Spaces:
Running
on
T4
Running
on
T4
File size: 10,935 Bytes
85bd48b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformations for 3D coordinates.
This Module contains objects for representing Vectors (Vecs), Rotation Matrices
(Rots) and proper Rigid transformation (Rigids). These are represented as
named tuples with arrays for each entry, for example a set of
[N, M] points would be represented as a Vecs object with arrays of shape [N, M]
for x, y and z.
This is being done to improve readability by making it very clear what objects
are geometric objects rather than relying on comments and array shapes.
Another reason for this is to avoid using matrix
multiplication primitives like matmul or einsum, on modern accelerator hardware
these can end up on specialized cores such as tensor cores on GPU or the MXU on
cloud TPUs, this often involves lower computational precision which can be
problematic for coordinate geometry. Also these cores are typically optimized
for larger matrices than 3 dimensional, this code is written to avoid any
unintended use of these cores on both GPUs and TPUs.
"""
import collections
from typing import List
from alphafold.model import quat_affine
import jax.numpy as jnp
import tree
# Array of 3-component vectors, stored as individual array for
# each component.
Vecs = collections.namedtuple('Vecs', ['x', 'y', 'z'])
# Array of 3x3 rotation matrices, stored as individual array for
# each component.
Rots = collections.namedtuple('Rots', ['xx', 'xy', 'xz',
'yx', 'yy', 'yz',
'zx', 'zy', 'zz'])
# Array of rigid 3D transformations, stored as array of rotations and
# array of translations.
Rigids = collections.namedtuple('Rigids', ['rot', 'trans'])
def squared_difference(x, y):
return jnp.square(x - y)
def invert_rigids(r: Rigids) -> Rigids:
"""Computes group inverse of rigid transformations 'r'."""
inv_rots = invert_rots(r.rot)
t = rots_mul_vecs(inv_rots, r.trans)
inv_trans = Vecs(-t.x, -t.y, -t.z)
return Rigids(inv_rots, inv_trans)
def invert_rots(m: Rots) -> Rots:
"""Computes inverse of rotations 'm'."""
return Rots(m.xx, m.yx, m.zx,
m.xy, m.yy, m.zy,
m.xz, m.yz, m.zz)
def rigids_from_3_points(
point_on_neg_x_axis: Vecs, # shape (...)
origin: Vecs, # shape (...)
point_on_xy_plane: Vecs, # shape (...)
) -> Rigids: # shape (...)
"""Create Rigids from 3 points.
Jumper et al. (2021) Suppl. Alg. 21 "rigidFrom3Points"
This creates a set of rigid transformations from 3 points by Gram Schmidt
orthogonalization.
Args:
point_on_neg_x_axis: Vecs corresponding to points on the negative x axis
origin: Origin of resulting rigid transformations
point_on_xy_plane: Vecs corresponding to points in the xy plane
Returns:
Rigid transformations from global frame to local frames derived from
the input points.
"""
m = rots_from_two_vecs(
e0_unnormalized=vecs_sub(origin, point_on_neg_x_axis),
e1_unnormalized=vecs_sub(point_on_xy_plane, origin))
return Rigids(rot=m, trans=origin)
def rigids_from_list(l: List[jnp.ndarray]) -> Rigids:
"""Converts flat list of arrays to rigid transformations."""
assert len(l) == 12
return Rigids(Rots(*(l[:9])), Vecs(*(l[9:])))
def rigids_from_quataffine(a: quat_affine.QuatAffine) -> Rigids:
"""Converts QuatAffine object to the corresponding Rigids object."""
return Rigids(Rots(*tree.flatten(a.rotation)),
Vecs(*a.translation))
def rigids_from_tensor4x4(
m: jnp.ndarray # shape (..., 4, 4)
) -> Rigids: # shape (...)
"""Construct Rigids object from an 4x4 array.
Here the 4x4 is representing the transformation in homogeneous coordinates.
Args:
m: Array representing transformations in homogeneous coordinates.
