Spaces:
Sleeping
Sleeping
import json, time, os, sys, glob | |
import gradio as gr | |
sys.path.append('/home/user/app/ProteinMPNN/vanilla_proteinmpnn') | |
import matplotlib.pyplot as plt | |
import shutil | |
import warnings | |
import numpy as np | |
import torch | |
from torch import optim | |
from torch.utils.data import DataLoader | |
from torch.utils.data.dataset import random_split, Subset | |
import copy | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import random | |
import os.path | |
from protein_mpnn_utils import loss_nll, loss_smoothed, gather_edges, gather_nodes, gather_nodes_t, cat_neighbors_nodes, _scores, _S_to_seq, tied_featurize, parse_PDB | |
from protein_mpnn_utils import StructureDataset, StructureDatasetPDB, ProteinMPNN | |
import plotly.express as px | |
import urllib | |
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu") | |
model_name="v_48_020" # ProteinMPNN model name: v_48_002, v_48_010, v_48_020, v_48_030, v_32_002, v_32_010; v_32_020, v_32_030; v_48_010=version with 48 edges 0.10A noise | |
backbone_noise=0.00 # Standard deviation of Gaussian noise to add to backbone atoms | |
path_to_model_weights='/home/user/app/ProteinMPNN/vanilla_proteinmpnn/vanilla_model_weights' | |
hidden_dim = 128 | |
num_layers = 3 | |
model_folder_path = path_to_model_weights | |
if model_folder_path[-1] != '/': | |
model_folder_path = model_folder_path + '/' | |
checkpoint_path = model_folder_path + f'{model_name}.pt' | |
checkpoint = torch.load(checkpoint_path, map_location=device) | |
noise_level_print = checkpoint['noise_level'] | |
model = ProteinMPNN(num_letters=21, node_features=hidden_dim, edge_features=hidden_dim, hidden_dim=hidden_dim, num_encoder_layers=num_layers, num_decoder_layers=num_layers, augment_eps=backbone_noise, k_neighbors=checkpoint['num_edges']) | |
model.to(device) | |
model.load_state_dict(checkpoint['model_state_dict']) | |
model.eval() | |
import re | |
import numpy as np | |
def get_pdb(pdb_code="", filepath=""): | |
if pdb_code is None or pdb_code == "": | |
return filepath.name | |
else: | |
os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb") | |
return f"{pdb_code}.pdb" | |
def update(inp, file,designed_chain, fixed_chain, num_seqs, sampling_temp): | |
pdb_path =get_pdb(pdb_code=inp, filepath=file) | |
if designed_chain == "": | |
designed_chain_list = [] | |
else: | |
designed_chain_list = re.sub("[^A-Za-z]+",",", designed_chain).split(",") | |
if fixed_chain == "": | |
fixed_chain_list = [] | |
else: | |
fixed_chain_list = re.sub("[^A-Za-z]+",",", fixed_chain).split(",") | |
chain_list = list(set(designed_chain_list + fixed_chain_list)) | |
num_seq_per_target = num_seqs | |
save_score=0 # 0 for False, 1 for True; save score=-log_prob to npy files | |
save_probs=0 # 0 for False, 1 for True; save MPNN predicted probabilites per position | |
score_only=0 # 0 for False, 1 for True; score input backbone-sequence pairs | |
conditional_probs_only=0 # 0 for False, 1 for True; output conditional probabilities p(s_i given the rest of the sequence and backbone) | |
conditional_probs_only_backbone=0 # 0 for False, 1 for True; if true output conditional probabilities p(s_i given backbone) | |
batch_size=1 # Batch size; can set higher for titan, quadro GPUs, reduce this if running out of GPU memory | |
max_length=20000 # Max sequence length | |
out_folder='.' # Path to a folder to output sequences, e.g. /home/out/ | |
jsonl_path='' # Path to a folder with parsed pdb into jsonl | |
omit_AAs='X' # Specify which amino acids should be omitted in the generated sequence, e.g. 'AC' would omit alanine and cystine. | |
pssm_multi=0.0 # A value between [0.0, 1.0], 0.0 means do not use pssm, 1.0 ignore MPNN predictions | |
pssm_threshold=0.0 # A value between -inf + inf to restric per position AAs | |
