File size: 5,421 Bytes
c55fe6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
from src.agents.mask_generation_agent import mask_generation_agent, ImageEditDeps
import os
from src.hopter.client import Hopter, Environment
from src.services.generate_mask import GenerateMaskService
from dotenv import load_dotenv
from src.utils import image_path_to_uri
from pydantic_ai.messages import (
    ToolCallPart,
    ToolReturnPart
)
from src.agents.mask_generation_agent import EditImageResult
from pydantic_ai.agent import Agent 
from pydantic_ai.models.openai import OpenAIModel

model = OpenAIModel(
    "gpt-4o",
    api_key=os.environ.get("OPENAI_API_KEY"),
)

simple_agent = Agent(
    model,
    system_prompt="You are a helpful assistant that can answer questions and help with tasks.",
    deps_type=ImageEditDeps
)

load_dotenv()

def build_user_message(chat_input):
    text = chat_input["text"]
    images = chat_input["files"]
    messages = [
        {
            "role": "user",
            "content": text
        }
    ]
    if images:
        messages.extend([
            {
                "role": "user",
                "content": {"path": image}
            }
            for image in images
        ])
    return messages

async def stream_from_agent(chat_input, chatbot, past_messages):
    chatbot.extend(build_user_message(chat_input))
    # Clear the input immediately after submission
    yield {"text": "", "files": []}, chatbot, gr.skip

    # for agent
    text = chat_input["text"]
    images = [image_path_to_uri(image) for image in chat_input["files"]]
    messages = [
        {
            "type": "text",
            "text": text
        },
    ]
    if images:
        messages.extend([
            {"type": "image_url", "image_url": {"url": image}}
            for image in images
        ])

    hopter = Hopter(os.environ.get("HOPTER_API_KEY"), environment=Environment.STAGING)
    mask_service = GenerateMaskService(hopter=hopter)
    deps = ImageEditDeps(
        edit_instruction=text,
        image_url=images[0],
        hopter_client=hopter,
        mask_service=mask_service
    )
    async with mask_generation_agent.run_stream(
        messages,
        deps=deps
    ) as result:
        for message in result.new_messages():
            for call in message.parts:
                if isinstance(call, ToolCallPart):
                    call_args = (
                        call.args.args_json
                        if hasattr(call.args, 'args_json')
                        else call.args
                    )
                    metadata = {
                        'title': f'🛠️ Using {call.tool_name}',
                    }
                    if call.tool_call_id is not None:
                        metadata['id'] = call.tool_call_id

                    gr_message = {
                        'role': 'assistant',
                        'content': 'Parameters: ' + call_args,
                        'metadata': metadata,
                    }
                    chatbot.append(gr_message)
                if isinstance(call, ToolReturnPart):
                    for gr_message in chatbot:
                        if (
                            gr_message.get('metadata', {}).get('id', '')
                            == call.tool_call_id
                        ):
                            if isinstance(call.content, EditImageResult):
                                chatbot.append({
                                    "role": "assistant",
                                    "content": gr.Image(call.content.edited_image_url),
                                    "files": [call.content.edited_image_url]
                                })
                            else:
                                gr_message['content'] += (
                                    f'\nOutput: {call.content}'
                                )
                yield gr.skip(), chatbot, gr.skip()

        chatbot.append({'role': 'assistant', 'content': ''})
        async for message in result.stream_text():
            chatbot[-1]['content'] = message
            yield gr.skip(), chatbot, gr.skip()
        past_messages = result.all_messages()

        yield gr.Textbox(interactive=True), gr.skip(), past_messages

with gr.Blocks() as demo:
    gr.HTML(
        """
<div style="display: flex; justify-content: center; align-items: center; gap: 2rem; padding: 1rem; width: 100%">
    <img src="https://ai.pydantic.dev/img/logo-white.svg" style="max-width: 200px; height: auto">
    <div>
        <h1 style="margin: 0 0 1rem 0">Image Editing Assistant</h1>
        <h3 style="margin: 0 0 0.5rem 0">
            This assistant edits images according to your instructions.
        </h3>
    </div>
</div>
"""
    )

    past_messages = gr.State([])
    chatbot = gr.Chatbot(
        label='Image Editing Assistant',
        type='messages',
        avatar_images=(None, 'https://ai.pydantic.dev/img/logo-white.svg'),
    )
    with gr.Row():
        chat_input = gr.MultimodalTextbox(
            interactive=True,
            file_count="multiple",
            show_label=False,
            placeholder='How would you like to edit this image?',
            sources=["upload", "microphone"]
        )
    generation = chat_input.submit(
        stream_from_agent,
        inputs=[chat_input, chatbot, past_messages],
        outputs=[chat_input, chatbot, past_messages],
    )

if __name__ == '__main__':
    demo.launch()