Returns:
Rigids object corresponding to transformations m
"""
assert m.shape[-1] == 4
assert m.shape[-2] == 4
return Rigids(
Rots(m[..., 0, 0], m[..., 0, 1], m[..., 0, 2],
m[..., 1, 0], m[..., 1, 1], m[..., 1, 2],
m[..., 2, 0], m[..., 2, 1], m[..., 2, 2]),
Vecs(m[..., 0, 3], m[..., 1, 3], m[..., 2, 3]))
def rigids_from_tensor_flat9(
m: jnp.ndarray # shape (..., 9)
) -> Rigids: # shape (...)
"""Flat9 encoding: first two columns of rotation matrix + translation."""
assert m.shape[-1] == 9
e0 = Vecs(m[..., 0], m[..., 1], m[..., 2])
e1 = Vecs(m[..., 3], m[..., 4], m[..., 5])
trans = Vecs(m[..., 6], m[..., 7], m[..., 8])
return Rigids(rot=rots_from_two_vecs(e0, e1),
trans=trans)
def rigids_from_tensor_flat12(
m: jnp.ndarray # shape (..., 12)
) -> Rigids: # shape (...)
"""Flat12 encoding: rotation matrix (9 floats) + translation (3 floats)."""
assert m.shape[-1] == 12
x = jnp.moveaxis(m, -1, 0) # Unstack
return Rigids(Rots(*x[:9]), Vecs(*x[9:]))
def rigids_mul_rigids(a: Rigids, b: Rigids) -> Rigids:
"""Group composition of Rigids 'a' and 'b'."""
return Rigids(
rots_mul_rots(a.rot, b.rot),
vecs_add(a.trans, rots_mul_vecs(a.rot, b.trans)))
def rigids_mul_rots(r: Rigids, m: Rots) -> Rigids:
"""Compose rigid transformations 'r' with rotations 'm'."""
return Rigids(rots_mul_rots(r.rot, m), r.trans)
def rigids_mul_vecs(r: Rigids, v: Vecs) -> Vecs:
"""Apply rigid transforms 'r' to points 'v'."""
return vecs_add(rots_mul_vecs(r.rot, v), r.trans)
def rigids_to_list(r: Rigids) -> List[jnp.ndarray]:
"""Turn Rigids into flat list, inverse of 'rigids_from_list'."""
return list(r.rot) + list(r.trans)
def rigids_to_quataffine(r: Rigids) -> quat_affine.QuatAffine:
"""Convert Rigids r into QuatAffine, inverse of 'rigids_from_quataffine'."""
return quat_affine.QuatAffine(
quaternion=None,
rotation=[[r.rot.xx, r.rot.xy, r.rot.xz],
[r.rot.yx, r.rot.yy, r.rot.yz],
[r.rot.zx, r.rot.zy, r.rot.zz]],
translation=[r.trans.x, r.trans.y, r.trans.z])
def rigids_to_tensor_flat9(
r: Rigids # shape (...)
) -> jnp.ndarray: # shape (..., 9)
"""Flat9 encoding: first two columns of rotation matrix + translation."""
return jnp.stack(
[r.rot.xx, r.rot.yx, r.rot.zx, r.rot.xy, r.rot.yy, r.rot.zy]
+ list(r.trans), axis=-1)
def rigids_to_tensor_flat12(
r: Rigids # shape (...)
) -> jnp.ndarray: # shape (..., 12)
"""Flat12 encoding: rotation matrix (9 floats) + translation (3 floats)."""
return jnp.stack(list(r.rot) + list(r.trans), axis=-1)
def rots_from_tensor3x3(
m: jnp.ndarray, # shape (..., 3, 3)
) -> Rots: # shape (...)
"""Convert rotations represented as (3, 3) array to Rots."""
assert m.shape[-1] == 3
assert m.shape[-2] == 3
return Rots(m[..., 0, 0], m[..., 0, 1], m[..., 0, 2],
m[..., 1, 0], m[..., 1, 1], m[..., 1, 2],
m[..., 2, 0], m[..., 2, 1], m[..., 2, 2])
def rots_from_two_vecs(e0_unnormalized: Vecs, e1_unnormalized: Vecs) -> Rots:
"""Create rotation matrices from unnormalized vectors for the x and y-axes.
This creates a rotation matrix from two vectors using Gram-Schmidt
orthogonalization.
