ProteinMPNN / app.py
simonduerr's picture
Update app.py
4559fd7
raw
history blame
44.6 kB
import json, time, os, sys, glob
import gradio as gr
sys.path.append("/home/user/app/ProteinMPNN/vanilla_proteinmpnn")
sys.path.append("/home/duerr/phd/08_Code/ProteinMPNN/ProteinMPNN/vanilla_proteinmpnn")
import matplotlib.pyplot as plt
import shutil
import warnings
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split, Subset
import copy
import torch.nn as nn
import torch.nn.functional as F
import random
import os
import os.path
import plotly.express as px
import urllib
import jax.numpy as jnp
import tensorflow as tf
if "/home/user/app/af_backprop" not in sys.path:
sys.path.append("/home/user/app/af_backprop")
# local only
if "/home/duerr/phd/08_Code/ProteinMPNN/af_backprop" not in sys.path:
sys.path.append("/home/duerr/phd/08_Code/ProteinMPNN/af_backprop")
from utils import *
# import libraries
import colabfold as cf
from alphafold.common import protein
from alphafold.data import pipeline
from alphafold.model import data, config
from alphafold.model import model as afmodel
from alphafold.common import residue_constants
import plotly.graph_objects as go
import ray
import re
import numpy as np
import jax
tf.config.set_visible_devices([], "GPU")
def chain_break(idx_res, Ls, length=200):
# Minkyung's code
# add big enough number to residue index to indicate chain breaks
L_prev = 0
for L_i in Ls[:-1]:
idx_res[L_prev + L_i :] += length
L_prev += L_i
return idx_res
def clear_mem():
backend = jax.lib.xla_bridge.get_backend()
for buf in backend.live_buffers():
buf.delete()
def setup_af(seq, model_name="model_5_ptm"):
clear_mem()
# setup model
cfg = config.model_config("model_5_ptm")
cfg.model.num_recycle = 0
cfg.data.common.num_recycle = 0
cfg.data.eval.max_msa_clusters = 1
cfg.data.common.max_extra_msa = 1
cfg.data.eval.masked_msa_replace_fraction = 0
cfg.model.global_config.subbatch_size = None
if os.path.exists("/home/duerr"):
datadir = "/home/duerr/phd/08_Code/ProteinMPNN"
else:
datadir = "/home/user/app/"
model_params = data.get_model_haiku_params(model_name=model_name, data_dir=datadir)
model_runner = afmodel.RunModel(cfg, model_params, is_training=False)
Ls = [len(s) for s in seq.split("/")]
seq = re.sub("[^A-Z]", "", seq.upper())
length = len(seq)
feature_dict = {
**pipeline.make_sequence_features(
sequence=seq, description="none", num_res=length
),
**pipeline.make_msa_features(msas=[[seq]], deletion_matrices=[[[0] * length]]),
}
feature_dict["residue_index"] = chain_break(feature_dict["residue_index"], Ls)
inputs = model_runner.process_features(feature_dict, random_seed=0)
def runner(seq, opt):
# update sequence
inputs = opt["inputs"]
inputs.update(opt["prev"])
update_seq(seq, inputs)
update_aatype(inputs["target_feat"][..., 1:], inputs)
# mask prediction
mask = seq.sum(-1)
inputs["seq_mask"] = inputs["seq_mask"].at[:].set(mask)
inputs["msa_mask"] = inputs["msa_mask"].at[:].set(mask)
inputs["residue_index"] = jnp.where(mask == 1, inputs["residue_index"], 0)
# get prediction
key = jax.random.PRNGKey(0)
outputs = model_runner.apply(opt["params"], key, inputs)
prev = {
"init_msa_first_row": outputs["representations"]["msa_first_row"][None],
"init_pair": outputs["representations"]["pair"][None],
"init_pos": outputs["structure_module"]["final_atom_positions"][None],
}
aux = {
"final_atom_positions": outputs["structure_module"]["final_atom_positions"],
"final_atom_mask": outputs["structure_module"]["final_atom_mask"],
"plddt": get_plddt(outputs),
"pae": get_pae(outputs),
"inputs": inputs,
"prev": prev,
}
return aux
return jax.jit(runner), {"inputs": inputs, "params": model_params}
def make_tied_positions_for_homomers(pdb_dict_list):
my_dict = {}
for result in pdb_dict_list:
all_chain_list = sorted(
[item[-1:] for item in list(result) if item[:9] == "seq_chain"]
) # A, B, C, ...
