Simon Duerr
add fast af
85bd48b
raw
history blame
17.4 kB
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Quaternion geometry modules.
This introduces a representation of coordinate frames that is based around a
‘QuatAffine’ object. This object describes an array of coordinate frames.
It consists of vectors corresponding to the
origin of the frames as well as orientations which are stored in two
ways, as unit quaternions as well as a rotation matrices.
The rotation matrices are derived from the unit quaternions and the two are kept
in sync.
For an explanation of the relation between unit quaternions and rotations see
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
This representation is used in the model for the backbone frames.
One important thing to note here, is that while we update both representations
the jit compiler is going to ensure that only the parts that are
actually used are executed.
"""
import functools
from typing import Tuple
import jax
import jax.numpy as jnp
import numpy as np
# pylint: disable=bad-whitespace
QUAT_TO_ROT = np.zeros((4, 4, 3, 3), dtype=np.float32)
QUAT_TO_ROT[0, 0] = [[ 1, 0, 0], [ 0, 1, 0], [ 0, 0, 1]] # rr
QUAT_TO_ROT[1, 1] = [[ 1, 0, 0], [ 0,-1, 0], [ 0, 0,-1]] # ii
QUAT_TO_ROT[2, 2] = [[-1, 0, 0], [ 0, 1, 0], [ 0, 0,-1]] # jj
QUAT_TO_ROT[3, 3] = [[-1, 0, 0], [ 0,-1, 0], [ 0, 0, 1]] # kk
QUAT_TO_ROT[1, 2] = [[ 0, 2, 0], [ 2, 0, 0], [ 0, 0, 0]] # ij
QUAT_TO_ROT[1, 3] = [[ 0, 0, 2], [ 0, 0, 0], [ 2, 0, 0]] # ik
QUAT_TO_ROT[2, 3] = [[ 0, 0, 0], [ 0, 0, 2], [ 0, 2, 0]] # jk
QUAT_TO_ROT[0, 1] = [[ 0, 0, 0], [ 0, 0,-2], [ 0, 2, 0]] # ir
QUAT_TO_ROT[0, 2] = [[ 0, 0, 2], [ 0, 0, 0], [-2, 0, 0]] # jr
QUAT_TO_ROT[0, 3] = [[ 0,-2, 0], [ 2, 0, 0], [ 0, 0, 0]] # kr
QUAT_MULTIPLY = np.zeros((4, 4, 4), dtype=np.float32)
QUAT_MULTIPLY[:, :, 0] = [[ 1, 0, 0, 0],
[ 0,-1, 0, 0],
[ 0, 0,-1, 0],
[ 0, 0, 0,-1]]
QUAT_MULTIPLY[:, :, 1] = [[ 0, 1, 0, 0],
[ 1, 0, 0, 0],
[ 0, 0, 0, 1],
[ 0, 0,-1, 0]]
QUAT_MULTIPLY[:, :, 2] = [[ 0, 0, 1, 0],
[ 0, 0, 0,-1],
[ 1, 0, 0, 0],
[ 0, 1, 0, 0]]
QUAT_MULTIPLY[:, :, 3] = [[ 0, 0, 0, 1],
[ 0, 0, 1, 0],
[ 0,-1, 0, 0],
[ 1, 0, 0, 0]]
QUAT_MULTIPLY_BY_VEC = QUAT_MULTIPLY[:, 1:, :]
# pylint: enable=bad-whitespace
def rot_to_quat(rot, unstack_inputs=False):
"""Convert rotation matrix to quaternion.
Note that this function calls self_adjoint_eig which is extremely expensive on
the GPU. If at all possible, this function should run on the CPU.
Args:
rot: rotation matrix (see below for format).
unstack_inputs: If true, rotation matrix should be shape (..., 3, 3)
otherwise the rotation matrix should be a list of lists of tensors.
Returns:
Quaternion as (..., 4) tensor.
