Spaces:
Runtime error
Runtime error
Simon Duerr
commited on
Commit
·
0605e17
0
Parent(s):
first commit
Browse files- README.md +13 -0
- app.py +660 -0
- packages.txt +1 -0
- requirements.txt +5 -0
- rosettafold_pymol.py +168 -0
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: RoseTTAfold2
|
3 |
+
emoji: 🏢
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.33.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
|
app.py
ADDED
@@ -0,0 +1,660 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, time, sys
|
2 |
+
|
3 |
+
|
4 |
+
if not os.path.isfile("RF2_apr23.pt"):
|
5 |
+
# send param download into background
|
6 |
+
os.system(
|
7 |
+
"(apt-get install aria2; aria2c -q -x 16 https://colabfold.steineggerlab.workers.dev/RF2_apr23.pt) &"
|
8 |
+
)
|
9 |
+
|
10 |
+
if not os.path.isdir("RoseTTAFold2"):
|
11 |
+
print("install RoseTTAFold2")
|
12 |
+
os.system("git clone https://github.com/sokrypton/RoseTTAFold2.git")
|
13 |
+
os.system(
|
14 |
+
"cd RoseTTAFold2/SE3Transformer; pip -q install --no-cache-dir -r requirements.txt; pip -q install ."
|
15 |
+
)
|
16 |
+
os.system(
|
17 |
+
"wget https://raw.githubusercontent.com/sokrypton/ColabFold/beta/colabfold/mmseqs/api.py"
|
18 |
+
)
|
19 |
+
|
20 |
+
# install hhsuite
|
21 |
+
print("install hhsuite")
|
22 |
+
os.makedirs("hhsuite", exist_ok=True)
|
23 |
+
os.system(
|
24 |
+
f"curl -fsSL https://github.com/soedinglab/hh-suite/releases/download/v3.3.0/hhsuite-3.3.0-SSE2-Linux.tar.gz | tar xz -C hhsuite/"
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
if os.path.isfile(f"RF2_apr23.pt.aria2"):
|
29 |
+
print("downloading RoseTTAFold2 params")
|
30 |
+
while os.path.isfile(f"RF2_apr23.pt.aria2"):
|
31 |
+
time.sleep(5)
|
32 |
+
|
33 |
+
os.environ["DGLBACKEND"] = "pytorch"
|
34 |
+
sys.path.append("RoseTTAFold2/network")
|
35 |
+
if "hhsuite" not in os.environ["PATH"]:
|
36 |
+
os.environ["PATH"] += ":hhsuite/bin:hhsuite/scripts"
|
37 |
+
|
38 |
+
import matplotlib.pyplot as plt
|
39 |
+
import numpy as np
|
40 |
+
from parsers import parse_a3m
|
41 |
+
from api import run_mmseqs2
|
42 |
+
import py3Dmol
|
43 |
+
import torch
|
44 |
+
from string import ascii_uppercase, ascii_lowercase
|
45 |
+
import hashlib, re, os
|
46 |
+
import random
|
47 |
+
|
48 |
+
from Bio.PDB import *
|
49 |
+
|
50 |
+
|
51 |
+
def get_hash(x):
|
52 |
+
return hashlib.sha1(x.encode()).hexdigest()
|
53 |
+
|
54 |
+
|
55 |
+
alphabet_list = list(ascii_uppercase + ascii_lowercase)
|
56 |
+
from collections import OrderedDict, Counter
|
57 |
+
|
58 |
+
import gradio as gr
|
59 |
+
|
60 |
+
if not "pred" in dir():
|
61 |
+
from predict import Predictor
|
62 |
+
|
63 |
+
print("compile RoseTTAFold2")
|
64 |
+
model_params = "RF2_apr23.pt"
|
65 |
+
if torch.cuda.is_available():
|
66 |
+
pred = Predictor(model_params, torch.device("cuda:0"))
|
67 |
+
else:
|
68 |
+
print("WARNING: using CPU")
|
69 |
+
pred = Predictor(model_params, torch.device("cpu"))
|
70 |
+
|
71 |
+
|
72 |
+
def get_unique_sequences(seq_list):
|
73 |
+
unique_seqs = list(OrderedDict.fromkeys(seq_list))
|
74 |
+
return unique_seqs
|
75 |
+
|
76 |
+
|
77 |
+
def get_msa(seq, jobname, cov=50, id=90, max_msa=2048, mode="unpaired_paired"):
|
78 |
+
assert mode in ["unpaired", "paired", "unpaired_paired"]
|
79 |
+
seqs = [seq] if isinstance(seq, str) else seq
|
80 |
+
|
81 |
+
# collapse homooligomeric sequences
|
82 |
+
counts = Counter(seqs)
|
83 |
+
u_seqs = list(counts.keys())
|
84 |
+
u_nums = list(counts.values())
|
85 |
+
|
86 |
+
# expand homooligomeric sequences
|
87 |
+
first_seq = "/".join(sum([[x] * n for x, n in zip(u_seqs, u_nums)], []))
|
88 |
+
msa = [first_seq]