tied_positions_list = []
chain_length = len(result[f"seq_chain_{all_chain_list[0]}"])
for i in range(1, chain_length + 1):
temp_dict = {}
for j, chain in enumerate(all_chain_list):
temp_dict[chain] = [i] # needs to be a list
tied_positions_list.append(temp_dict)
my_dict[result["name"]] = tied_positions_list
return my_dict
def align_structures(pdb1, pdb2, lenRes):
"""Take two structure and superimpose pdb1 on pdb2"""
import Bio.PDB
import subprocess
pdb_parser = Bio.PDB.PDBParser(QUIET=True)
# Get the structures
ref_structure = pdb_parser.get_structure("samle", pdb1)
sample_structure = pdb_parser.get_structure("reference", pdb2)
aligner = Bio.PDB.CEAligner()
aligner.set_reference(ref_structure)
aligner.align(sample_structure)
io = Bio.PDB.PDBIO()
io.set_structure(ref_structure)
io.save(f"reference.pdb")
# Doing this to get around biopython CEALIGN bug
subprocess.call("pymol -c -Q -r cealign.pml", shell=True)
return aligner.rms, "reference.pdb", "out_aligned.pdb"
def save_pdb(outs, filename, LEN):
"""save pdb coordinates"""
p = {
"residue_index": outs["inputs"]["residue_index"][0][:LEN],
"aatype": outs["inputs"]["aatype"].argmax(-1)[0][:LEN],
"atom_positions": outs["final_atom_positions"][:LEN],
"atom_mask": outs["final_atom_mask"][:LEN],
}
b_factors = 100.0 * outs["plddt"][:LEN, None] * p["atom_mask"]
p = protein.Protein(**p, b_factors=b_factors)
pdb_lines = protein.to_pdb(p)
with open(filename, "w") as f:
f.write(pdb_lines)
@ray.remote(num_gpus=1, max_calls=1)
def run_alphafold(sequence, num_recycles):
recycles = num_recycles
RUNNER, OPT = setup_af(sequence)
SEQ = re.sub("[^A-Z]", "", sequence.upper())
MAX_LEN = len(SEQ)
LEN = len(SEQ)
x = np.array([residue_constants.restype_order.get(aa, -1) for aa in SEQ])
x = np.pad(x, [0, MAX_LEN - LEN], constant_values=-1)
x = jax.nn.one_hot(x, 20)
OPT["prev"] = {
"init_msa_first_row": np.zeros([1, MAX_LEN, 256]),
"init_pair": np.zeros([1, MAX_LEN, MAX_LEN, 128]),
"init_pos": np.zeros([1, MAX_LEN, 37, 3]),
}
positions = []
plddts = []
for r in range(recycles + 1):
outs = RUNNER(x, OPT)
outs = jax.tree_map(lambda x: np.asarray(x), outs)
positions.append(outs["prev"]["init_pos"][0, :LEN])
plddts.append(outs["plddt"][:LEN])
OPT["prev"] = outs["prev"]
if recycles > 0:
print(r, plddts[-1].mean())
if os.path.exists("/home/duerr/phd/08_Code/ProteinMPNN"):
save_pdb(outs, "/home/duerr/phd/08_Code/ProteinMPNN/out.pdb", LEN)
else:
save_pdb(outs, "/home/user/app/out.pdb", LEN)
return plddts, outs["pae"], LEN
if os.path.exists("/home/duerr/phd/08_Code/ProteinMPNN"):
path_to_model_weights = "/home/duerr/phd/08_Code/ProteinMPNN/ProteinMPNN/vanilla_proteinmpnn/vanilla_model_weights"
else:
path_to_model_weights = (
"/home/user/app/ProteinMPNN/vanilla_proteinmpnn/vanilla_model_weights"
)
def setup_proteinmpnn(model_name="v_48_020", backbone_noise=0.00):
from protein_mpnn_utils import (
loss_nll,
loss_smoothed,
gather_edges,
gather_nodes,
gather_nodes_t,
cat_neighbors_nodes,
_scores,
_S_to_seq,
tied_featurize,
parse_PDB,
)
from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN
device = torch.device("cpu") #torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu") #fix for memory issues
# ProteinMPNN model name: v_48_002, v_48_010, v_48_020, v_48_030, v_32_002, v_32_010; v_32_020, v_32_030; v_48_010=version with 48 edges 0.10A noise
# Standard deviation of Gaussian noise to add to backbone atoms
hidden_dim = 128
num_layers = 3
model_folder_path = path_to_model_weights
if model_folder_path[-1] != "/":
model_folder_path = model_folder_path + "/"
checkpoint_path = model_folder_path + f"{model_name}.pt"
checkpoint = torch.load(checkpoint_path, map_location=device)
noise_level_print = checkpoint["noise_level"]
model = ProteinMPNN(
num_letters=21,
node_features=hidden_dim,
edge_features=hidden_dim,
hidden_dim=hidden_dim,
num_encoder_layers=num_layers,
num_decoder_layers=num_layers,
augment_eps=backbone_noise,
