset_file_path = find_latest_meps_file()
|
486 |
+
local=True
|
487 |
+
if local:
|
488 |
+
subset = xr.open_dataset("subset.nc")
|
489 |
+
else:
|
490 |
+
subset = load_meps_for_location()
|
491 |
+
subset.to_netcdf("subset.nc")
|
492 |
+
|
493 |
+
build_map_overlays(subset, date="2024-05-14", hour="16")
|
494 |
+
|
495 |
+
wind_fig = create_wind_map(subset, altitude_max=3000,x_target=x_target, y_target=y_target)
|
496 |
+
|
497 |
+
|
498 |
+
# Plot thermal top on a map for a specific time
|
499 |
+
#subset.sel(time=subset.time.min()).thermal_top.plot()
|
500 |
+
sounding_fig = create_sounding(subset, date="2024-05-12", hour=15, x_target=x_target, y_target=y_target)
|
501 |
+
|
502 |
+
|
503 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
plotly>=4.12.0
|
2 |
+
requests>=2.24.0
|
3 |
+
streamlit>=0.85.1
|
4 |
+
pandas>=1.1.3
|
5 |
+
geopandas>=0.10.2
|
6 |
+
metar>=1.8.0
|
7 |
+
python-dateutil>=2.8.1
|
8 |
+
#netatmo #>=1.0.7
|
9 |
+
numpy
|
10 |
+
shapely
|
11 |
+
matplotlib
|
12 |
+
folium
|
13 |
+
streamlit-folium
|
14 |
+
windrose
|
15 |
+
xarray
|
16 |
+
siphon
|
17 |
+
netcdf4
|
18 |
+
scipy
|
19 |
+
bottleneck
|