|
89 |
+
|
90 |
+
path = os.path.join(jobname, "msa")
|
91 |
+
os.makedirs(path, exist_ok=True)
|
92 |
+
if mode in ["paired", "unpaired_paired"] and len(u_seqs) > 1:
|
93 |
+
print("getting paired MSA")
|
94 |
+
out_paired = run_mmseqs2(u_seqs, f"{path}/", use_pairing=True)
|
95 |
+
headers, sequences = [], []
|
96 |
+
for a3m_lines in out_paired:
|
97 |
+
n = -1
|
98 |
+
for line in a3m_lines.split("\n"):
|
99 |
+
if len(line) > 0:
|
100 |
+
if line.startswith(">"):
|
101 |
+
n += 1
|
102 |
+
if len(headers) < (n + 1):
|
103 |
+
headers.append([])
|
104 |
+
sequences.append([])
|
105 |
+
headers[n].append(line)
|
106 |
+
else:
|
107 |
+
sequences[n].append(line)
|
108 |
+
# filter MSA
|
109 |
+
with open(f"{path}/paired_in.a3m", "w") as handle:
|
110 |
+
for n, sequence in enumerate(sequences):
|
111 |
+
handle.write(f">n{n}\n{''.join(sequence)}\n")
|
112 |
+
os.system(
|
113 |
+
f"hhfilter -i {path}/paired_in.a3m -id {id} -cov {cov} -o {path}/paired_out.a3m"
|
114 |
+
)
|
115 |
+
with open(f"{path}/paired_out.a3m", "r") as handle:
|
116 |
+
for line in handle:
|
117 |
+
if line.startswith(">"):
|
118 |
+
n = int(line[2:])
|
119 |
+
xs = sequences[n]
|
120 |
+
# expand homooligomeric sequences
|
121 |
+
xs = ["/".join([x] * num) for x, num in zip(xs, u_nums)]
|
122 |
+
msa.append("/".join(xs))
|
123 |
+
|
124 |
+
if len(msa) < max_msa and (
|
125 |
+
mode in ["unpaired", "unpaired_paired"] or len(u_seqs) == 1
|
126 |
+
):
|
127 |
+
print("getting unpaired MSA")
|
128 |
+
out = run_mmseqs2(u_seqs, f"{path}/")
|
129 |
+
Ls = [len(seq) for seq in u_seqs]
|
130 |
+
sub_idx = []
|
131 |
+
sub_msa = []
|
132 |
+
sub_msa_num = 0
|
133 |
+
for n, a3m_lines in enumerate(out):
|
134 |
+
sub_msa.append([])
|
135 |
+
with open(f"{path}/in_{n}.a3m", "w") as handle:
|
136 |
+
handle.write(a3m_lines)
|
137 |
+
# filter
|
138 |
+
os.system(
|
139 |
+
f"hhfilter -i {path}/in_{n}.a3m -id {id} -cov {cov} -o {path}/out_{n}.a3m"
|
140 |
+
)
|
141 |
+
with open(f"{path}/out_{n}.a3m", "r") as handle:
|
142 |
+
for line in handle:
|
143 |
+
if not line.startswith(">"):
|
144 |
+
xs = ["-" * l for l in Ls]
|
145 |
+
xs[n] = line.rstrip()
|
146 |
+
# expand homooligomeric sequences
|
147 |
+
xs = ["/".join([x] * num) for x, num in zip(xs, u_nums)]
|
148 |
+
sub_msa[-1].append("/".join(xs))
|
149 |
+
sub_msa_num += 1
|
150 |
+
sub_idx.append(list(range(len(sub_msa[-1]))))
|
151 |
+
|
152 |
+
while len(msa) < max_msa and sub_msa_num > 0:
|
153 |
+
for n in range(len(sub_idx)):
|
154 |
+
if len(sub_idx[n]) > 0:
|
155 |
+
msa.append(sub_msa[n][sub_idx[n].pop(0)])
|
156 |
+
sub_msa_num -= 1
|
157 |
+
if len(msa) == max_msa:
|
158 |
+
break
|
159 |
+
|
160 |
+
with open(f"{jobname}/msa.a3m", "w") as handle:
|
161 |
+
for n, sequence in enumerate(msa):
|
162 |
+
handle.write(f">n{n}\n{sequence}\n")
|
163 |
+
|
164 |
+
|
165 |
+
from Bio.PDB.PDBExceptions import PDBConstructionWarning
|
166 |
+
import warnings
|
167 |
+
from Bio.PDB import *
|
168 |
+
import numpy as np
|
169 |
+
|
170 |
+
|
171 |
+
def add_plddt_to_cif(best_plddts, best_plddt, best_seed, jobname):
|
172 |
+
pdb_parser = PDBParser()
|
173 |
+
warnings.filterwarnings("ignore", category=PDBConstructionWarning)
|
174 |
+
structure = pdb_parser.get_structure(
|
175 |
+
"pdb", f"{jobname}/rf2_seed{best_seed}_00_pred.pdb"
|
176 |
+
)
|
177 |
+
io = MMCIFIO()
|
178 |
+
io.set_structure(structure)
|
179 |
+
io.save(f"{jobname}/rf2_seed{best_seed}_00_pred.cif")
|
180 |
+
plddt_cif = f"""#
|
181 |
+
loop_
|
182 |
+
_ma_qa_metric.id
|
183 |
+
_ma_qa_metric.mode
|
184 |
+
_ma_qa_metric.name
|
185 |
+
_ma_qa_metric.software_group_id
|
186 |
+
_ma_qa_metric.type