pssm_log_odds_flag=0 # 0 for False, 1 for True | |
pssm_bias_flag=0 # 0 for False, 1 for True | |
folder_for_outputs = out_folder | |
NUM_BATCHES = num_seq_per_target//batch_size | |
BATCH_COPIES = batch_size | |
temperatures = [sampling_temp] | |
omit_AAs_list = omit_AAs | |
alphabet = 'ACDEFGHIKLMNPQRSTVWYX' | |
omit_AAs_np = np.array([AA in omit_AAs_list for AA in alphabet]).astype(np.float32) | |
chain_id_dict = None | |
fixed_positions_dict = None | |
pssm_dict = None | |
omit_AA_dict = None | |
bias_AA_dict = None | |
tied_positions_dict = None | |
bias_by_res_dict = None | |
bias_AAs_np = np.zeros(len(alphabet)) | |
############################################################### | |
pdb_dict_list = parse_PDB(pdb_path, input_chain_list=chain_list) | |
dataset_valid = StructureDatasetPDB(pdb_dict_list, truncate=None, max_length=max_length) | |
chain_id_dict = {} | |
chain_id_dict[pdb_dict_list[0]['name']]= (designed_chain_list, fixed_chain_list) | |
with torch.no_grad(): | |
for ix, protein in enumerate(dataset_valid): | |
score_list = [] | |
all_probs_list = [] | |
all_log_probs_list = [] | |
S_sample_list = [] | |
batch_clones = [copy.deepcopy(protein) for i in range(BATCH_COPIES)] | |
X, S, mask, lengths, chain_M, chain_encoding_all, chain_list_list, visible_list_list, masked_list_list, masked_chain_length_list_list, chain_M_pos, omit_AA_mask, residue_idx, dihedral_mask, tied_pos_list_of_lists_list, pssm_coef, pssm_bias, pssm_log_odds_all, bias_by_res_all, tied_beta = tied_featurize(batch_clones, device, chain_id_dict, fixed_positions_dict, omit_AA_dict, tied_positions_dict, pssm_dict, bias_by_res_dict) | |
pssm_log_odds_mask = (pssm_log_odds_all > pssm_threshold).float() #1.0 for true, 0.0 for false | |
name_ = batch_clones[0]['name'] | |
randn_1 = torch.randn(chain_M.shape, device=X.device) | |
log_probs = model(X, S, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_1) | |
mask_for_loss = mask*chain_M*chain_M_pos | |
scores = _scores(S, log_probs, mask_for_loss) | |
native_score = scores.cpu().data.numpy() | |
message="" | |
for temp in temperatures: | |
for j in range(NUM_BATCHES): | |
randn_2 = torch.randn(chain_M.shape, device=X.device) | |
if tied_positions_dict == None: | |
sample_dict = model.sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=pssm_multi, pssm_log_odds_flag=bool(pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(pssm_bias_flag), bias_by_res=bias_by_res_all) | |
S_sample = sample_dict["S"] | |
else: | |
sample_dict = model.tied_sample(X, randn_2, S, chain_M, chain_encoding_all, residue_idx, mask=mask, temperature=temp, omit_AAs_np=omit_AAs_np, bias_AAs_np=bias_AAs_np, chain_M_pos=chain_M_pos, omit_AA_mask=omit_AA_mask, pssm_coef=pssm_coef, pssm_bias=pssm_bias, pssm_multi=pssm_multi, pssm_log_odds_flag=bool(pssm_log_odds_flag), pssm_log_odds_mask=pssm_log_odds_mask, pssm_bias_flag=bool(pssm_bias_flag), tied_pos=tied_pos_list_of_lists_list[0], tied_beta=tied_beta, bias_by_res=bias_by_res_all) | |
# Compute scores | |
S_sample = sample_dict["S"] | |
log_probs = model(X, S_sample, mask, chain_M*chain_M_pos, residue_idx, chain_encoding_all, randn_2, use_input_decoding_order=True, decoding_order=sample_dict["decoding_order"]) | |
mask_for_loss = mask*chain_M*chain_M_pos | |
scores = _scores(S_sample, log_probs, mask_for_loss) | |
scores = scores.cpu().data.numpy() | |
all_probs_list.append(sample_dict["probs"].cpu().data.numpy()) | |
all_log_probs_list.append(log_probs.cpu().data.numpy()) | |
S_sample_list.append(S_sample.cpu().data.numpy()) | |
for b_ix in range(BATCH_COPIES): | |
masked_chain_length_list = masked_chain_length_list_list[b_ix] | |
masked_list = masked_list_list[b_ix] | |