k_neighbors=checkpoint["num_edges"],
)
model.to(device)
model.load_state_dict(checkpoint["model_state_dict"])
model.eval()
return model, device
def get_pdb(pdb_code="", filepath=""):
if pdb_code is None or pdb_code == "":
try:
return filepath.name
except AttributeError as e:
return None
else:
os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb")
return f"{pdb_code}.pdb"
def update(
inp,
file,
designed_chain,
fixed_chain,
homomer,
num_seqs,
sampling_temp,
model_name,
backbone_noise,
):
from protein_mpnn_utils import (
loss_nll,
loss_smoothed,
gather_edges,
gather_nodes,
gather_nodes_t,
cat_neighbors_nodes,
_scores,
_S_to_seq,
tied_featurize,
parse_PDB,
)
from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN
pdb_path = get_pdb(pdb_code=inp, filepath=file)
if pdb_path == None:
return "Error processing PDB"
model, device = setup_proteinmpnn(
model_name=model_name, backbone_noise=backbone_noise
)
if designed_chain == "":
designed_chain_list = []
else:
designed_chain_list = re.sub("[^A-Za-z]+", ",", designed_chain).split(",")
if fixed_chain == "":
fixed_chain_list = []
else:
fixed_chain_list = re.sub("[^A-Za-z]+", ",", fixed_chain).split(",")
chain_list = list(set(designed_chain_list + fixed_chain_list))
num_seq_per_target = num_seqs
save_score = 0 # 0 for False, 1 for True; save score=-log_prob to npy files
save_probs = (
0 # 0 for False, 1 for True; save MPNN predicted probabilites per position
)
score_only = 0 # 0 for False, 1 for True; score input backbone-sequence pairs
conditional_probs_only = 0 # 0 for False, 1 for True; output conditional probabilities p(s_i given the rest of the sequence and backbone)
conditional_probs_only_backbone = 0 # 0 for False, 1 for True; if true output conditional probabilities p(s_i given backbone)
batch_size = 1 # Batch size; can set higher for titan, quadro GPUs, reduce this if running out of GPU memory
max_length = 20000 # Max sequence length
out_folder = "." # Path to a folder to output sequences, e.g. /home/out/
jsonl_path = "" # Path to a folder with parsed pdb into jsonl
omit_AAs = "X" # Specify which amino acids should be omitted in the generated sequence, e.g. 'AC' would omit alanine and cystine.
pssm_multi = 0.0 # A value between [0.0, 1.0], 0.0 means do not use pssm, 1.0 ignore MPNN predictions
pssm_threshold = 0.0 # A value between -inf + inf to restric per position AAs
pssm_log_odds_flag = 0 # 0 for False, 1 for True
pssm_bias_flag = 0 # 0 for False, 1 for True
folder_for_outputs = out_folder
NUM_BATCHES = num_seq_per_target // batch_size
BATCH_COPIES = batch_size
temperatures = [sampling_temp]
omit_AAs_list = omit_AAs
alphabet = "ACDEFGHIKLMNPQRSTVWYX"
omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32)
chain_id_dict = None
fixed_positions_dict = None
pssm_dict = None
omit_AA_dict = None
bias_AA_dict = None
bias_by_res_dict = None
bias_AAs_np = np.zeros(len(alphabet))
###############################################################
pdb_dict_list = parse_PDB(pdb_path, input_chain_list=chain_list)
dataset_valid = StructureDatasetPDB(
pdb_dict_list, truncate=None, max_length=max_length
)
if homomer:
tied_positions_dict = make_tied_positions_for_homomers(pdb_dict_list)
else:
tied_positions_dict = None
chain_id_dict = {}
chain_id_dict[pdb_dict_list[0]["name"]] = (designed_chain_list, fixed_chain_list)
with torch.no_grad():
for ix, prot in enumerate(dataset_valid):
score_list = []
all_probs_list = []
all_log_probs_list = []
S_sample_list = []
batch_clones = [copy.deepcopy(prot) for i in range(BATCH_COPIES)]
(
X,
S,
mask,
lengths,
chain_M,
chain_encoding_all,
chain_list_list,
visible_list_list,
masked_list_list,
masked_chain_length_list_list,
chain_M_pos,
omit_AA_mask,
residue_idx,
dihedral_mask,
tied_pos_list_of_lists_list,
pssm_coef,
pssm_bias,
pssm_log_odds_all,
bias_by_res_all,
tied_beta,
) = tied_featurize(
batch_clones,
device,
chain_id_dict,
fixed_positions_dict,
omit_AA_dict,