|
187 |
+
1 global pLDDT 1 pLDDT
|
188 |
+
2 local pLDDT 1 pLDDT
|
189 |
+
#
|
190 |
+
_ma_qa_metric_global.metric_id 1
|
191 |
+
_ma_qa_metric_global.metric_value {best_plddt:.3f}
|
192 |
+
_ma_qa_metric_global.model_id 1
|
193 |
+
_ma_qa_metric_global.ordinal_id 1
|
194 |
+
#
|
195 |
+
loop_
|
196 |
+
_ma_qa_metric_local.label_asym_id
|
197 |
+
_ma_qa_metric_local.label_comp_id
|
198 |
+
_ma_qa_metric_local.label_seq_id
|
199 |
+
_ma_qa_metric_local.metric_id
|
200 |
+
_ma_qa_metric_local.metric_value
|
201 |
+
_ma_qa_metric_local.model_id
|
202 |
+
_ma_qa_metric_local.ordinal_id"""
|
203 |
+
|
204 |
+
for chain in structure[0]:
|
205 |
+
for i, residue in enumerate(chain):
|
206 |
+
plddt_cif += f"\n{chain.id} {residue.resname} {residue.id[1]} 2 {best_plddts[i]*100:.2f} 1 {residue.id[1]}"
|
207 |
+
plddt_cif += "\n#"
|
208 |
+
with open(f"{jobname}/rf2_seed{best_seed}_00_pred.cif", "a") as f:
|
209 |
+
f.write(plddt_cif)
|
210 |
+
|
211 |
+
|
212 |
+
def predict(
|
213 |
+
sequence,
|
214 |
+
jobname,
|
215 |
+
sym,
|
216 |
+
order,
|
217 |
+
msa_concat_mode,
|
218 |
+
msa_method,
|
219 |
+
pair_mode,
|
220 |
+
collapse_identical,
|
221 |
+
num_recycles,
|
222 |
+
use_mlm,
|
223 |
+
use_dropout,
|
224 |
+
max_msa,
|
225 |
+
random_seed,
|
226 |
+
num_models,
|
227 |
+
mode="web",
|
228 |
+
):
|
229 |
+
if not os.path.exists("/home/user/app"): # crude check if on spaces
|
230 |
+
if len(sequence) > 600:
|
231 |
+
raise gr.Error(
|
232 |
+
f"Your sequence is too long ({len(sequence)}). "
|
233 |
+
"Please use the full version of RoseTTAfold2 directly from GitHub."
|
234 |
+
)
|
235 |
+
random_seed = int(random_seed)
|
236 |
+
num_models = int(num_models)
|
237 |
+
max_msa = int(max_msa)
|
238 |
+
num_recycles = int(num_recycles)
|
239 |
+
order = int(order)
|
240 |
+
|
241 |
+
max_extra_msa = max_msa * 8
|
242 |
+
sequence = re.sub("[^A-Z:]", "", sequence.replace("/", ":").upper())
|
243 |
+
sequence = re.sub(":+", ":", sequence)
|
244 |
+
sequence = re.sub("^[:]+", "", sequence)
|
245 |
+
sequence = re.sub("[:]+$", "", sequence)
|
246 |
+
|
247 |
+
if sym in ["X", "C"]:
|
248 |
+
copies = int(order)
|
249 |
+
elif sym in ["D"]:
|
250 |
+
copies = int(order) * 2
|
251 |
+
else:
|
252 |
+
copies = {"T": 12, "O": 24, "I": 60}[sym]
|
253 |
+
order = ""
|
254 |
+
symm = sym + str(order)
|
255 |
+
|
256 |
+
sequences = sequence.replace(":", "/").split("/")
|
257 |
+
if collapse_identical:
|
258 |
+
u_sequences = get_unique_sequences(sequences)
|
259 |
+
else:
|
260 |
+
u_sequences = sequences
|
261 |
+
sequences = sum([u_sequences] * copies, [])
|
262 |
+
lengths = [len(s) for s in sequences]
|
263 |
+
|
264 |
+
# TODO
|
265 |
+
subcrop = 1000 if sum(lengths) > 1400 else -1
|
266 |
+
|
267 |
+
sequence = "/".join(sequences)
|
268 |
+
jobname = jobname + "_" + symm + "_" + get_hash(sequence)[:5]
|
269 |
+
|
270 |
+
print(f"jobname: {jobname}")
|
271 |
+
print(f"lengths: {lengths}")
|
272 |
+
|
273 |
+
os.makedirs(jobname, exist_ok=True)
|
274 |
+
if msa_method == "mmseqs2":
|
275 |
+
get_msa(u_sequences, jobname, mode=pair_mode, max_msa=max_extra_msa)
|
276 |
+
|
277 |
+
elif msa_method == "single_sequence":
|
278 |
+
u_sequence = "/".join(u_sequences)
|
279 |
+
with open(f"{jobname}/msa.a3m", "w") as a3m:
|
280 |
+
a3m.write(f">{jobname}\n{u_sequence}\n")
|
281 |
+
|
282 |
+
elif msa_method == "custom_a3m":
|
283 |
+
print("upload custom a3m")
|
284 |
+
# msa_dict = files.upload()
|
285 |
+
lines = msa_dict[list(msa_dict.keys())[0]].decode().splitlines()
|
286 |
+
a3m_lines = []
|
287 |
+
for line in lines:
|
288 |
+
line = line.replace("\x00", "")
|
289 |
+
