File size: 6,641 Bytes
c55fe6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6962136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c55fe6a
6962136
c55fe6a
6962136
c55fe6a
6962136
 
c55fe6a
 
 
 
 
 
6962136
 
 
 
 
c55fe6a
6962136
c55fe6a
 
 
 
6962136
c55fe6a
 
 
6962136
c55fe6a
 
6962136
c55fe6a
 
 
 
 
 
 
 
 
 
 
 
6962136
 
c55fe6a
 
 
6962136
c55fe6a
 
 
 
 
 
 
 
6962136
 
 
 
 
c55fe6a
 
 
 
 
 
 
 
 
 
6962136
c55fe6a
 
 
 
6962136
c55fe6a
 
6962136
c55fe6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6962136
c55fe6a
 
 
 
 
 
 
 
 
6962136
c55fe6a
 
6962136
c55fe6a
 
 
6962136
 
c55fe6a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr
from src.agents.mask_generation_agent import mask_generation_agent, ImageEditDeps
import os
from src.hopter.client import Hopter, Environment
from src.services.generate_mask import GenerateMaskService
from dotenv import load_dotenv
from src.utils import image_path_to_uri
from pydantic_ai.messages import (
    ToolCallPart,
    ToolReturnPart
)
from src.agents.mask_generation_agent import EditImageResult
from pydantic_ai.agent import Agent 
from pydantic_ai.models.openai import OpenAIModel
model = OpenAIModel(
    "gpt-4o",
    api_key=os.environ.get("OPENAI_API_KEY"),
)

simple_agent = Agent(
    model,
    system_prompt="You are a helpful assistant that can answer questions and help with tasks.",
    deps_type=ImageEditDeps
)

load_dotenv()

def build_user_message(chat_input):
    text = chat_input["text"]
    images = chat_input["files"]
    messages = [
        {
            "role": "user",
            "content": text
        }
    ]
    if images:
        messages.extend([
            {
                "role": "user",
                "content": {"path": image}
            }
            for image in images
        ])
    return messages

def build_messages_for_agent(chat_input, past_messages):
    # filter out image messages from past messages to save on tokens
    messages = [msg for msg in past_messages 
                if not (isinstance(msg, dict) 
                        and msg.get("type") == "image_url")]
    
    # add the user's text message
    if chat_input["text"]:
        messages.append({
            "type": "text",
            "text": chat_input["text"]
        })

    # add the user's image message
    files = chat_input.get("files", [])
    image_url = image_path_to_uri(files[0]) if files else None
    if image_url:
        messages.append({
            "type": "image_url",
            "image_url": {"url": image_url}
        })

    return messages
    

async def stream_from_agent(chat_input, chatbot, past_messages, current_image):
    # Prepare messages for the UI
    chatbot.extend(build_user_message(chat_input))
    yield {"text": "", "files": []}, chatbot, gr.skip, gr.skip()

    # Prepare messages for the agent
    text = chat_input["text"]
    files = chat_input.get("files", [])
    image_url = image_path_to_uri(files[0]) if files else None
    messages = [
        {
            "type": "text",
            "text": text
        },
    ]
    if image_url:
        messages.append(
            {"type": "image_url", "image_url": {"url": image_url}}
        )
        current_image = image_url

    # Dependencies
    hopter = Hopter(os.environ.get("HOPTER_API_KEY"), environment=Environment.STAGING)
    mask_service = GenerateMaskService(hopter=hopter)
    deps = ImageEditDeps(
        edit_instruction=text,
        image_url=current_image,
        hopter_client=hopter,
        mask_service=mask_service
    )
    # Run the agent
    async with mask_generation_agent.run_stream(
        messages,
        deps=deps,
    ) as result:
        for message in result.new_messages():
            for call in message.parts:
                if isinstance(call, ToolCallPart):
                    call_args = (
                        call.args.args_json
                        if hasattr(call.args, 'args_json')
                        else call.args
                    )
                    metadata = {
                        'title': f'🛠️ Using {call.tool_name}',
                    }
                    # set the tool call id so that when the tool returns
                    # we can find this message and update with the result
                    if call.tool_call_id is not None:
                        metadata['id'] = call.tool_call_id

                    # Create a tool call message to show on the UI
                    gr_message = {
                        'role': 'assistant',
                        'content': 'Parameters: ' + call_args,
                        'metadata': metadata,
                    }
                    chatbot.append(gr_message)
                if isinstance(call, ToolReturnPart):
                    for gr_message in chatbot:
                        # Skip messages without metadata
                        if not gr_message.get('metadata'):
                            continue

                        if gr_message['metadata'].get('id', '') == call.tool_call_id:
                            if isinstance(call.content, EditImageResult):
                                chatbot.append({
                                    "role": "assistant",
                                    "content": gr.Image(call.content.edited_image_url),
                                    "files": [call.content.edited_image_url]
                                })
                            else:
                                gr_message['content'] += (
                                    f'\nOutput: {call.content}'
                                )
                yield gr.skip(), chatbot, gr.skip(), gr.skip()

        chatbot.append({'role': 'assistant', 'content': ''})
        async for message in result.stream_text():
            chatbot[-1]['content'] = message
            yield gr.skip(), chatbot, gr.skip(), gr.skip()
        past_messages = result.all_messages()

        yield gr.Textbox(interactive=True), gr.skip(), past_messages, current_image

with gr.Blocks() as demo:
    gr.HTML(
        """
<div style="display: flex; justify-content: center; align-items: center; gap: 2rem; padding: 1rem; width: 100%">
    <img src="https://ai.pydantic.dev/img/logo-white.svg" style="max-width: 200px; height: auto">
    <div>
        <h1 style="margin: 0 0 1rem 0">Image Editing Assistant</h1>
        <h3 style="margin: 0 0 0.5rem 0">
            This assistant edits images according to your instructions.
        </h3>
    </div>
</div>
"""
    )

    current_image = gr.State(None)
    past_messages = gr.State([])
    chatbot = gr.Chatbot(
        label='Image Editing Assistant',
        type='messages',
        avatar_images=(None, 'https://ai.pydantic.dev/img/logo-white.svg'),
    )
    with gr.Row():
        chat_input = gr.MultimodalTextbox(
            interactive=True,
            file_count="single",
            show_label=False,
            placeholder='How would you like to edit this image?',
            sources=["upload"]
        )
    generation = chat_input.submit(
        stream_from_agent,
        inputs=[chat_input, chatbot, past_messages, current_image],
        outputs=[chat_input, chatbot, past_messages, current_image],
    )

if __name__ == '__main__':
    demo.launch()