tied_positions_dict,
pssm_dict,
bias_by_res_dict,
)
pssm_log_odds_mask = (
pssm_log_odds_all > pssm_threshold
).float() # 1.0 for true, 0.0 for false
name_ = batch_clones[0]["name"]
randn_1 = torch.randn(chain_M.shape, device=X.device)
log_probs = model(
X,
S,
mask,
chain_M * chain_M_pos,
residue_idx,
chain_encoding_all,
randn_1,
)
mask_for_loss = mask * chain_M * chain_M_pos
scores = _scores(S, log_probs, mask_for_loss)
native_score = scores.cpu().data.numpy()
message = ""
seq_list = []
for temp in temperatures:
for j in range(NUM_BATCHES):
randn_2 = torch.randn(chain_M.shape, device=X.device)
if tied_positions_dict == None:
sample_dict = model.sample(
X,
randn_2,
S,
chain_M,
chain_encoding_all,
residue_idx,
mask=mask,
temperature=temp,
omit_AAs_np=omit_AAs_np,
bias_AAs_np=bias_AAs_np,
chain_M_pos=chain_M_pos,
omit_AA_mask=omit_AA_mask,
pssm_coef=pssm_coef,
pssm_bias=pssm_bias,
pssm_multi=pssm_multi,
pssm_log_odds_flag=bool(pssm_log_odds_flag),
pssm_log_odds_mask=pssm_log_odds_mask,
pssm_bias_flag=bool(pssm_bias_flag),
bias_by_res=bias_by_res_all,
)
S_sample = sample_dict["S"]
else:
sample_dict = model.tied_sample(
X,
randn_2,
S,
chain_M,
chain_encoding_all,
residue_idx,
mask=mask,
temperature=temp,
omit_AAs_np=omit_AAs_np,
bias_AAs_np=bias_AAs_np,
chain_M_pos=chain_M_pos,
omit_AA_mask=omit_AA_mask,
pssm_coef=pssm_coef,
pssm_bias=pssm_bias,
pssm_multi=pssm_multi,
pssm_log_odds_flag=bool(pssm_log_odds_flag),
pssm_log_odds_mask=pssm_log_odds_mask,
pssm_bias_flag=bool(pssm_bias_flag),
tied_pos=tied_pos_list_of_lists_list[0],
tied_beta=tied_beta,
bias_by_res=bias_by_res_all,
)
# Compute scores
S_sample = sample_dict["S"]
log_probs = model(
X,
S_sample,
mask,
chain_M * chain_M_pos,
residue_idx,
chain_encoding_all,
randn_2,
use_input_decoding_order=True,
decoding_order=sample_dict["decoding_order"],
)
mask_for_loss = mask * chain_M * chain_M_pos
scores = _scores(S_sample, log_probs, mask_for_loss)
scores = scores.cpu().data.numpy()
all_probs_list.append(sample_dict["probs"].cpu().data.numpy())
all_log_probs_list.append(log_probs.cpu().data.numpy())
S_sample_list.append(S_sample.cpu().data.numpy())
for b_ix in range(BATCH_COPIES):
masked_chain_length_list = masked_chain_length_list_list[b_ix]
masked_list = masked_list_list[b_ix]
seq_recovery_rate = torch.sum(
torch.sum(
torch.nn.functional.one_hot(S[b_ix], 21)
* torch.nn.functional.one_hot(S_sample[b_ix], 21),
axis=-1,
)
* mask_for_loss[b_ix]
) / torch.sum(mask_for_loss[b_ix])
seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix])
score = scores[b_ix]
score_list.append(score)
native_seq = _S_to_seq(S[b_ix], chain_M[b_ix])
if b_ix == 0 and j == 0 and temp == temperatures[0]:
start = 0
end = 0
list_of_AAs = []
for mask_l in masked_chain_length_list:
end += mask_l
list_of_AAs.append(native_seq[start:end])
start = end
native_seq = "".join(
list(np.array(list_of_AAs)[np.argsort(masked_list)])
)
l0 = 0
for mc_length in list(
np.array(masked_chain_length_list)[
np.argsort(masked_list)
]
)[:-1]:
l0 += mc_length
native_seq = native_seq[:l0] + "/" + native_seq[l0:]
l0 += 1
sorted_masked_chain_letters = np.argsort(
masked_list_list[0]
)
print_masked_chains = [
masked_list_list[0][i]
for i in sorted_masked_chain_letters
]
sorted_visible_chain_letters = np.argsort(
visible_list_list[0]
)
print_visible_chains = [
visible_list_list[0][i]
for i in sorted_visible_chain_letters
]
native_score_print = np.format_float_positional(
np.float32(native_score.mean()),
unique=False,
precision=4,
)
line = ">{}, score={}, fixed_chains={}, designed_chains={}, model_name={}\n{}\n".format(
name_,
native_score_print,
print_visible_chains,
print_masked_chains,
model_name,
native_seq,
)
message += f"{line}\n"
start = 0
end = 0
list_of_AAs = []
for mask_l in masked_chain_length_list:
end += mask_l
list_of_AAs.append(seq[start:end])
start = end
seq = "".join(
list(np.array(list_of_AAs)[np.argsort(masked_list)])
)