if len(line) > 0 and not line.startswith("#"):
|
290 |
+
a3m_lines.append(line)
|
291 |
+
|
292 |
+
with open(f"{jobname}/msa.a3m", "w") as a3m:
|
293 |
+
a3m.write("\n".join(a3m_lines))
|
294 |
+
|
295 |
+
best_plddt = None
|
296 |
+
best_seed = None
|
297 |
+
for seed in range(int(random_seed), int(random_seed) + int(num_models)):
|
298 |
+
torch.manual_seed(seed)
|
299 |
+
random.seed(seed)
|
300 |
+
np.random.seed(seed)
|
301 |
+
npz = f"{jobname}/rf2_seed{seed}_00.npz"
|
302 |
+
pred.predict(
|
303 |
+
inputs=[f"{jobname}/msa.a3m"],
|
304 |
+
out_prefix=f"{jobname}/rf2_seed{seed}",
|
305 |
+
symm=symm,
|
306 |
+
ffdb=None, # TODO (templates),
|
307 |
+
n_recycles=num_recycles,
|
308 |
+
msa_mask=0.15 if use_mlm else 0.0,
|
309 |
+
msa_concat_mode=msa_concat_mode,
|
310 |
+
nseqs=max_msa,
|
311 |
+
nseqs_full=max_extra_msa,
|
312 |
+
subcrop=subcrop,
|
313 |
+
is_training=use_dropout,
|
314 |
+
)
|
315 |
+
plddt = np.load(npz)["lddt"].mean()
|
316 |
+
if best_plddt is None or plddt > best_plddt:
|
317 |
+
best_plddt = plddt
|
318 |
+
best_plddts = np.load(npz)["lddt"]
|
319 |
+
best_seed = seed
|
320 |
+
|
321 |
+
if mode == "web":
|
322 |
+
# Mol* only displays AlphaFold plDDT if they are in a cif.
|
323 |
+
pdb_parser = PDBParser()
|
324 |
+
mmcif_parser = MMCIFParser()
|
325 |
+
|
326 |
+
plddt_cif = add_plddt_to_cif(best_plddts, best_plddt, best_seed, jobname)
|
327 |
+
|
328 |
+
return f"{jobname}/rf2_seed{best_seed}_00_pred.cif"
|
329 |
+
else:
|
330 |
+
# for api just return a pdb file
|
331 |
+
return f"{jobname}/rf2_seed{best_seed}_00_pred.pdb"
|
332 |
+
|
333 |
+
|
334 |
+
def predict_api(
|
335 |
+
sequence,
|
336 |
+
jobname,
|
337 |
+
sym,
|
338 |
+
order,
|
339 |
+
msa_concat_mode,
|
340 |
+
msa_method,
|
341 |
+
pair_mode,
|
342 |
+
collapse_identical,
|
343 |
+
num_recycles,
|
344 |
+
use_mlm,
|
345 |
+
use_dropout,
|
346 |
+
max_msa,
|
347 |
+
random_seed,
|
348 |
+
num_models,
|
349 |
+
):
|
350 |
+
filename = predict(
|
351 |
+
sequence,
|
352 |
+
jobname,
|
353 |
+
sym,
|
354 |
+
order,
|
355 |
+
msa_concat_mode,
|
356 |
+
msa_method,
|
357 |
+
pair_mode,
|
358 |
+
collapse_identical,
|
359 |
+
num_recycles,
|
360 |
+
use_mlm,
|
361 |
+
use_dropout,
|
362 |
+
max_msa,
|
363 |
+
random_seed,
|
364 |
+
num_models,
|
365 |
+
mode="api",
|
366 |
+
)
|
367 |
+
with open(f"{filename}") as fp:
|
368 |
+
return fp.read()
|
369 |
+
|
370 |
+
|
371 |
+
def molecule(input_pdb, public_link):
|
372 |
+
print(input_pdb)
|
373 |
+
print(public_link + "/file=" + input_pdb)
|
374 |
+
link = public_link + "/file=" + input_pdb
|
375 |
+
x = (
|
376 |
+
"""<!DOCTYPE html>
|
377 |
+
<html lang="en">
|
378 |
+
<head>
|
379 |
+
<meta charset="utf-8" />
|
380 |
+
<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
|
381 |
+
<title>PDBe Molstar - Helper functions</title>
|
382 |
+
<!-- Molstar CSS & JS -->
|
383 |
+
<link rel="stylesheet" type="text/css" href="https://www.ebi.ac.uk/pdbe/pdb-component-library/css/pdbe-molstar-light-3.1.0.css">
|
384 |
+
<script type="text/javascript" src="https://www.ebi.ac.uk/pdbe/pdb-component-library/js/pdbe-molstar-plugin-3.1.0.js"></script>
|
385 |
+
<style>
|
386 |
+
* {
|
387 |
+
margin: 0;
|
388 |
+
padding: 0;
|
389 |
+
box-sizing: border-box;
|
390 |
+
}
|
391 |
+
.msp-plugin ::-webkit-scrollbar-thumb {
|
392 |
+
background-color: #474748 !important;
|
393 |
+
}
|
394 |
+
.viewerSection {
|
395 |
+
margin: 120px 0 0 0px;
|
396 |
+
}
|
397 |
+
#myViewer{
|
398 |
+
float:left;
|
399 |
+
width:100%;
|
400 |
+
height: 800px;
|
401 |
+
position:relative;
|
402 |
+
}
|
403 |
+
.btn{
|
404 |
+
|
405 |
+
font-family: "Open Sans", sans-serif;
|
406 |
+