"""
if unstack_inputs:
rot = [jnp.moveaxis(x, -1, 0) for x in jnp.moveaxis(rot, -2, 0)]
[[xx, xy, xz], [yx, yy, yz], [zx, zy, zz]] = rot
# pylint: disable=bad-whitespace
k = [[ xx + yy + zz, zy - yz, xz - zx, yx - xy,],
[ zy - yz, xx - yy - zz, xy + yx, xz + zx,],
[ xz - zx, xy + yx, yy - xx - zz, yz + zy,],
[ yx - xy, xz + zx, yz + zy, zz - xx - yy,]]
# pylint: enable=bad-whitespace
k = (1./3.) * jnp.stack([jnp.stack(x, axis=-1) for x in k],
axis=-2)
# Get eigenvalues in non-decreasing order and associated.
_, qs = jnp.linalg.eigh(k)
return qs[..., -1]
def rot_list_to_tensor(rot_list):
"""Convert list of lists to rotation tensor."""
return jnp.stack(
[jnp.stack(rot_list[0], axis=-1),
jnp.stack(rot_list[1], axis=-1),
jnp.stack(rot_list[2], axis=-1)],
axis=-2)
def vec_list_to_tensor(vec_list):
"""Convert list to vector tensor."""
return jnp.stack(vec_list, axis=-1)
def quat_to_rot(normalized_quat):
"""Convert a normalized quaternion to a rotation matrix."""
rot_tensor = jnp.sum(
np.reshape(QUAT_TO_ROT, (4, 4, 9)) *
normalized_quat[..., :, None, None] *
normalized_quat[..., None, :, None],
axis=(-3, -2))
rot = jnp.moveaxis(rot_tensor, -1, 0) # Unstack.
return [[rot[0], rot[1], rot[2]],
[rot[3], rot[4], rot[5]],
[rot[6], rot[7], rot[8]]]
def quat_multiply_by_vec(quat, vec):
"""Multiply a quaternion by a pure-vector quaternion."""
return jnp.sum(
QUAT_MULTIPLY_BY_VEC *
quat[..., :, None, None] *
vec[..., None, :, None],
axis=(-3, -2))
def quat_multiply(quat1, quat2):
"""Multiply a quaternion by another quaternion."""
return jnp.sum(
QUAT_MULTIPLY *
quat1[..., :, None, None] *
quat2[..., None, :, None],
axis=(-3, -2))
def apply_rot_to_vec(rot, vec, unstack=False):
"""Multiply rotation matrix by a vector."""
if unstack:
x, y, z = [vec[:, i] for i in range(3)]
else:
x, y, z = vec
return [rot[0][0] * x + rot[0][1] * y + rot[0][2] * z,
rot[1][0] * x + rot[1][1] * y + rot[1][2] * z,
rot[2][0] * x + rot[2][1] * y + rot[2][2] * z]
def apply_inverse_rot_to_vec(rot, vec):
"""Multiply the inverse of a rotation matrix by a vector."""
# Inverse rotation is just transpose
return [rot[0][0] * vec[0] + rot[1][0] * vec[1] + rot[2][0] * vec[2],
rot[0][1] * vec[0] + rot[1][1] * vec[1] + rot[2][1] * vec[2],
rot[0][2] * vec[0] + rot[1][2] * vec[1] + rot[2][2] * vec[2]]
class QuatAffine(object):
"""Affine transformation represented by quaternion and vector."""
def __init__(self, quaternion, translation, rotation=None, normalize=True,
unstack_inputs=False):
"""Initialize from quaternion and translation.
Args:
quaternion: Rotation represented by a quaternion, to be applied
before translation. Must be a unit quaternion unless normalize==True.
translation: Translation represented as a vector.
rotation: Same rotation as the quaternion, represented as a (..., 3, 3)
tensor. If None, rotation will be calculated from the quaternion.
normalize: If True, l2 normalize the quaternion on input.
unstack_inputs: If True, translation is a vector with last component 3
"""
if quaternion is not None:
assert quaternion.shape[-1] == 4
if unstack_inputs:
if rotation is not None:
rotation = [jnp.moveaxis(x, -1, 0) # Unstack.
for x in jnp.moveaxis(rotation, -2, 0)] # Unstack.
translation = jnp.moveaxis(translation, -1, 0) # Unstack.
if normalize and quaternion is not None:
quaternion = quaternion / jnp.linalg.norm(quaternion, axis=-1,
keepdims=True)
if rotation is None:
rotation = quat_to_rot(quaternion)
self.quaternion = quaternion
self.rotation = [list(row) for row in rotation]
self.translation = list(translation)
assert all(len(row) == 3 for row in self.rotation)
assert len(self.translation) == 3
def to_tensor(self):
return jnp.concatenate(
[self.quaternion] +
[jnp.expand_dims(x, axis=-1) for x in self.translation],
axis=-1)
def apply_tensor_fn(self, tensor_fn):
"""Return a new QuatAffine with tensor_fn applied (e.g. stop_gradient)."""
