Spaces:
Sleeping
Sleeping
# Copyright 2021 DeepMind Technologies Limited | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Functions for building the input features for the AlphaFold model.""" | |
import os | |
from typing import Mapping, Optional, Sequence | |
from absl import logging | |
from alphafold.common import residue_constants | |
from alphafold.data import parsers | |
from alphafold.data import templates | |
from alphafold.data.tools import hhblits | |
from alphafold.data.tools import hhsearch | |
from alphafold.data.tools import jackhmmer | |
import numpy as np | |
# Internal import (7716). | |
FeatureDict = Mapping[str, np.ndarray] | |
def make_sequence_features( | |
sequence: str, description: str, num_res: int) -> FeatureDict: | |
"""Constructs a feature dict of sequence features.""" | |
features = {} | |
features['aatype'] = residue_constants.sequence_to_onehot( | |
sequence=sequence, | |
mapping=residue_constants.restype_order_with_x, | |
map_unknown_to_x=True) | |
features['between_segment_residues'] = np.zeros((num_res,), dtype=np.int32) | |
features['domain_name'] = np.array([description.encode('utf-8')], | |
dtype=np.object_) | |
features['residue_index'] = np.array(range(num_res), dtype=np.int32) | |
features['seq_length'] = np.array([num_res] * num_res, dtype=np.int32) | |
features['sequence'] = np.array([sequence.encode('utf-8')], dtype=np.object_) | |
return features | |
def make_msa_features( | |
msas: Sequence[Sequence[str]], | |
deletion_matrices: Sequence[parsers.DeletionMatrix]) -> FeatureDict: | |
"""Constructs a feature dict of MSA features.""" | |
if not msas: | |
raise ValueError('At least one MSA must be provided.') | |
int_msa = [] | |
deletion_matrix = [] | |
seen_sequences = set() | |
for msa_index, msa in enumerate(msas): | |
if not msa: | |
raise ValueError(f'MSA {msa_index} must contain at least one sequence.') | |
for sequence_index, sequence in enumerate(msa): | |
if sequence in seen_sequences: | |
continue | |
seen_sequences.add(sequence) | |
int_msa.append( | |
[residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence]) | |
deletion_matrix.append(deletion_matrices[msa_index][sequence_index]) | |
num_res = len(msas[0][0]) | |
num_alignments = len(int_msa) | |
features = {} | |
features['deletion_matrix_int'] = np.array(deletion_matrix, dtype=np.int32) | |
features['msa'] = np.array(int_msa, dtype=np.int32) | |
features['num_alignments'] = np.array( | |
[num_alignments] * num_res, dtype=np.int32) | |
return features | |
class DataPipeline: | |
"""Runs the alignment tools and assembles the input features.""" | |
def __init__(self, | |
jackhmmer_binary_path: str, | |
hhblits_binary_path: str, | |
hhsearch_binary_path: str, | |
uniref90_database_path: str, | |
mgnify_database_path: str, | |
bfd_database_path: Optional[str], | |
uniclust30_database_path: Optional[str], | |
small_bfd_database_path: Optional[str], | |
pdb70_database_path: str, | |
template_featurizer: templates.TemplateHitFeaturizer, | |
use_small_bfd: bool, | |
mgnify_max_hits: int = 501, | |
uniref_max_hits: int = 10000): | |
"""Constructs a feature dict for a given FASTA file.""" | |
self._use_small_bfd = use_small_bfd | |
self.jackhmmer_uniref90_runner = jackhmmer.Jackhmmer( | |
binary_path=jackhmmer_binary_path, | |
database_path=uniref90_database_path) | |
if use_small_bfd: | |
self.jackhmmer_small_bfd_runner = jackhmmer.Jackhmmer( | |
binary_path=jackhmmer_binary_path, | |
database_path=small_bfd_database_path) | |
else: | |
self.hhblits_bfd_uniclust_runner = hhblits.HHBlits( | |
binary_path=hhblits_binary_path, | |
databases=[bfd_database_path, uniclust30_database_path]) | |
self.jackhmmer_mgnify_runner = jackhmmer.Jackhmmer( | |
binary_path=jackhmmer_binary_path, | |
database_path=mgnify_database_path) | |