display: inline-block;
|
407 |
+
outline: none;
|
408 |
+
cursor: pointer;
|
409 |
+
font-weight: 600;
|
410 |
+
border-radius: 3px;
|
411 |
+
padding: 12px 24px;
|
412 |
+
border: 0;
|
413 |
+
margin:0 10px;
|
414 |
+
line-height: 1.15;
|
415 |
+
font-size: 16px;
|
416 |
+
text-decoration: none;
|
417 |
+
}
|
418 |
+
.btn-orange{
|
419 |
+
background: #ff5000;
|
420 |
+
color: #fff;
|
421 |
+
|
422 |
+
}
|
423 |
+
.btn-gray{
|
424 |
+
color: #3a4149;
|
425 |
+
background: #e7ebee;
|
426 |
+
|
427 |
+
}
|
428 |
+
.btn:hover{
|
429 |
+
transition: all .1s ease;
|
430 |
+
box-shadow: 0 0 0 0 #fff, 0 0 0 3px #ddd;}
|
431 |
+
.text-center{
|
432 |
+
display: flex;
|
433 |
+
align-items: center;
|
434 |
+
justify-content: center;
|
435 |
+
padding: 20px 0;
|
436 |
+
}
|
437 |
+
.flex{
|
438 |
+
padding: 10px;
|
439 |
+
display: flex;
|
440 |
+
align-items: center;
|
441 |
+
justify-content: center;
|
442 |
+
width:fit-content;
|
443 |
+
}
|
444 |
+
.flex svg{
|
445 |
+
margin-right: 10px;
|
446 |
+
width:16px;
|
447 |
+
height:16px;
|
448 |
+
}
|
449 |
+
.flex a{
|
450 |
+
margin:0 10px;
|
451 |
+
}
|
452 |
+
|
453 |
+
</style>
|
454 |
+
</head>
|
455 |
+
<body>
|
456 |
+
<div class="text-center">
|
457 |
+
<a class="btn btn-orange flex" href=\""""
|
458 |
+
+ link
|
459 |
+
+ """\" target="_blank"> <svg fill="none" stroke="currentColor" stroke-width="1.5" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg" aria-hidden="true">
|
460 |
+
<path stroke-linecap="round" stroke-linejoin="round" d="M19.5 13.5L12 21m0 0l-7.5-7.5M12 21V3"></path>
|
461 |
+
</svg> <span>CIF File</span></a>
|
462 |
+
<a class="btn btn-gray flex" href=\""""
|
463 |
+
+ link.replace(".cif", ".pdb")
|
464 |
+
+ """\" target="_blank"> <svg fill="none" stroke="currentColor" stroke-width="1.5" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg" aria-hidden="true">
|
465 |
+
<path stroke-linecap="round" stroke-linejoin="round" d="M19.5 13.5L12 21m0 0l-7.5-7.5M12 21V3"></path>
|
466 |
+
</svg> <span>PDB File</span></a>
|
467 |
+
|
468 |
+
</div>
|
469 |
+
<div class="viewerSection">
|
470 |
+
<!-- Molstar container -->
|
471 |
+
<div id="myViewer"></div>
|
472 |
+
|
473 |
+
</div>
|
474 |
+
<script>
|
475 |
+
//Create plugin instance
|
476 |
+
var viewerInstance = new PDBeMolstarPlugin();
|
477 |
+
|
478 |
+
//Set options (Checkout available options list in the documentation)
|
479 |
+
var options = {
|
480 |
+
customData: {
|
481 |
+
url: \""""
|
482 |
+
+ link
|
483 |
+
+ """\",
|
484 |
+
format: "cif"
|
485 |
+
},
|
486 |
+
alphafoldView: true,
|
487 |
+
bgColor: {r:255, g:255, b:255},
|
488 |
+
//hideCanvasControls: ["selection", "animation", "controlToggle", "controlInfo"]
|
489 |
+
}
|
490 |
+
|
491 |
+
//Get element from HTML/Template to place the viewer
|
492 |
+
var viewerContainer = document.getElementById("myViewer");
|
493 |
+
|
494 |
+
//Call render method to display the 3D view
|
495 |
+
viewerInstance.render(viewerContainer, options);
|
496 |
+
|
497 |
+
</script>
|
498 |
+
</body>
|
499 |
+
</html>"""
|
500 |
+
)
|
501 |
+
|
502 |
+
return f"""<iframe style="width: 100%; height: 1000px" name="result" allow="midi; geolocation; microphone; camera;
|
503 |
+
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
504 |
+
allow-scripts allow-same-origin allow-popups
|
505 |
+
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
506 |
+
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
|
507 |
+
|
508 |
+
|
509 |
+
def predict_web(
|
510 |
+
sequence,
|
511 |
+
jobname,
|
512 |
+
sym,
|
513 |
+
order,
|
514 |
+
msa_concat_mode,
|
515 |
+
msa_method,
|
516 |
+
pair_mode,
|
517 |
+
collapse_identical,