# add non designed chains to predicted sequence
l0 = 0
for mc_length in list(
np.array(masked_chain_length_list)[np.argsort(masked_list)]
)[:-1]:
l0 += mc_length
seq = seq[:l0] + "/" + seq[l0:]
l0 += 1
score_print = np.format_float_positional(
np.float32(score), unique=False, precision=4
)
seq_rec_print = np.format_float_positional(
np.float32(seq_recovery_rate.detach().cpu().numpy()),
unique=False,
precision=4,
)
chain_s = ""
if len(visible_list_list[0]) > 0:
chain_M_bool = chain_M.bool()
not_designed = _S_to_seq(S[b_ix], ~chain_M_bool[b_ix])
labels = (
chain_encoding_all[b_ix][~chain_M_bool[b_ix]]
.detach()
.cpu()
.numpy()
)
for c in set(labels):
chain_s += "/"
nd_mask = labels == c
for i, x in enumerate(not_designed):
if nd_mask[i]:
chain_s += x
line = (
">T={}, sample={}, score={}, seq_recovery={}\n{}\n".format(
temp, b_ix, score_print, seq_rec_print, seq
)
)
seq_list.append(seq + chain_s)
message += f"{line}\n"
# somehow sequences still contain X, remove again
for i, x in enumerate(seq_list):
for aa in omit_AAs:
seq_list[i] = x.replace(aa, "")
all_probs_concat = np.concatenate(all_probs_list)
all_log_probs_concat = np.concatenate(all_log_probs_list)
np.savetxt("all_probs_concat.csv", all_probs_concat.mean(0).T, delimiter=",")
np.savetxt(
"all_log_probs_concat.csv",
np.exp(all_log_probs_concat).mean(0).T,
delimiter=",",
)
S_sample_concat = np.concatenate(S_sample_list)
fig = px.imshow(
np.exp(all_log_probs_concat).mean(0).T,
labels=dict(x="positions", y="amino acids", color="probability"),
y=list(alphabet),
template="simple_white",
)
fig.update_xaxes(side="top")
fig_tadjusted = px.imshow(
all_probs_concat.mean(0).T,
labels=dict(x="positions", y="amino acids", color="probability"),
y=list(alphabet),
template="simple_white",
)
fig_tadjusted.update_xaxes(side="top")
return (
message,
fig,
fig_tadjusted,
gr.File.update(value="all_log_probs_concat.csv", visible=True),
gr.File.update(value="all_probs_concat.csv", visible=True),
pdb_path,
gr.Dropdown.update(choices=seq_list),
)
def update_AF(startsequence, pdb, num_recycles):
# # run alphafold using ray
# plddts, pae, num_res = run_alphafold(
# startsequence, num_recycles
# )
if len(startsequence) > 700:
return (
"""
<div class="p-4 mb-4 text-sm text-yellow-700 bg-orange-50 rounded-lg" role="alert">
<span class="font-medium">Sorry!</span> Currently only small proteins can be run in the server in order to reduce wait time. Try a protein <700 aa. Bigger proteins you can run on <a href="https://github.com/sokrypton/colabfold">ColabFold</a>
</div>
""",
plt.figure(),
plt.figure(),
)
plddts, pae, num_res = ray.get(run_alphafold.remote(startsequence, num_recycles))
x = np.arange(10)
plots = []
for recycle, plddts_val in enumerate(plddts):
if recycle == 0 or recycle == len(plddts) - 1:
visible = True
else:
visible = "legendonly"
plots.append(
go.Scatter(
x=np.arange(len(plddts_val)),
y=plddts_val,
hovertemplate="<i>pLDDT</i>: %{y:.2f} <br><i>Residue index:</i> %{x}<br>Recycle "
+ str(recycle),
name=f"Recycle {recycle}",
visible=visible,
)
)
plotAF_plddt = go.Figure(data=plots)
plotAF_plddt.update_layout(
title="pLDDT",
xaxis_title="Residue index",
yaxis_title="pLDDT",
height=500,
template="simple_white",
legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.99),
)
plt.figure()
plt.title("Predicted Aligned Error")
Ln = pae.shape[0]
plt.imshow(pae, cmap="bwr", vmin=0, vmax=30, extent=(0, Ln, Ln, 0))
plt.colorbar()
plt.xlabel("Scored residue")
plt.ylabel("Aligned residue")
# doesnt work (likely because too large)
# plotAF_pae = px.imshow(
# pae,
# labels=dict(x="Scored residue", y="Aligned residue", color=""),
# template="simple_white",
# y=np.arange(len(plddts)),
# )
# plotAF_pae.write_html("test.html")
# plotAF_pae.update_layout(title="Predicted Aligned Error", template="simple_white")
return molecule(pdb, "out.pdb", num_res), plotAF_plddt, plt
def read_mol(molpath):
with open(molpath, "r") as fp:
lines = fp.readlines()
