Spaces:
Running
Running
File size: 8,611 Bytes
c55fe6a ad3aed5 c55fe6a 6962136 ad3aed5 6962136 ad3aed5 6962136 9e6acd9 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 ad3aed5 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a ad3aed5 6962136 c55fe6a 6962136 ad3aed5 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 9e6acd9 c55fe6a 9e6acd9 c55fe6a 9e6acd9 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 9e6acd9 c55fe6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
from src.agents.mask_generation_agent import mask_generation_agent, ImageEditDeps
import os
from src.hopter.client import Hopter, Environment
from src.services.generate_mask import GenerateMaskService
from dotenv import load_dotenv
from src.utils import image_path_to_uri, upload_image
from pydantic_ai.messages import (
ToolCallPart,
ToolReturnPart
)
from src.agents.mask_generation_agent import EditImageResult
from pydantic_ai.agent import Agent
from pydantic_ai.models.openai import OpenAIModel
model = OpenAIModel(
"gpt-4o",
api_key=os.environ.get("OPENAI_API_KEY"),
)
simple_agent = Agent(
model,
system_prompt="You are a helpful assistant that can answer questions and help with tasks.",
deps_type=ImageEditDeps
)
load_dotenv()
def build_user_message(chat_input):
text = chat_input["text"]
images = chat_input["files"]
messages = [
{
"role": "user",
"content": text
}
]
if images:
messages.extend([
{
"role": "user",
"content": {"path": image}
}
for image in images
])
return messages
def build_messages_for_agent(chat_input, past_messages):
# filter out image messages from past messages to save on tokens
messages = past_messages
# add the user's text message
if chat_input["text"]:
messages.append({
"type": "text",
"text": chat_input["text"]
})
# add the user's image message
files = chat_input.get("files", [])
image_url = upload_image(files[0]) if files else None
if image_url:
messages.append({
"type": "image_url",
"image_url": {"url": image_url}
})
return messages
def select_example(x: gr.SelectData, chat_input):
chat_input["text"] = x.value["text"]
chat_input["files"] = x.value["files"]
return chat_input
async def stream_from_agent(chat_input, chatbot, past_messages, current_image):
# Prepare messages for the UI
chatbot.extend(build_user_message(chat_input))
yield {"text": "", "files": []}, chatbot, gr.skip, gr.skip()
# Prepare messages for the agent
text = chat_input["text"]
files = chat_input.get("files", [])
image_url = upload_image(files[0]) if files else None
messages = [
{
"type": "text",
"text": text
},
]
if image_url:
messages.append(
{"type": "image_url", "image_url": {"url": image_url}}
)
current_image = image_url
# Dependencies
hopter = Hopter(os.environ.get("HOPTER_API_KEY"), environment=Environment.STAGING)
mask_service = GenerateMaskService(hopter=hopter)
deps = ImageEditDeps(
edit_instruction=text,
image_url=current_image,
hopter_client=hopter,
mask_service=mask_service
)
# Run the agent
async with mask_generation_agent.run_stream(
messages,
deps=deps,
message_history=past_messages
) as result:
for message in result.new_messages():
for call in message.parts:
if isinstance(call, ToolCallPart):
call_args = (
call.args.args_json
if hasattr(call.args, 'args_json')
else call.args
)
metadata = {
'title': f'🛠️ Using {call.tool_name}',
}
# set the tool call id so that when the tool returns
# we can find this message and update with the result
if call.tool_call_id is not None:
metadata['id'] = call.tool_call_id
# Create a tool call message to show on the UI
gr_message = {
'role': 'assistant',
'content': 'Parameters: ' + call_args,
'metadata': metadata,
}
chatbot.append(gr_message)
if isinstance(call, ToolReturnPart):
for gr_message in chatbot:
# Skip messages without metadata
if not gr_message.get('metadata'):
continue
if gr_message['metadata'].get('id', '') == call.tool_call_id:
if isinstance(call.content, EditImageResult):
chatbot.append({
"role": "assistant",
"content": gr.Image(call.content.edited_image_url),
"files": [call.content.edited_image_url]
})
else:
gr_message['content'] += (
f'\nOutput: {call.content}'
)
yield gr.skip(), chatbot, gr.skip(), gr.skip()
chatbot.append({'role': 'assistant', 'content': ''})
async for message in result.stream_text():
chatbot[-1]['content'] = message
yield gr.skip(), chatbot, gr.skip(), gr.skip()
past_messages = result.all_messages()
yield gr.Textbox(interactive=True), gr.skip(), past_messages, current_image
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; gap: 2rem; padding: 1rem; width: 100%">
<img src="https://ai.pydantic.dev/img/logo-white.svg" style="max-width: 200px; height: auto">
<div>
<h1 style="margin: 0 0 1rem 0">Image Editing Assistant</h1>
<h3 style="margin: 0 0 0.5rem 0">
This assistant edits images according to your instructions.
</h3>
</div>
</div>
"""
)
current_image = gr.State(None)
past_messages = gr.State([])
chatbot = gr.Chatbot(
elem_id="chatbot",
label='Image Editing Assistant',
type='messages',
avatar_images=(None, 'https://ai.pydantic.dev/img/logo-white.svg'),
examples=[
{
"text": "Remove the person in the image",
"files": [
"https://www.apple.com/tv-pr/articles/2024/10/apple-tv-unveils-severance-season-two-teaser-ahead-of-the-highly-anticipated-return-of-the-emmy-and-peabody-award-winning-phenomenon/images/big-image/big-image-01/1023024_Severance_Season_Two_Official_Trailer_Big_Image_01_big_image_post.jpg.large_2x.jpg"
]
},
{
"text": "Change all the balloons to red in the image",
"files": [
"https://www.apple.com/tv-pr/articles/2024/10/apple-tv-unveils-severance-season-two-teaser-ahead-of-the-highly-anticipated-return-of-the-emmy-and-peabody-award-winning-phenomenon/images/big-image/big-image-01/1023024_Severance_Season_Two_Official_Trailer_Big_Image_01_big_image_post.jpg.large_2x.jpg"
]
},
{
"text": "Change coffee to a glass of water",
"files": [
"https://previews.123rf.com/images/vadymvdrobot/vadymvdrobot1812/vadymvdrobot181201149/113217373-image-of-smiling-woman-holding-takeaway-coffee-in-paper-cup-and-taking-selfie-while-walking-through.jpg"
]
},
{
"text": "ENHANCE!",
"files": [
"https://m.media-amazon.com/images/M/MV5BNzM3ODc5NzEtNzJkOC00MDM4LWI0MTYtZTkyNmY3ZTBhYzkxXkEyXkFqcGc@._V1_QL75_UX1000_CR0,52,1000,563_.jpg"
]
}
]
)
with gr.Row():
chat_input = gr.MultimodalTextbox(
interactive=True,
file_count="single",
show_label=False,
placeholder='How would you like to edit this image?',
sources=["upload"]
)
generation = chat_input.submit(
stream_from_agent,
inputs=[chat_input, chatbot, past_messages, current_image],
outputs=[chat_input, chatbot, past_messages, current_image],
)
chatbot.example_select(
select_example,
inputs=[chat_input],
outputs=[chat_input],
).then(
stream_from_agent,
inputs=[chat_input, chatbot, past_messages, current_image],
outputs=[chat_input, chatbot, past_messages, current_image],
)
if __name__ == '__main__':
demo.launch() |