|
518 |
+
num_recycles,
|
519 |
+
use_mlm,
|
520 |
+
use_dropout,
|
521 |
+
max_msa,
|
522 |
+
random_seed,
|
523 |
+
num_models,
|
524 |
+
):
|
525 |
+
if os.path.exists("/home/user/app"):
|
526 |
+
public_link = "https://simonduerr-rosettafold2.hf.space/"
|
527 |
+
else:
|
528 |
+
public_link = "http://localhost:7860"
|
529 |
+
|
530 |
+
filename = predict(
|
531 |
+
sequence,
|
532 |
+
jobname,
|
533 |
+
sym,
|
534 |
+
order,
|
535 |
+
msa_concat_mode,
|
536 |
+
msa_method,
|
537 |
+
pair_mode,
|
538 |
+
collapse_identical,
|
539 |
+
num_recycles,
|
540 |
+
use_mlm,
|
541 |
+
use_dropout,
|
542 |
+
max_msa,
|
543 |
+
random_seed,
|
544 |
+
num_models,
|
545 |
+
mode="web",
|
546 |
+
)
|
547 |
+
|
548 |
+
return molecule(filename, public_link)
|
549 |
+
|
550 |
+
|
551 |
+
with gr.Blocks() as rosettafold:
|
552 |
+
gr.Markdown("# RoseTTAFold2")
|
553 |
+
gr.Markdown(
|
554 |
+
"""If using please cite: [manuscript](https://www.biorxiv.org/content/10.1101/2023.05.24.542179v1)
|
555 |
+
<br> Heavily based on [RoseTTAFold2 ColabFold notebook](https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/RoseTTAFold2.ipynb)"""
|
556 |
+
)
|
557 |
+
with gr.Accordion("How to use in PyMol", open=False):
|
558 |
+
gr.Markdown(
|
559 |
+
"""```os.system('wget https://huggingface.co/spaces/simonduerr/rosettafold2/raw/main/rosettafold_pymol.py')
|
560 |
+
run rosettafold_pymol.py
|
561 |
+
rosettafold2 sequence, jobname, [sym, order, msa_concat_mode, msa_method, pair_mode, collapse_identical, num_recycles, use_mlm, use_dropout, max_msa, random_seed, num_models]
|
562 |
+
color_plddt jobname ```
|
563 |
+
"""
|
564 |
+
)
|
565 |
+
sequence = gr.Textbox(
|
566 |
+
label="sequence",
|
567 |
+
value="PIAQIHILEGRSDEQKETLIREVSEAISRSLDAPLTSVRVIITEMAKGHFGIGGELASK",
|
568 |
+
)
|
569 |
+
jobname = gr.Textbox(label="jobname", value="test")
|
570 |
+
|
571 |
+
with gr.Accordion("Additional settings", open=False):
|
572 |
+
sym = gr.Textbox(label="sym", value="X")
|
573 |
+
order = gr.Slider(label="order", value=1, step=1, minimum=1, maximum=12)
|
574 |
+
msa_concat_mode = gr.Dropdown(
|
575 |
+
label="msa_concat_mode",
|
576 |
+
value="default",
|
577 |
+
choices=["diag", "repeat", "default"],
|
578 |
+
)
|
579 |
+
|
580 |
+
msa_method = gr.Dropdown(
|
581 |
+
label="msa_method",
|
582 |
+
value="single_sequence",
|
583 |
+
choices=[
|
584 |
+
"mmseqs2",
|
585 |
+
"single_sequence",
|
586 |
+
], # dont allow custom a3m for now , "custom_a3m"
|
587 |
+
)
|
588 |
+
pair_mode = gr.Dropdown(
|
589 |
+
label="pair_mode",
|
590 |
+
value="unpaired_paired",
|
591 |
+
choices=["unpaired_paired", "paired", "unpaired"],
|
592 |
+
)
|
593 |
+
|
594 |
+
num_recycles = gr.Dropdown(
|
595 |
+
label="num_recycles", value="6", choices=["0", "1", "3", "6", "12", "24"]
|
596 |
+
)
|
597 |
+
|
598 |
+
use_mlm = gr.Checkbox(label="use_mlm", value=False)
|
599 |
+
use_dropout = gr.Checkbox(label="use_dropout", value=False)
|
600 |
+
collapse_identical = gr.Checkbox(label="collapse_identical", value=False)
|
601 |
+
max_msa = gr.Dropdown(
|
602 |
+
choices=["16", "32", "64", "128", "256", "512"],
|
603 |
+
value="16",
|
604 |
+
label="max_msa",
|
605 |
+
)
|
606 |
+
random_seed = gr.Textbox(label="random_seed", value=0)
|
607 |
+
num_models = gr.Dropdown(
|
608 |
+
label="num_models", value="1", choices=["1", "2", "4", "8", "16", "32"]
|
609 |
+
)
|
610 |
+
|
611 |
+
btn = gr.Button("Run", visible=False)
|
612 |
+
btn_web = gr.Button("Run")
|
613 |
+
|
614 |
+
output_plain = gr.HTML()
|
615 |
+
output = gr.HTML()
|
616 |
+
|
617 |
+
btn.click(
|
618 |
+
fn=predict_api,
|
619 |
+
inputs=[
|
620 |
+
sequence,
|
621 |
+