mol = ""
for l in lines:
mol += l
return mol
def molecule(pdb, afpdb, num_res):
rms, input_pdb, aligned_pdb = align_structures(pdb, afpdb, num_res)
mol = read_mol(input_pdb)
pred_mol = read_mol(aligned_pdb)
x = (
"""<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<link rel="stylesheet" href="https://unpkg.com/[email protected]/dist/flowbite.min.css" />
<style>
body{
font-family:sans-serif
}
.mol-container {
width: 100%;
height: 700px;
position: relative;
}
.space-x-2 > * + *{
margin-left: 0.5rem;
}
.p-1{
padding:0.5rem;
}
.flex{
display:flex;
align-items: center;
}
.w-4{
width:1rem;
}
.h-4{
height:1rem;
}
.mt-4{
margin-top:1rem;
}
select{
background-image:None;
}
</style>
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
</head>
<body>
<div id="container" class="mol-container"></div>
<div class="flex">
<div class="px-4">
<label for="sidechain" class="relative inline-flex items-center mb-4 cursor-pointer ">
<input id="sidechain" type="checkbox" class="sr-only peer">
<div class="w-11 h-6 bg-gray-200 rounded-full peer peer-focus:ring-4 peer-focus:ring-blue-300 dark:peer-focus:ring-blue-800 dark:bg-gray-700 peer-checked:after:translate-x-full peer-checked:after:border-white after:absolute after:top-0.5 after:left-[2px] after:bg-white after:border-gray-300 after:border after:rounded-full after:h-5 after:w-5 after:transition-all dark:border-gray-600 peer-checked:bg-blue-600"></div>
<span class="ml-3 text-sm font-medium text-gray-900 dark:text-gray-300">Show side chains</span>
</label>
</div>
<div class="px-4">
<label for="startstructure" class="relative inline-flex items-center mb-4 cursor-pointer ">
<input id="startstructure" type="checkbox" class="sr-only peer" checked>
<div class="w-11 h-6 bg-gray-200 rounded-full peer peer-focus:ring-4 peer-focus:ring-blue-300 dark:peer-focus:ring-blue-800 dark:bg-gray-700 peer-checked:after:translate-x-full peer-checked:after:border-white after:absolute after:top-0.5 after:left-[2px] after:bg-white after:border-gray-300 after:border after:rounded-full after:h-5 after:w-5 after:transition-all dark:border-gray-600 peer-checked:bg-blue-600"></div>
<span class="ml-3 text-sm font-medium text-gray-900 dark:text-gray-300">Show initial structure</span>
</label>
</div>
<button type="button" class="text-gray-900 bg-white hover:bg-gray-100 border border-gray-200 focus:ring-4 focus:outline-none focus:ring-gray-100 font-medium rounded-lg text-sm px-5 py-2.5 text-center inline-flex items-center dark:focus:ring-gray-600 dark:bg-gray-800 dark:border-gray-700 dark:text-white dark:hover:bg-gray-700 mr-2 mb-2" id="download">
<svg class="w-6 h-6 mr-2 -ml-1" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M4 16v1a3 3 0 003 3h10a3 3 0 003-3v-1m-4-4l-4 4m0 0l-4-4m4 4V4"></path></svg>
Download predicted structure
</button>
</div>
<div class="text-sm">
<div> RMSD AlphaFold vs. native: """
+ f"{rms:.2f}"
+ """Å computed using CEAlign on the aligned fragment</div>
<div class="font-medium mt-4"><b>AlphaFold model confidence:</b></div>
<div class="flex space-x-2 py-1"><span class="w-4 h-4"
style="background-color: rgb(0, 83, 214);">&nbsp;</span><span class="legendlabel">Very high
(pLDDT &gt; 90)</span></div>
<div class="flex space-x-2 py-1"><span class="w-4 h-4"
style="background-color: rgb(101, 203, 243);">&nbsp;</span><span class="legendlabel">Confident
(90 &gt; pLDDT &gt; 70)</span></div>
<div class="flex space-x-2 py-1"><span class="w-4 h-4"
style="background-color: rgb(255, 219, 19);">&nbsp;</span><span class="legendlabel">Low (70 &gt;
pLDDT &gt; 50)</span></div>
<div class="flex space-x-2 py-1"><span class="w-4 h-4"
style="background-color: rgb(255, 125, 69);">&nbsp;</span><span class="legendlabel">Very low
(pLDDT &lt; 50)</span></div>
<div class="row column legendDesc"> AlphaFold produces a per-residue confidence
score (pLDDT) between 0 and 100. Some regions below 50 pLDDT may be unstructured in isolation.
