Spaces:
Running
on
T4
Running
on
T4
File size: 14,121 Bytes
85bd48b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Parses the mmCIF file format."""
import collections
import dataclasses
import io
from typing import Any, Mapping, Optional, Sequence, Tuple
from absl import logging
from Bio import PDB
from Bio.Data import SCOPData
# Type aliases:
ChainId = str
PdbHeader = Mapping[str, Any]
PdbStructure = PDB.Structure.Structure
SeqRes = str
MmCIFDict = Mapping[str, Sequence[str]]
@dataclasses.dataclass(frozen=True)
class Monomer:
id: str
num: int
# Note - mmCIF format provides no guarantees on the type of author-assigned
# sequence numbers. They need not be integers.
@dataclasses.dataclass(frozen=True)
class AtomSite:
residue_name: str
author_chain_id: str
mmcif_chain_id: str
author_seq_num: str
mmcif_seq_num: int
insertion_code: str
hetatm_atom: str
model_num: int
# Used to map SEQRES index to a residue in the structure.
@dataclasses.dataclass(frozen=True)
class ResiduePosition:
chain_id: str
residue_number: int
insertion_code: str
@dataclasses.dataclass(frozen=True)
class ResidueAtPosition:
position: Optional[ResiduePosition]
name: str
is_missing: bool
hetflag: str
@dataclasses.dataclass(frozen=True)
class MmcifObject:
"""Representation of a parsed mmCIF file.
Contains:
file_id: A meaningful name, e.g. a pdb_id. Should be unique amongst all
files being processed.
header: Biopython header.
structure: Biopython structure.
chain_to_seqres: Dict mapping chain_id to 1 letter amino acid sequence. E.g.
{'A': 'ABCDEFG'}
seqres_to_structure: Dict; for each chain_id contains a mapping between
SEQRES index and a ResidueAtPosition. e.g. {'A': {0: ResidueAtPosition,
1: ResidueAtPosition,
...}}
raw_string: The raw string used to construct the MmcifObject.
"""
file_id: str
header: PdbHeader
structure: PdbStructure
chain_to_seqres: Mapping[ChainId, SeqRes]
seqres_to_structure: Mapping[ChainId, Mapping[int, ResidueAtPosition]]
raw_string: Any
@dataclasses.dataclass(frozen=True)
class ParsingResult:
"""Returned by the parse function.
Contains:
mmcif_object: A MmcifObject, may be None if no chain could be successfully
parsed.
errors: A dict mapping (file_id, chain_id) to any exception generated.
"""
mmcif_object: Optional[MmcifObject]
errors: Mapping[Tuple[str, str], Any]
class ParseError(Exception):
"""An error indicating that an mmCIF file could not be parsed."""
def mmcif_loop_to_list(prefix: str,
parsed_info: MmCIFDict) -> Sequence[Mapping[str, str]]:
"""Extracts loop associated with a prefix from mmCIF data as a list.
Reference for loop_ in mmCIF:
http://mmcif.wwpdb.org/docs/tutorials/mechanics/pdbx-mmcif-syntax.html
Args:
prefix: Prefix shared by each of the data items in the loop.
e.g. '_entity_poly_seq.', where the data items are _entity_poly_seq.num,
_entity_poly_seq.mon_id. Should include the trailing period.
parsed_info: A dict of parsed mmCIF data, e.g. _mmcif_dict from a Biopython
parser.
Returns:
Returns a list of dicts; each dict represents 1 entry from an mmCIF loop.
"""
cols = []
data = []
for key, value in parsed_info.items():
if key.startswith(prefix):
cols.append(key)
data.append(value)
assert all([len(xs) == len(data[0]) for xs in data]), (
'mmCIF error: Not all loops are the same length: %s' % cols)
return [dict(zip(cols, xs)) for xs in zip(*data)]
def mmcif_loop_to_dict(prefix: str,
index: str,
parsed_info: MmCIFDict,
) -> Mapping[str, Mapping[str, str]]:
"""Extracts loop associated with a prefix from mmCIF data as a dictionary.
Args:
prefix: Prefix shared by each of the data items in the loop.
e.g. '_entity_poly_seq.', where the data items are _entity_poly_seq.num,
_entity_poly_seq.mon_id. Should include the trailing period.
index: Which item of loop data should serve as the key.
parsed_info: A dict of parsed mmCIF data, e.g. _mmcif_dict from a Biopython
parser.