return QuatAffine(
tensor_fn(self.quaternion),
[tensor_fn(x) for x in self.translation],
rotation=[[tensor_fn(x) for x in row] for row in self.rotation],
normalize=False)
def apply_rotation_tensor_fn(self, tensor_fn):
"""Return a new QuatAffine with tensor_fn applied to the rotation part."""
return QuatAffine(
tensor_fn(self.quaternion),
[x for x in self.translation],
rotation=[[tensor_fn(x) for x in row] for row in self.rotation],
normalize=False)
def scale_translation(self, position_scale):
"""Return a new quat affine with a different scale for translation."""
return QuatAffine(
self.quaternion,
[x * position_scale for x in self.translation],
rotation=[[x for x in row] for row in self.rotation],
normalize=False)
@classmethod
def from_tensor(cls, tensor, normalize=False):
quaternion, tx, ty, tz = jnp.split(tensor, [4, 5, 6], axis=-1)
return cls(quaternion,
[tx[..., 0], ty[..., 0], tz[..., 0]],
normalize=normalize)
def pre_compose(self, update):
"""Return a new QuatAffine which applies the transformation update first.
Args:
update: Length-6 vector. 3-vector of x, y, and z such that the quaternion
update is (1, x, y, z) and zero for the 3-vector is the identity
quaternion. 3-vector for translation concatenated.
Returns:
New QuatAffine object.
"""
vector_quaternion_update, x, y, z = jnp.split(update, [3, 4, 5], axis=-1)
trans_update = [jnp.squeeze(x, axis=-1),
jnp.squeeze(y, axis=-1),
jnp.squeeze(z, axis=-1)]
new_quaternion = (self.quaternion +
quat_multiply_by_vec(self.quaternion,
vector_quaternion_update))
trans_update = apply_rot_to_vec(self.rotation, trans_update)
new_translation = [
self.translation[0] + trans_update[0],
self.translation[1] + trans_update[1],
self.translation[2] + trans_update[2]]
return QuatAffine(new_quaternion, new_translation)
def apply_to_point(self, point, extra_dims=0):
"""Apply affine to a point.
Args:
point: List of 3 tensors to apply affine.
extra_dims: Number of dimensions at the end of the transformed_point
shape that are not present in the rotation and translation. The most
common use is rotation N points at once with extra_dims=1 for use in a
network.
Returns:
Transformed point after applying affine.
"""
rotation = self.rotation
translation = self.translation
for _ in range(extra_dims):
expand_fn = functools.partial(jnp.expand_dims, axis=-1)
rotation = jax.tree_map(expand_fn, rotation)
translation = jax.tree_map(expand_fn, translation)
rot_point = apply_rot_to_vec(rotation, point)
return [
rot_point[0] + translation[0],
rot_point[1] + translation[1],
rot_point[2] + translation[2]]
def invert_point(self, transformed_point, extra_dims=0):
"""Apply inverse of transformation to a point.
Args:
transformed_point: List of 3 tensors to apply affine
extra_dims: Number of dimensions at the end of the transformed_point
shape that are not present in the rotation and translation. The most
common use is rotation N points at once with extra_dims=1 for use in a
network.
Returns:
Transformed point after applying affine.
"""
rotation = self.rotation
translation = self.translation
for _ in range(extra_dims):
expand_fn = functools.partial(jnp.expand_dims, axis=-1)
rotation = jax.tree_map(expand_fn, rotation)
translation = jax.tree_map(expand_fn, translation)
rot_point = [
transformed_point[0] - translation[0],
transformed_point[1] - translation[1],
transformed_point[2] - translation[2]]
return apply_inverse_rot_to_vec(rotation, rot_point)
def __repr__(self):
return 'QuatAffine(%r, %r)' % (self.quaternion, self.translation)
def _multiply(a, b):
return jnp.stack([
jnp.array([a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0],
a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1],
a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]]),
jnp.array([a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0],
a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1],
a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]]),
jnp.array([a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0],
a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1],
a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]])])
def make_canonical_transform(
n_xyz: jnp.ndarray,
ca_xyz: jnp.ndarray,
c_xyz: jnp.ndarray) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""Returns translation and rotation matrices to canonicalize residue atoms.
Note that this method does not take care of symmetries. If you provide the
atom positions in the non-standard way, the N atom will end up not at
[-0.527250, 1.359329, 0.0] but instead at [-0.527250, -1.359329, 0.0]. You
need to take care of such cases in your code.