self.hhsearch_pdb70_runner = hhsearch.HHSearch( | |
binary_path=hhsearch_binary_path, | |
databases=[pdb70_database_path]) | |
self.template_featurizer = template_featurizer | |
self.mgnify_max_hits = mgnify_max_hits | |
self.uniref_max_hits = uniref_max_hits | |
def process(self, input_fasta_path: str, msa_output_dir: str) -> FeatureDict: | |
"""Runs alignment tools on the input sequence and creates features.""" | |
with open(input_fasta_path) as f: | |
input_fasta_str = f.read() | |
input_seqs, input_descs = parsers.parse_fasta(input_fasta_str) | |
if len(input_seqs) != 1: | |
raise ValueError( | |
f'More than one input sequence found in {input_fasta_path}.') | |
input_sequence = input_seqs[0] | |
input_description = input_descs[0] | |
num_res = len(input_sequence) | |
jackhmmer_uniref90_result = self.jackhmmer_uniref90_runner.query( | |
input_fasta_path)[0] | |
jackhmmer_mgnify_result = self.jackhmmer_mgnify_runner.query( | |
input_fasta_path)[0] | |
uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m( | |
jackhmmer_uniref90_result['sto'], max_sequences=self.uniref_max_hits) | |
hhsearch_result = self.hhsearch_pdb70_runner.query(uniref90_msa_as_a3m) | |
uniref90_out_path = os.path.join(msa_output_dir, 'uniref90_hits.sto') | |
with open(uniref90_out_path, 'w') as f: | |
f.write(jackhmmer_uniref90_result['sto']) | |
mgnify_out_path = os.path.join(msa_output_dir, 'mgnify_hits.sto') | |
with open(mgnify_out_path, 'w') as f: | |
f.write(jackhmmer_mgnify_result['sto']) | |
pdb70_out_path = os.path.join(msa_output_dir, 'pdb70_hits.hhr') | |
with open(pdb70_out_path, 'w') as f: | |
f.write(hhsearch_result) | |
uniref90_msa, uniref90_deletion_matrix, _ = parsers.parse_stockholm( | |
jackhmmer_uniref90_result['sto']) | |
mgnify_msa, mgnify_deletion_matrix, _ = parsers.parse_stockholm( | |
jackhmmer_mgnify_result['sto']) | |
hhsearch_hits = parsers.parse_hhr(hhsearch_result) | |
mgnify_msa = mgnify_msa[:self.mgnify_max_hits] | |
mgnify_deletion_matrix = mgnify_deletion_matrix[:self.mgnify_max_hits] | |
if self._use_small_bfd: | |
jackhmmer_small_bfd_result = self.jackhmmer_small_bfd_runner.query( | |
input_fasta_path)[0] | |
bfd_out_path = os.path.join(msa_output_dir, 'small_bfd_hits.a3m') | |
with open(bfd_out_path, 'w') as f: | |
f.write(jackhmmer_small_bfd_result['sto']) | |
bfd_msa, bfd_deletion_matrix, _ = parsers.parse_stockholm( | |
jackhmmer_small_bfd_result['sto']) | |
else: | |
hhblits_bfd_uniclust_result = self.hhblits_bfd_uniclust_runner.query( | |
input_fasta_path) | |
bfd_out_path = os.path.join(msa_output_dir, 'bfd_uniclust_hits.a3m') | |
with open(bfd_out_path, 'w') as f: | |
f.write(hhblits_bfd_uniclust_result['a3m']) | |
bfd_msa, bfd_deletion_matrix = parsers.parse_a3m( | |
hhblits_bfd_uniclust_result['a3m']) | |
templates_result = self.template_featurizer.get_templates( | |
query_sequence=input_sequence, | |
query_pdb_code=None, | |
query_release_date=None, | |
hits=hhsearch_hits) | |
sequence_features = make_sequence_features( | |
sequence=input_sequence, | |
description=input_description, | |
num_res=num_res) | |
msa_features = make_msa_features( | |
msas=(uniref90_msa, bfd_msa, mgnify_msa), | |
deletion_matrices=(uniref90_deletion_matrix, | |
bfd_deletion_matrix, | |
mgnify_deletion_matrix)) | |
logging.info('Uniref90 MSA size: %d sequences.', len(uniref90_msa)) | |
logging.info('BFD MSA size: %d sequences.', len(bfd_msa)) | |
logging.info('MGnify MSA size: %d sequences.', len(mgnify_msa)) | |
logging.info('Final (deduplicated) MSA size: %d sequences.', | |
msa_features['num_alignments'][0]) | |
logging.info('Total number of templates (NB: this can include bad ' | |
'templates and is later filtered to top 4): %d.', | |
templates_result.features['template_domain_names'].shape[0]) | |
return {**sequence_features, **msa_features, **templates_result.features} | |