Returns:
Returns a dict of dicts; each dict represents 1 entry from an mmCIF loop,
indexed by the index column.
"""
entries = mmcif_loop_to_list(prefix, parsed_info)
return {entry[index]: entry for entry in entries}
def parse(*,
file_id: str,
mmcif_string: str,
catch_all_errors: bool = True) -> ParsingResult:
"""Entry point, parses an mmcif_string.
Args:
file_id: A string identifier for this file. Should be unique within the
collection of files being processed.
mmcif_string: Contents of an mmCIF file.
catch_all_errors: If True, all exceptions are caught and error messages are
returned as part of the ParsingResult. If False exceptions will be allowed
to propagate.
Returns:
A ParsingResult.
"""
errors = {}
try:
parser = PDB.MMCIFParser(QUIET=True)
handle = io.StringIO(mmcif_string)
full_structure = parser.get_structure('', handle)
first_model_structure = _get_first_model(full_structure)
# Extract the _mmcif_dict from the parser, which contains useful fields not
# reflected in the Biopython structure.
parsed_info = parser._mmcif_dict # pylint:disable=protected-access
# Ensure all values are lists, even if singletons.
for key, value in parsed_info.items():
if not isinstance(value, list):
parsed_info[key] = [value]
header = _get_header(parsed_info)
# Determine the protein chains, and their start numbers according to the
# internal mmCIF numbering scheme (likely but not guaranteed to be 1).
valid_chains = _get_protein_chains(parsed_info=parsed_info)
if not valid_chains:
return ParsingResult(
None, {(file_id, ''): 'No protein chains found in this file.'})
seq_start_num = {chain_id: min([monomer.num for monomer in seq])
for chain_id, seq in valid_chains.items()}
# Loop over the atoms for which we have coordinates. Populate two mappings:
# -mmcif_to_author_chain_id (maps internal mmCIF chain ids to chain ids used
# the authors / Biopython).
# -seq_to_structure_mappings (maps idx into sequence to ResidueAtPosition).
mmcif_to_author_chain_id = {}
seq_to_structure_mappings = {}
for atom in _get_atom_site_list(parsed_info):
if atom.model_num != '1':
# We only process the first model at the moment.
continue
mmcif_to_author_chain_id[atom.mmcif_chain_id] = atom.author_chain_id
if atom.mmcif_chain_id in valid_chains:
hetflag = ' '
if atom.hetatm_atom == 'HETATM':
# Water atoms are assigned a special hetflag of W in Biopython. We
# need to do the same, so that this hetflag can be used to fetch
# a residue from the Biopython structure by id.
if atom.residue_name in ('HOH', 'WAT'):
hetflag = 'W'
else:
hetflag = 'H_' + atom.residue_name
insertion_code = atom.insertion_code
if not _is_set(atom.insertion_code):
insertion_code = ' '
position = ResiduePosition(chain_id=atom.author_chain_id,
residue_number=int(atom.author_seq_num),
insertion_code=insertion_code)
seq_idx = int(atom.mmcif_seq_num) - seq_start_num[atom.mmcif_chain_id]
current = seq_to_structure_mappings.get(atom.author_chain_id, {})
current[seq_idx] = ResidueAtPosition(position=position,
name=atom.residue_name,
is_missing=False,
hetflag=hetflag)
seq_to_structure_mappings[atom.author_chain_id] = current
# Add missing residue information to seq_to_structure_mappings.
for chain_id, seq_info in valid_chains.items():
author_chain = mmcif_to_author_chain_id[chain_id]
current_mapping = seq_to_structure_mappings[author_chain]
for idx, monomer in enumerate(seq_info):
if idx not in current_mapping:
current_mapping[idx] = ResidueAtPosition(position=None,
name=monomer.id,
is_missing=True,
hetflag=' ')
author_chain_to_sequence = {}
for chain_id, seq_info in valid_chains.items():
author_chain = mmcif_to_author_chain_id[chain_id]
seq = []
for monomer in seq_info:
code = SCOPData.protein_letters_3to1.get(monomer.id, 'X')
seq.append(code if len(code) == 1 else 'X')
seq = ''.join(seq)
author_chain_to_sequence[author_chain] = seq
mmcif_object = MmcifObject(
file_id=file_id,
header=header,
structure=first_model_structure,
chain_to_seqres=author_chain_to_sequence,
seqres_to_structure=seq_to_structure_mappings,
raw_string=parsed_info)
return ParsingResult(mmcif_object=mmcif_object, errors=errors)
except Exception as e: # pylint:disable=broad-except
errors[(file_id, '')] = e
if not catch_all_errors:
raise
return ParsingResult(mmcif_object=None, errors=errors)
def _get_first_model(structure: PdbStructure) -> PdbStructure:
"""Returns the first model in a Biopython structure."""