jobname,
|
622 |
+
sym,
|
623 |
+
order,
|
624 |
+
msa_concat_mode,
|
625 |
+
msa_method,
|
626 |
+
pair_mode,
|
627 |
+
collapse_identical,
|
628 |
+
num_recycles,
|
629 |
+
use_mlm,
|
630 |
+
use_dropout,
|
631 |
+
max_msa,
|
632 |
+
random_seed,
|
633 |
+
num_models,
|
634 |
+
],
|
635 |
+
outputs=output_plain,
|
636 |
+
api_name="rosettafold2",
|
637 |
+
)
|
638 |
+
btn_web.click(
|
639 |
+
fn=predict_web,
|
640 |
+
inputs=[
|
641 |
+
sequence,
|
642 |
+
jobname,
|
643 |
+
sym,
|
644 |
+
order,
|
645 |
+
msa_concat_mode,
|
646 |
+
msa_method,
|
647 |
+
pair_mode,
|
648 |
+
collapse_identical,
|
649 |
+
num_recycles,
|
650 |
+
use_mlm,
|
651 |
+
use_dropout,
|
652 |
+
max_msa,
|
653 |
+
random_seed,
|
654 |
+
num_models,
|
655 |
+
],
|
656 |
+
outputs=output,
|
657 |
+
)
|
658 |
+
|
659 |
+
|
660 |
+
rosettafold.launch(share=True, debug=True)
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
aria2
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dgl==1.0.2+cu116
|
2 |
+
matplotlib
|
3 |
+
numpy
|
4 |
+
torch
|
5 |
+
-f https://data.dgl.ai/wheels/cu116/repo.html
|
rosettafold_pymol.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pymol import cmd
|
2 |
+
import requests
|
3 |
+
|
4 |
+
|
5 |
+
# from gradio_client import Client
|
6 |
+
|
7 |
+
|
8 |
+
def color_plddt(selection="all"):
|
9 |
+
"""
|
10 |
+
AUTHOR
|
11 |
+
Jinyuan Sun
|
12 |
+
https://github.com/JinyuanSun/PymolFold/tree/main
|
13 |
+
MIT License
|
14 |
+
|
15 |
+
DESCRIPTION
|
16 |
+
Colors Predicted Structures by pLDDT
|
17 |
+
|
18 |
+
USAGE
|
19 |
+
color_plddt sele
|
20 |
+
|
21 |
+
PARAMETERS
|
22 |
+
|
23 |
+
sele (string)
|
24 |
+
The name of the selection/object to color by pLDDT. Default: all
|
25 |
+
"""
|
26 |
+
# Alphafold color scheme for plddt
|
27 |
+
cmd.set_color("high_lddt_c", [0, 0.325490196078431, 0.843137254901961])
|
28 |
+
cmd.set_color(
|
29 |
+
"normal_lddt_c", [0.341176470588235, 0.792156862745098, 0.976470588235294]
|
30 |
+
)
|
31 |
+
cmd.set_color("medium_lddt_c", [1, 0.858823529411765, 0.070588235294118])
|
32 |
+
cmd.set_color("low_lddt_c", [1, 0.494117647058824, 0.270588235294118])
|
33 |
+
|
34 |
+
# test the scale of predicted_lddt (0~1 or 0~100 ) as b-factors
|
35 |
+
cmd.select("test_b_scale", f"b>1 and ({selection})")
|
36 |
+
b_scale = cmd.count_atoms("test_b_scale")
|
37 |
+
|
38 |
+
if b_scale > 0:
|
39 |
+
cmd.select("high_lddt", f"({selection}) and (b >90 or b =90)")
|
40 |
+
cmd.select("normal_lddt", f"({selection}) and ((b <90 and b >70) or (b =70))")
|
41 |
+
cmd.select("medium_lddt", f"({selection}) and ((b <70 and b >50) or (b=50))")
|
42 |
+
cmd.select("low_lddt", f"({selection}) and ((b <50 and b >0 ) or (b=0))")
|
43 |
+
else:
|
44 |
+
cmd.select("high_lddt", f"({selection}) and (b >.90 or b =.90)")
|
45 |
+
cmd.select(
|
46 |
+
"normal_lddt", f"({selection}) and ((b <.90 and b >.70) or (b =.70))"
|
47 |
+
)
|
48 |
+
cmd.select("medium_lddt", f"({selection}) and ((b <.70 and b >.50) or (b=.50))")
|
49 |
+
cmd.select("low_lddt", f"({selection}) and ((b <.50 and b >0 ) or (b=0))")
|
50 |
+
|
51 |
+
cmd.delete("test_b_scale")
|
52 |
+
|
53 |
+
# set color based on plddt values
|
54 |
+
cmd.color("high_lddt_c", "high_lddt")
|
55 |
+
cmd.color("normal_lddt_c", "normal_lddt")
|
56 |
+
cmd.color("medium_lddt_c", "medium_lddt")
|
57 |
+
cmd.color("low_lddt_c", "low_lddt")
|
58 |
+
|
59 |
+
# set background color
|
60 |
+
cmd.bg_color("white")
|
61 |
+
|
62 |
+
|
63 |
+
def query_rosettafold2(
|
64 |
+
sequence: str,
|
65 |
+
jobname: str,
|
66 |
+
sym: str = "X",
|
67 |
+
order: int = 1,
|
68 |
+
msa_concat_mode: str = "diag",
|
69 |
+
msa_method: str = "single_sequence",