seq_recovery_rate = torch.sum(torch.sum(torch.nn.functional.one_hot(S[b_ix], 21)*torch.nn.functional.one_hot(S_sample[b_ix], 21),axis=-1)*mask_for_loss[b_ix])/torch.sum(mask_for_loss[b_ix]) | |
seq = _S_to_seq(S_sample[b_ix], chain_M[b_ix]) | |
score = scores[b_ix] | |
score_list.append(score) | |
native_seq = _S_to_seq(S[b_ix], chain_M[b_ix]) | |
if b_ix == 0 and j==0 and temp==temperatures[0]: | |
start = 0 | |
end = 0 | |
list_of_AAs = [] | |
for mask_l in masked_chain_length_list: | |
end += mask_l | |
list_of_AAs.append(native_seq[start:end]) | |
start = end | |
native_seq = "".join(list(np.array(list_of_AAs)[np.argsort(masked_list)])) | |
l0 = 0 | |
for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]: | |
l0 += mc_length | |
native_seq = native_seq[:l0] + '/' + native_seq[l0:] | |
l0 += 1 | |
sorted_masked_chain_letters = np.argsort(masked_list_list[0]) | |
print_masked_chains = [masked_list_list[0][i] for i in sorted_masked_chain_letters] | |
sorted_visible_chain_letters = np.argsort(visible_list_list[0]) | |
print_visible_chains = [visible_list_list[0][i] for i in sorted_visible_chain_letters] | |
native_score_print = np.format_float_positional(np.float32(native_score.mean()), unique=False, precision=4) | |
line = '>{}, score={}, fixed_chains={}, designed_chains={}, model_name={}\n{}\n'.format(name_, native_score_print, print_visible_chains, print_masked_chains, model_name, native_seq) | |
message+=f"{line}\n" | |
start = 0 | |
end = 0 | |
list_of_AAs = [] | |
for mask_l in masked_chain_length_list: | |
end += mask_l | |
list_of_AAs.append(seq[start:end]) | |
start = end | |
seq = "".join(list(np.array(list_of_AAs)[np.argsort(masked_list)])) | |
l0 = 0 | |
for mc_length in list(np.array(masked_chain_length_list)[np.argsort(masked_list)])[:-1]: | |
l0 += mc_length | |
seq = seq[:l0] + '/' + seq[l0:] | |
l0 += 1 | |
score_print = np.format_float_positional(np.float32(score), unique=False, precision=4) | |
seq_rec_print = np.format_float_positional(np.float32(seq_recovery_rate.detach().cpu().numpy()), unique=False, precision=4) | |
line = '>T={}, sample={}, score={}, seq_recovery={}\n{}\n'.format(temp,b_ix,score_print,seq_rec_print,seq) | |
message+=f"{line}\n" | |
all_probs_concat = np.concatenate(all_probs_list) | |
all_log_probs_concat = np.concatenate(all_log_probs_list) | |
S_sample_concat = np.concatenate(S_sample_list) | |
fig = px.imshow(all_probs_concat.mean(0).T, | |
labels=dict(x="positions", y="amino acids", color="probability"), | |
y=list(alphabet), | |
template="simple_white" | |
) | |
fig.update_xaxes(side="top") | |
return message, fig | |
proteinMPNN = gr.Blocks() | |
with proteinMPNN: | |
gr.Markdown("# ProteinMPNN") | |
with gr.Tabs(): | |
with gr.TabItem("Input"): | |
inp = gr.Textbox( placeholder="PDB Code or upload file below", label="Input structure" | |
) | |
file = gr.File(file_count="single", type="file") | |
with gr.TabItem("Settings"): | |
with gr.Row(): | |
designed_chain = gr.Textbox(value="A", label="Designed chain") | |
fixed_chain = gr.Textbox(placeholder="Use commas to fix multiple chains", label="Fixed chain") | |
with gr.Row(): | |
num_seqs = gr.Slider(minimum=1,maximum=50, value=1,step=1, label="Number of sequences") | |
sampling_temp = gr.Radio(choices=[0.1, 0.15, 0.2, 0.25, 0.3], value=0.1, label="Sampling temperature") | |
btn = gr.Button("Run") | |
gr.Markdown( | |
""" Sampling temperature for amino acids, `T=0.0` means taking argmax, `T>>1.0` means sample randomly. Suggested values `0.1, 0.15, 0.2, 0.25, 0.3`. Higher values will lead to more diversity. | |
""" | |
) | |
gr.Markdown("# Output") | |
out = gr.Textbox(label="status") | |
plot = gr.Plot() | |
btn.click(fn=update, inputs=[inp, file, designed_chain, fixed_chain, num_seqs, sampling_temp], outputs=[out, plot]) | |
proteinMPNN.launch(share=True) | |