return next(structure.get_models())
_MIN_LENGTH_OF_CHAIN_TO_BE_COUNTED_AS_PEPTIDE = 21
def get_release_date(parsed_info: MmCIFDict) -> str:
"""Returns the oldest revision date."""
revision_dates = parsed_info['_pdbx_audit_revision_history.revision_date']
return min(revision_dates)
def _get_header(parsed_info: MmCIFDict) -> PdbHeader:
"""Returns a basic header containing method, release date and resolution."""
header = {}
experiments = mmcif_loop_to_list('_exptl.', parsed_info)
header['structure_method'] = ','.join([
experiment['_exptl.method'].lower() for experiment in experiments])
# Note: The release_date here corresponds to the oldest revision. We prefer to
# use this for dataset filtering over the deposition_date.
if '_pdbx_audit_revision_history.revision_date' in parsed_info:
header['release_date'] = get_release_date(parsed_info)
else:
logging.warning('Could not determine release_date: %s',
parsed_info['_entry.id'])
header['resolution'] = 0.00
for res_key in ('_refine.ls_d_res_high', '_em_3d_reconstruction.resolution',
'_reflns.d_resolution_high'):
if res_key in parsed_info:
try:
raw_resolution = parsed_info[res_key][0]
header['resolution'] = float(raw_resolution)
except ValueError:
logging.warning('Invalid resolution format: %s', parsed_info[res_key])
return header
def _get_atom_site_list(parsed_info: MmCIFDict) -> Sequence[AtomSite]:
"""Returns list of atom sites; contains data not present in the structure."""
return [AtomSite(*site) for site in zip( # pylint:disable=g-complex-comprehension
parsed_info['_atom_site.label_comp_id'],
parsed_info['_atom_site.auth_asym_id'],
parsed_info['_atom_site.label_asym_id'],
parsed_info['_atom_site.auth_seq_id'],
parsed_info['_atom_site.label_seq_id'],
parsed_info['_atom_site.pdbx_PDB_ins_code'],
parsed_info['_atom_site.group_PDB'],
parsed_info['_atom_site.pdbx_PDB_model_num'],
)]
def _get_protein_chains(
*, parsed_info: Mapping[str, Any]) -> Mapping[ChainId, Sequence[Monomer]]:
"""Extracts polymer information for protein chains only.
Args:
parsed_info: _mmcif_dict produced by the Biopython parser.
Returns:
A dict mapping mmcif chain id to a list of Monomers.
"""
# Get polymer information for each entity in the structure.
entity_poly_seqs = mmcif_loop_to_list('_entity_poly_seq.', parsed_info)
polymers = collections.defaultdict(list)
for entity_poly_seq in entity_poly_seqs:
polymers[entity_poly_seq['_entity_poly_seq.entity_id']].append(
Monomer(id=entity_poly_seq['_entity_poly_seq.mon_id'],
num=int(entity_poly_seq['_entity_poly_seq.num'])))
# Get chemical compositions. Will allow us to identify which of these polymers
# are proteins.
chem_comps = mmcif_loop_to_dict('_chem_comp.', '_chem_comp.id', parsed_info)
# Get chains information for each entity. Necessary so that we can return a
# dict keyed on chain id rather than entity.
struct_asyms = mmcif_loop_to_list('_struct_asym.', parsed_info)
entity_to_mmcif_chains = collections.defaultdict(list)
for struct_asym in struct_asyms:
chain_id = struct_asym['_struct_asym.id']
entity_id = struct_asym['_struct_asym.entity_id']
entity_to_mmcif_chains[entity_id].append(chain_id)
# Identify and return the valid protein chains.
valid_chains = {}
for entity_id, seq_info in polymers.items():
chain_ids = entity_to_mmcif_chains[entity_id]
# Reject polymers without any peptide-like components, such as DNA/RNA.
if any(['peptide' in chem_comps[monomer.id]['_chem_comp.type']
for monomer in seq_info]):
for chain_id in chain_ids:
valid_chains[chain_id] = seq_info
return valid_chains
def _is_set(data: str) -> bool:
"""Returns False if data is a special mmCIF character indicating 'unset'."""
return data not in ('.', '?')
|