|
70 |
+
pair_mode: str = "unpaired_paired",
|
71 |
+
collapse_identical: bool = True,
|
72 |
+
num_recycles: int = 0,
|
73 |
+
use_mlm: bool = True,
|
74 |
+
use_dropout: bool = True,
|
75 |
+
max_msa: int = 16,
|
76 |
+
random_seed: int = 0,
|
77 |
+
num_models: int = 0,
|
78 |
+
):
|
79 |
+
"""
|
80 |
+
AUTHOR
|
81 |
+
Simon Duerr
|
82 |
+
https://twitter.com/simonduerr
|
83 |
+
|
84 |
+
|
85 |
+
DESCRIPTION
|
86 |
+
Predict a structure using rosettafold2
|
87 |
+
|
88 |
+
USAGE
|
89 |
+
rosettafold2 sequence, jobname, [sym, order, msa_concat_mode, msa_method, pair_mode, collapse_identical, num_recycles, use_mlm, use_dropout, max_msa, random_seed, num_models]
|
90 |
+
|
91 |
+
PARAMETERS
|
92 |
+
|
93 |
+
sequence: (string)
|
94 |
+
one letter amino acid codes that you want to predict
|
95 |
+
|
96 |
+
jobname: string
|
97 |
+
name of the pdbfile that will be outputted
|
98 |
+
|
99 |
+
sym: string
|
100 |
+
symmetry Default: X
|
101 |
+
|
102 |
+
order:
|
103 |
+
Default 1,
|
104 |
+
|
105 |
+
msa_concat_mode:
|
106 |
+
MSA concatenation mode Default:"diag" Options: "diag", "repeat", "default"
|
107 |
+
|
108 |
+
msa_method:
|
109 |
+
MSA method Default:"single_sequence" Options: "mmseqs2", "single_sequence"
|
110 |
+
|
111 |
+
pair_mode:
|
112 |
+
Pair mode Default:"unpaired_paired" Options: "unpaired_paired", "paired", "unpaired"
|
113 |
+
|
114 |
+
collapse_identical:
|
115 |
+
Collapse identical sequences Default:True
|
116 |
+
|
117 |
+
num_recycles:
|
118 |
+
Number of recycles Default:0 Options: 0, 1, 3, 6, 12, 24
|
119 |
+
|
120 |
+
use_mlm:
|
121 |
+
Use MLM Default:True
|
122 |
+
|
123 |
+
use_dropout:
|
124 |
+
Use dropout Default:True
|
125 |
+
|
126 |
+
max_msa:
|
127 |
+
Max MSA Default:16
|
128 |
+
|
129 |
+
random_seed:
|
130 |
+
Random seed Default:0
|
131 |
+
|
132 |
+
num_models:
|
133 |
+
Number of models Default:0
|
134 |
+
"""
|
135 |
+
response = requests.post(
|
136 |
+
"http://localhost:7860/run/rosettafold2/",
|
137 |
+
json={
|
138 |
+
"data": [
|
139 |
+
sequence, # str in 'sequence' Textbox component
|
140 |
+
jobname, # str in 'jobname' Textbox component
|
141 |
+
sym, # str in 'sym' Textbox component
|
142 |
+
order, # int | float (numeric value between 1 and 12) in 'order' Slider component
|
143 |
+
"diag", # str (Option from: ['diag', 'repeat', 'default']) in 'msa_concat_mode' Dropdown component
|
144 |
+
"single_sequence", # str (Option from: ['mmseqs2', 'single_sequence', 'custom_a3m']) in 'msa_method' Dropdown component
|
145 |
+
"unpaired_paired", # str (Option from: ['unpaired_paired', 'paired', 'unpaired']) in 'pair_mode' Dropdown component
|
146 |
+
True, # bool in 'collapse_identical' Checkbox component
|
147 |
+
0, # int (Option from: ['0', '1', '3', '6', '12', '24']) in 'num_recycles' Dropdown component
|
148 |
+
True, # bool in 'use_mlm' Checkbox component
|
149 |
+
True, # bool in 'use_dropout' Checkbox component
|
150 |
+
16, # int (Option from: ['16', '32', '64', '128', '256', '512']) in 'max_msa' Dropdown component
|
151 |
+
0, # int in 'random_seed' Textbox component
|
152 |
+
1, # int (Option from: ['1', '2', '4', '8', '16', '32']) in 'num_models' Dropdown component
|
153 |
+
]
|
154 |
+
},
|
155 |
+
).json()
|
156 |
+
print(response)
|
157 |
+
try:
|
158 |
+
data = response["data"]
|
159 |
+
except KeyError:
|
160 |
+
print(response["error"])
|
161 |
+
return None
|
162 |
+
with open(f"{jobname}.pdb", "w") as out:
|
163 |
+
out.writelines(data)
|
164 |
+
cmd.load(f"{jobname}.pdb")
|
165 |
+
|
166 |
+
|
167 |
+
cmd.extend("rosettafold2", query_rosettafold2)
|
168 |
+
cmd.extend("color_plddt", color_plddt)
|