</div>
</div>
<script>
let viewer = null;
let voldata = null;
$(document).ready(function () {
let element = $("#container");
let config = { backgroundColor: "white" };
viewer = $3Dmol.createViewer( element, config );
viewer.ui.initiateUI();
let data = `"""
+ pred_mol
+ """`
let pdb = `"""
+ mol
+ """`
viewer.addModel( data, "pdb" );
viewer.addModel( pdb, "pdb" );
//AlphaFold code from https://gist.github.com/piroyon/30d1c1099ad488a7952c3b21a5bebc96
let colorAlpha = function (atom) {
if (atom.b < 50) {
return "OrangeRed";
} else if (atom.b < 70) {
return "Gold";
} else if (atom.b < 90) {
return "MediumTurquoise";
} else {
return "Blue";
}
};
viewer.getModel(1).setStyle({},{ cartoon: {color:"gray"} })
viewer.getModel(0).setStyle({}, { cartoon: { colorfunc: colorAlpha } });
viewer.zoomTo();
viewer.render();
viewer.zoom(0.8, 2000);
viewer.getModel(0).setHoverable({}, true,
function (atom, viewer, event, container) {
console.log(atom)
if (!atom.label) {
atom.label = viewer.addLabel(atom.resn+atom.resi+" pLDDT=" + atom.b, { position: atom, backgroundColor: "mintcream", fontColor: "black" });
}
},
function (atom, viewer) {
if (atom.label) {
viewer.removeLabel(atom.label);
delete atom.label;
}
}
);
$("#sidechain").change(function () {
if (this.checked) {
BB = ["C", "O", "N"]
viewer.getModel(0).setStyle( {"and": [{resn: ["GLY", "PRO"], invert: true},{atom: BB, invert: true},]},{stick: {colorscheme: "WhiteCarbon", radius: 0.3}, cartoon: { colorfunc: colorAlpha }});
viewer.getModel(1).setStyle( {"and": [{resn: ["GLY", "PRO"], invert: true},{atom: BB, invert: true},]},{stick: {colorscheme: "WhiteCarbon", radius: 0.3}, cartoon: { color: "gray" }});
viewer.render()
} else {
viewer.getModel(0).setStyle({cartoon: { colorfunc: colorAlpha }});
viewer.getModel(1).setStyle({cartoon: { color:"gray" }});
viewer.render()
}
});
$("#startstructure").change(function () {
if (this.checked) {
$("#sidechain").prop( "checked", false );
viewer.getModel(1).setStyle({},{ cartoon: {color:"gray"} })
viewer.getModel(0).setStyle({}, { cartoon: { colorfunc: colorAlpha } });
viewer.render()
} else {
$("#sidechain").prop( "checked", false );
viewer.getModel(1).setStyle({},{})
viewer.getModel(0).setStyle({}, { cartoon: { colorfunc: colorAlpha } });
viewer.render()
}
});
$("#download").click(function () {
download(\""""
+ aligned_pdb
+ """\", data);
})
});
function download(filename, text) {
var element = document.createElement("a");
element.setAttribute("href", "data:text/plain;charset=utf-8," + encodeURIComponent(text));
element.setAttribute("download", filename);
element.style.display = "none";
document.body.appendChild(element);
element.click();
document.body.removeChild(element);
}
</script>
</body></html>"""
)
return f"""<iframe style="width: 800px; height: 1000px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
def set_examples(example):
label, inp, designed_chain, fixed_chain, homomer, num_seqs, sampling_temp = example
return [
label,
inp,
designed_chain,
fixed_chain,
homomer,
gr.Slider.update(value=num_seqs),
gr.Radio.update(value=sampling_temp),
]
proteinMPNN = gr.Blocks()
with proteinMPNN:
gr.Markdown("# ProteinMPNN")
gr.Markdown(
"""This model takes as input a protein structure and based on its backbone predicts new sequences that will fold into that backbone.
Optionally, we can run AlphaFold2 on the predicted sequence to check whether the predicted sequences adopt the same backbone (WIP).
"""
)
gr.Markdown("![](https://simonduerr.eu/ProteinMPNN.png)")
with gr.Tabs():
with gr.TabItem("Input"):
inp = gr.Textbox(
placeholder="PDB Code or upload file below", label="Input structure"
)
file = gr.File(file_count="single")
with gr.TabItem("Settings"):
with gr.Row():
designed_chain = gr.Textbox(value="A", label="Designed chain")
fixed_chain = gr.Textbox(
placeholder="Use commas to fix multiple chains", label="Fixed chain"
)
with gr.Row():
num_seqs = gr.Slider(
minimum=1, maximum=50, value=1, step=1, label="Number of sequences"
)
sampling_temp = gr.Radio(
choices=[0.1, 0.15, 0.2, 0.25, 0.3],
value=0.1,
label="Sampling temperature",
)
with gr.Row():
model_name = gr.Dropdown(
choices=[
"v_48_002",
"v_48_010",
"v_48_020",
"v_48_030",
],
label="Model",
value="v_48_020",
)
backbone_noise = gr.Dropdown(
choices=[0, 0.02, 0.10, 0.20, 0.30], label="Backbone noise", value=0
)
with gr.Row():
homomer = gr.Checkbox(value=False, label="Homomer?")