Args:
n_xyz: An array of shape [batch, 3] of nitrogen xyz coordinates.
ca_xyz: An array of shape [batch, 3] of carbon alpha xyz coordinates.
c_xyz: An array of shape [batch, 3] of carbon xyz coordinates.
Returns:
A tuple (translation, rotation) where:
translation is an array of shape [batch, 3] defining the translation.
rotation is an array of shape [batch, 3, 3] defining the rotation.
After applying the translation and rotation to all atoms in a residue:
* All atoms will be shifted so that CA is at the origin,
* All atoms will be rotated so that C is at the x-axis,
* All atoms will be shifted so that N is in the xy plane.
"""
assert len(n_xyz.shape) == 2, n_xyz.shape
assert n_xyz.shape[-1] == 3, n_xyz.shape
assert n_xyz.shape == ca_xyz.shape == c_xyz.shape, (
n_xyz.shape, ca_xyz.shape, c_xyz.shape)
# Place CA at the origin.
translation = -ca_xyz
n_xyz = n_xyz + translation
c_xyz = c_xyz + translation
# Place C on the x-axis.
c_x, c_y, c_z = [c_xyz[:, i] for i in range(3)]
# Rotate by angle c1 in the x-y plane (around the z-axis).
sin_c1 = -c_y / jnp.sqrt(1e-20 + c_x**2 + c_y**2)
cos_c1 = c_x / jnp.sqrt(1e-20 + c_x**2 + c_y**2)
zeros = jnp.zeros_like(sin_c1)
ones = jnp.ones_like(sin_c1)
# pylint: disable=bad-whitespace
c1_rot_matrix = jnp.stack([jnp.array([cos_c1, -sin_c1, zeros]),
jnp.array([sin_c1, cos_c1, zeros]),
jnp.array([zeros, zeros, ones])])
# Rotate by angle c2 in the x-z plane (around the y-axis).
sin_c2 = c_z / jnp.sqrt(1e-20 + c_x**2 + c_y**2 + c_z**2)
cos_c2 = jnp.sqrt(c_x**2 + c_y**2) / jnp.sqrt(
1e-20 + c_x**2 + c_y**2 + c_z**2)
c2_rot_matrix = jnp.stack([jnp.array([cos_c2, zeros, sin_c2]),
jnp.array([zeros, ones, zeros]),
jnp.array([-sin_c2, zeros, cos_c2])])
c_rot_matrix = _multiply(c2_rot_matrix, c1_rot_matrix)
n_xyz = jnp.stack(apply_rot_to_vec(c_rot_matrix, n_xyz, unstack=True)).T
# Place N in the x-y plane.
_, n_y, n_z = [n_xyz[:, i] for i in range(3)]
# Rotate by angle alpha in the y-z plane (around the x-axis).
sin_n = -n_z / jnp.sqrt(1e-20 + n_y**2 + n_z**2)
cos_n = n_y / jnp.sqrt(1e-20 + n_y**2 + n_z**2)
n_rot_matrix = jnp.stack([jnp.array([ones, zeros, zeros]),
jnp.array([zeros, cos_n, -sin_n]),
jnp.array([zeros, sin_n, cos_n])])
# pylint: enable=bad-whitespace
return (translation,
jnp.transpose(_multiply(n_rot_matrix, c_rot_matrix), [2, 0, 1]))
def make_transform_from_reference(
n_xyz: jnp.ndarray,
ca_xyz: jnp.ndarray,
c_xyz: jnp.ndarray) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""Returns rotation and translation matrices to convert from reference.
Note that this method does not take care of symmetries. If you provide the
atom positions in the non-standard way, the N atom will end up not at
[-0.527250, 1.359329, 0.0] but instead at [-0.527250, -1.359329, 0.0]. You
need to take care of such cases in your code.
Args:
n_xyz: An array of shape [batch, 3] of nitrogen xyz coordinates.
ca_xyz: An array of shape [batch, 3] of carbon alpha xyz coordinates.
c_xyz: An array of shape [batch, 3] of carbon xyz coordinates.
Returns:
A tuple (rotation, translation) where:
rotation is an array of shape [batch, 3, 3] defining the rotation.
translation is an array of shape [batch, 3] defining the translation.
After applying the translation and rotation to the reference backbone,
the coordinates will approximately equal to the input coordinates.
The order of translation and rotation differs from make_canonical_transform
because the rotation from this function should be applied before the
translation, unlike make_canonical_transform.
"""
translation, rotation = make_canonical_transform(n_xyz, ca_xyz, c_xyz)
return np.transpose(rotation, (0, 2, 1)), -translation