Args:
e0_unnormalized: vectors lying along x-axis of resulting rotation
e1_unnormalized: vectors lying in xy-plane of resulting rotation
Returns:
Rotations resulting from Gram-Schmidt procedure.
"""
# Normalize the unit vector for the x-axis, e0.
e0 = vecs_robust_normalize(e0_unnormalized)
# make e1 perpendicular to e0.
c = vecs_dot_vecs(e1_unnormalized, e0)
e1 = Vecs(e1_unnormalized.x - c * e0.x,
e1_unnormalized.y - c * e0.y,
e1_unnormalized.z - c * e0.z)
e1 = vecs_robust_normalize(e1)
# Compute e2 as cross product of e0 and e1.
e2 = vecs_cross_vecs(e0, e1)
return Rots(e0.x, e1.x, e2.x, e0.y, e1.y, e2.y, e0.z, e1.z, e2.z)
def rots_mul_rots(a: Rots, b: Rots) -> Rots:
"""Composition of rotations 'a' and 'b'."""
c0 = rots_mul_vecs(a, Vecs(b.xx, b.yx, b.zx))
c1 = rots_mul_vecs(a, Vecs(b.xy, b.yy, b.zy))
c2 = rots_mul_vecs(a, Vecs(b.xz, b.yz, b.zz))
return Rots(c0.x, c1.x, c2.x, c0.y, c1.y, c2.y, c0.z, c1.z, c2.z)
def rots_mul_vecs(m: Rots, v: Vecs) -> Vecs:
"""Apply rotations 'm' to vectors 'v'."""
return Vecs(m.xx * v.x + m.xy * v.y + m.xz * v.z,
m.yx * v.x + m.yy * v.y + m.yz * v.z,
m.zx * v.x + m.zy * v.y + m.zz * v.z)
def vecs_add(v1: Vecs, v2: Vecs) -> Vecs:
"""Add two vectors 'v1' and 'v2'."""
return Vecs(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z)
def vecs_dot_vecs(v1: Vecs, v2: Vecs) -> jnp.ndarray:
"""Dot product of vectors 'v1' and 'v2'."""
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z
def vecs_cross_vecs(v1: Vecs, v2: Vecs) -> Vecs:
"""Cross product of vectors 'v1' and 'v2'."""
return Vecs(v1.y * v2.z - v1.z * v2.y,
v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x)
def vecs_from_tensor(x: jnp.ndarray # shape (..., 3)
) -> Vecs: # shape (...)
"""Converts from tensor of shape (3,) to Vecs."""
num_components = x.shape[-1]
assert num_components == 3
return Vecs(x[..., 0], x[..., 1], x[..., 2])
def vecs_robust_normalize(v: Vecs, epsilon: float = 1e-8) -> Vecs:
"""Normalizes vectors 'v'.
Args:
v: vectors to be normalized.
epsilon: small regularizer added to squared norm before taking square root.
Returns:
normalized vectors
"""
norms = vecs_robust_norm(v, epsilon)
return Vecs(v.x / norms, v.y / norms, v.z / norms)
def vecs_robust_norm(v: Vecs, epsilon: float = 1e-8) -> jnp.ndarray:
"""Computes norm of vectors 'v'.
Args:
v: vectors to be normalized.
epsilon: small regularizer added to squared norm before taking square root.
Returns:
norm of 'v'
"""
return jnp.sqrt(jnp.square(v.x) + jnp.square(v.y) + jnp.square(v.z) + epsilon)
def vecs_sub(v1: Vecs, v2: Vecs) -> Vecs:
"""Computes v1 - v2."""
return Vecs(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z)
def vecs_squared_distance(v1: Vecs, v2: Vecs) -> jnp.ndarray:
"""Computes squared euclidean difference between 'v1' and 'v2'."""
return (squared_difference(v1.x, v2.x) +
squared_difference(v1.y, v2.y) +
squared_difference(v1.z, v2.z))
def vecs_to_tensor(v: Vecs # shape (...)
) -> jnp.ndarray: # shape(..., 3)
"""Converts 'v' to tensor with shape 3, inverse of 'vecs_from_tensor'."""
return jnp.stack([v.x, v.y, v.z], axis=-1)
|