gr.Markdown(
"for correct symmetric tying lenghts of homomer chains should be the same"
)
btn = gr.Button("Run")
label = gr.Textbox(label="Label", visible=False)
examples = gr.Dataset(
components=[
label,
inp,
designed_chain,
fixed_chain,
homomer,
num_seqs,
sampling_temp,
],
samples=[
["Homomer design", "1O91", "A,B,C", "", True, 2, 0.1],
["Monomer design", "6MRR", "A", "", False, 2, 0.1],
["Redesign of Homomer to Heteromer", "3HTN", "A,B", "C", False, 2, 0.1],
],
)
gr.Markdown(
""" Sampling temperature for amino acids, `T=0.0` means taking argmax, `T>>1.0` means sample randomly. Suggested values `0.1, 0.15, 0.2, 0.25, 0.3`. Higher values will lead to more diversity.
"""
)
gr.Markdown("# Output")
with gr.Tabs():
with gr.TabItem("Designed sequences"):
out = gr.Textbox(label="Status")
with gr.TabItem("Amino acid probabilities"):
plot = gr.Plot()
all_log_probs = gr.File(visible=False)
with gr.TabItem("T adjusted probabilities"):
gr.Markdown("Sampling temperature adjusted amino acid probabilties")
plot_tadjusted = gr.Plot()
all_probs = gr.File(visible=False)
with gr.TabItem("Structure validation w/ AF2"):
gr.HTML(
"""
<div class="flex items-center p-2 bg-gradient-to-r from-yellow-400 via-red-500 to-pink-500 rounded-lg shadow-sm">
<div class="p-3 mr-4">
<svg class="w-10 h-10 px-1 text-400" viewBox="0 0 16 16">
<path fill-rule="evenodd" d="M1.75 1.5a.25.25 0 00-.25.25v9.5c0 .138.112.25.25.25h2a.75.75 0 01.75.75v2.19l2.72-2.72a.75.75 0 01.53-.22h6.5a.25.25 0 00.25-.25v-9.5a.25.25 0 00-.25-.25H1.75zM0 1.75C0 .784.784 0 1.75 0h12.5C15.216 0 16 .784 16 1.75v9.5A1.75 1.75 0 0114.25 13H8.06l-2.573 2.573A1.457 1.457 0 013 14.543V13H1.75A1.75 1.75 0 010 11.25v-9.5zM9 9a1 1 0 11-2 0 1 1 0 012 0zm-.25-5.25a.75.75 0 00-1.5 0v2.5a.75.75 0 001.5 0v-2.5z"></path>
</svg>
</div>
<div>
<p class="text-base text-gray-700 dark:text-gray-200">
AF2 code is experimental and relies on @sokrypton's trick to speed up compile/module runtime. Results might differ from DeepMind's published results.
Predictions are made using <code>model_5_ptm</code> and without MSA based on the selected single sequence (<code>designed_chain</code> + <code>fixed_chain</code>).
</p>
</div>
</div>
"""
)
with gr.Row():
with gr.Row():
chosen_seq = gr.Dropdown(
choices=[], label="Select a sequence for validation"
)
num_recycles = gr.Dropdown(
choices=[0, 1, 3, 5], value=3, label="num Recycles"
)
btnAF = gr.Button("Run AF2 on sequence")
with gr.Row():
mol = gr.HTML()
with gr.Column():
plotAF_plddt = gr.Plot(label="pLDDT")
# remove maxh80 class from css
plotAF_pae = gr.Plot(label="PAE")
tempFile = gr.Variable()
btn.click(
fn=update,
inputs=[
inp,
file,
designed_chain,
fixed_chain,
homomer,
num_seqs,
sampling_temp,
model_name,
backbone_noise,
],
outputs=[
out,
plot,
plot_tadjusted,
all_log_probs,
all_probs,
tempFile,
chosen_seq,
],
)
btnAF.click(
fn=update_AF,
inputs=[chosen_seq, tempFile, num_recycles],
outputs=[mol, plotAF_plddt, plotAF_pae],
)
examples.click(fn=set_examples, inputs=examples, outputs=examples.components)
gr.Markdown(
"""Citation: **Robust deep learning based protein sequence design using ProteinMPNN** <br>
Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J. Ragotte, Lukas F. Milles, Basile I. M. Wicky, Alexis Courbet, Robbert J. de Haas, Neville Bethel, Philip J. Y. Leung, Timothy F. Huddy, Sam Pellock, Doug Tischer, Frederick Chan, Brian Koepnick, Hannah Nguyen, Alex Kang, Banumathi Sankaran, Asim Bera, Neil P. King, David Baker <br>
bioRxiv 2022.06.03.494563; doi: [10.1101/2022.06.03.494563](https://doi.org/10.1101/2022.06.03.494563) <br><br> Server built by [@simonduerr](https://twitter.com/simonduerr) and hosted by Huggingface"""
)
ray.init(runtime_env={"working_dir": "./af_backprop"})
proteinMPNN.launch(share=True, debug=True)