Spaces:
Running
Running
File size: 6,641 Bytes
c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a 6962136 c55fe6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import gradio as gr
from src.agents.mask_generation_agent import mask_generation_agent, ImageEditDeps
import os
from src.hopter.client import Hopter, Environment
from src.services.generate_mask import GenerateMaskService
from dotenv import load_dotenv
from src.utils import image_path_to_uri
from pydantic_ai.messages import (
ToolCallPart,
ToolReturnPart
)
from src.agents.mask_generation_agent import EditImageResult
from pydantic_ai.agent import Agent
from pydantic_ai.models.openai import OpenAIModel
model = OpenAIModel(
"gpt-4o",
api_key=os.environ.get("OPENAI_API_KEY"),
)
simple_agent = Agent(
model,
system_prompt="You are a helpful assistant that can answer questions and help with tasks.",
deps_type=ImageEditDeps
)
load_dotenv()
def build_user_message(chat_input):
text = chat_input["text"]
images = chat_input["files"]
messages = [
{
"role": "user",
"content": text
}
]
if images:
messages.extend([
{
"role": "user",
"content": {"path": image}
}
for image in images
])
return messages
def build_messages_for_agent(chat_input, past_messages):
# filter out image messages from past messages to save on tokens
messages = [msg for msg in past_messages
if not (isinstance(msg, dict)
and msg.get("type") == "image_url")]
# add the user's text message
if chat_input["text"]:
messages.append({
"type": "text",
"text": chat_input["text"]
})
# add the user's image message
files = chat_input.get("files", [])
image_url = image_path_to_uri(files[0]) if files else None
if image_url:
messages.append({
"type": "image_url",
"image_url": {"url": image_url}
})
return messages
async def stream_from_agent(chat_input, chatbot, past_messages, current_image):
# Prepare messages for the UI
chatbot.extend(build_user_message(chat_input))
yield {"text": "", "files": []}, chatbot, gr.skip, gr.skip()
# Prepare messages for the agent
text = chat_input["text"]
files = chat_input.get("files", [])
image_url = image_path_to_uri(files[0]) if files else None
messages = [
{
"type": "text",
"text": text
},
]
if image_url:
messages.append(
{"type": "image_url", "image_url": {"url": image_url}}
)
current_image = image_url
# Dependencies
hopter = Hopter(os.environ.get("HOPTER_API_KEY"), environment=Environment.STAGING)
mask_service = GenerateMaskService(hopter=hopter)
deps = ImageEditDeps(
edit_instruction=text,
image_url=current_image,
hopter_client=hopter,
mask_service=mask_service
)
# Run the agent
async with mask_generation_agent.run_stream(
messages,
deps=deps,
) as result:
for message in result.new_messages():
for call in message.parts:
if isinstance(call, ToolCallPart):
call_args = (
call.args.args_json
if hasattr(call.args, 'args_json')
else call.args
)
metadata = {
'title': f'🛠️ Using {call.tool_name}',
}
# set the tool call id so that when the tool returns
# we can find this message and update with the result
if call.tool_call_id is not None:
metadata['id'] = call.tool_call_id
# Create a tool call message to show on the UI
gr_message = {
'role': 'assistant',
'content': 'Parameters: ' + call_args,
'metadata': metadata,
}
chatbot.append(gr_message)
if isinstance(call, ToolReturnPart):
for gr_message in chatbot:
# Skip messages without metadata
if not gr_message.get('metadata'):
continue
if gr_message['metadata'].get('id', '') == call.tool_call_id:
if isinstance(call.content, EditImageResult):
chatbot.append({
"role": "assistant",
"content": gr.Image(call.content.edited_image_url),
"files": [call.content.edited_image_url]
})
else:
gr_message['content'] += (
f'\nOutput: {call.content}'
)
yield gr.skip(), chatbot, gr.skip(), gr.skip()
chatbot.append({'role': 'assistant', 'content': ''})
async for message in result.stream_text():
chatbot[-1]['content'] = message
yield gr.skip(), chatbot, gr.skip(), gr.skip()
past_messages = result.all_messages()
yield gr.Textbox(interactive=True), gr.skip(), past_messages, current_image
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; gap: 2rem; padding: 1rem; width: 100%">
<img src="https://ai.pydantic.dev/img/logo-white.svg" style="max-width: 200px; height: auto">
<div>
<h1 style="margin: 0 0 1rem 0">Image Editing Assistant</h1>
<h3 style="margin: 0 0 0.5rem 0">
This assistant edits images according to your instructions.
</h3>
</div>
</div>
"""
)
current_image = gr.State(None)
past_messages = gr.State([])
chatbot = gr.Chatbot(
label='Image Editing Assistant',
type='messages',
avatar_images=(None, 'https://ai.pydantic.dev/img/logo-white.svg'),
)
with gr.Row():
chat_input = gr.MultimodalTextbox(
interactive=True,
file_count="single",
show_label=False,
placeholder='How would you like to edit this image?',
sources=["upload"]
)
generation = chat_input.submit(
stream_from_agent,
inputs=[chat_input, chatbot, past_messages, current_image],
outputs=[chat_input, chatbot, past_messages, current_image],
)
if __name__ == '__main__':
demo.launch() |