diff --git a/.gitattributes b/.gitattributes index 4e771ca4b11cd5e72db2dc7c986be28113e85b02..6a231bee8663c3ef84f3643b6249e53ec1d2abb4 100644 --- a/.gitattributes +++ b/.gitattributes @@ -77,3 +77,9 @@ hf_demo/lesions/221-m-u/model_highres_0_normalized_pasted_lesion_15.png filter=l hf_demo/lesions/221-m-u/model_highres_0_normalized_pasted_lesion_2.png filter=lfs diff=lfs merge=lfs -text hf_demo/lesions/221-m-u/model_highres_0_normalized_pasted_lesion_30.png filter=lfs diff=lfs merge=lfs -text hf_demo/lesions/221-m-u/model_highres_0_normalized_pasted_lesion_5.png filter=lfs diff=lfs merge=lfs -text +DermSynth3D/data/3dbodytex-1.1-highres/006-f-run/model_highres_0_normalized.obj filter=lfs diff=lfs merge=lfs -text +DermSynth3D/data/3dbodytex-1.1-highres/006-f-run/model_highres_0_normalized.png filter=lfs diff=lfs merge=lfs -text +DermSynth3D/data/3dbodytex-1.1-highres/221-m-u/model_highres_0_normalized.obj filter=lfs diff=lfs merge=lfs -text +DermSynth3D/data/3dbodytex-1.1-highres/221-m-u/model_highres_0_normalized.png filter=lfs diff=lfs merge=lfs -text +DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/02dfbc0e14a4655ca9190705fe1b7d56.png filter=lfs diff=lfs merge=lfs -text +DermSynth3D/docs/preprint.pdf filter=lfs diff=lfs merge=lfs -text diff --git a/DermSynth3D/.circleci/config.yml b/DermSynth3D/.circleci/config.yml new file mode 100644 index 0000000000000000000000000000000000000000..c587cde2e0ed4708e4aadc3cf5f14ef82ee21ce3 --- /dev/null +++ b/DermSynth3D/.circleci/config.yml @@ -0,0 +1,75 @@ +version: 2.1 +orbs: + docker: circleci/docker@2.2.0 +jobs: + build: + docker: + - image: cimg/base:stable + auth: + username: ${DOCKER_USERNAME} + password: ${DOCKER_PASSWORD} + environment: + - DOCKER_USER = ${DOCKER_USERNAME} + - DOCKER_PASS = ${DOCKER_PASSWORD} + # - UID = 301455 + # - GID = 8088 + # - USER = "sfu-mial" + steps: + - checkout + - setup_remote_docker: + version: 20.10.11 + docker_layer_caching: true + # command: echo "Remote Docker Setup" + - run: + name: check correct path + command: | + printenv | grep "DOCKER\|UID\|GID" + pwd + ls -lkht + echo + - run: + name: docker build + command: | + docker build --build-arg UID=$(id -u) --build-arg GID=$(id -g) -t dermsynth3d:${CIRCLE_SHA1} -f Dockerfile . + - run: + name: Login to Docker Hub + command: | + echo "${DOCKER_PASSWORD}" | docker login -u "${DOCKER_USERNAME}" --password-stdin + - run: + name: Push Docker image to Docker Hub + command: | + docker tag dermsynth3d:${CIRCLE_SHA1} "${DOCKER_USERNAME}/dermsynth3d" + docker push "${DOCKER_USERNAME}/dermsynth3d" + +# version: 2.1 +# orbs: +# docker: circleci/docker@2.2.0 +# jobs: +# build-and-push: +# executor: docker/docker +# docker: +# - image: cimg/base:stable +# name: docker login +# auth: +# username: $DOCKER_USERNAME +# password: $DOCKER_PASSWORD +# steps: +# - setup_remote_docker +# - checkout +# - docker/check +# - docker/build: +# # image: dermsynth3d/v1 +# image: sinashish/dermsynth3d +# - docker/push: +# digest-path: /tmp/digest.txt +# image: sinashish/dermsynth3d +# # - docker/publish: +# # deploy: true +# # image: dermsynth3d/v1 +# - run: +# command: | +# echo "Digest is: $(> /etc/sudoers +# RUN useradd -D -mU ${USER} --uid=${UID} +# Run as this user from now on +USER $USER:$GID + +# Install Miniconda +WORKDIR /home/$USER +RUN wget -q https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh \ + && /bin/bash ~/miniconda.sh -b -p ~/miniconda \ + && rm ~/miniconda.sh +ENV PATH=/home/$USER/miniconda/bin:$PATH + +# Set up conda environment +COPY dermsynth3d.yml . +RUN conda env create -f dermsynth3d.yml && conda clean -afy +ENV CONDA_DEFAULT_ENV=dermsynth3d +ENV CONDA_PREFIX=/home/$USER/miniconda/envs/$CONDA_DEFAULT_ENV +ENV PATH=$CONDA_PREFIX/bin:$PATH + + +RUN echo "source activate $(head -1 dermsynth3d.yml | cut -d' ' -f2)" > ~/.bashrc +ENV PATH /home/$USER/miniconda/envs/$(head -1 dermsynth3d.yml | cut -d' ' -f2)/bin:$PATH + +# Copy code +COPY data /demo_data +# COPY . /home/$USER/DermSynth3D + + +# Test imports +# RUN git clone --recurse-submodules https://github.com/sfu-mial/DermSynth3D.git +#, "python", "scripts/gen_data.py"] +WORKDIR /home/$USER/DermSynth3D diff --git a/DermSynth3D/LICENSE b/DermSynth3D/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..0ad25db4bd1d86c452db3f9602ccdbe172438f52 --- /dev/null +++ b/DermSynth3D/LICENSE @@ -0,0 +1,661 @@ + GNU AFFERO GENERAL PUBLIC LICENSE + Version 3, 19 November 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU Affero General Public License is a free, copyleft license for +software and other kinds of works, specifically designed to ensure +cooperation with the community in the case of network server software. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +our General Public Licenses are intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + Developers that use our General Public Licenses protect your rights +with two steps: (1) assert copyright on the software, and (2) offer +you this License which gives you legal permission to copy, distribute +and/or modify the software. + + A secondary benefit of defending all users' freedom is that +improvements made in alternate versions of the program, if they +receive widespread use, become available for other developers to +incorporate. Many developers of free software are heartened and +encouraged by the resulting cooperation. However, in the case of +software used on network servers, this result may fail to come about. +The GNU General Public License permits making a modified version and +letting the public access it on a server without ever releasing its +source code to the public. + + The GNU Affero General Public License is designed specifically to +ensure that, in such cases, the modified source code becomes available +to the community. It requires the operator of a network server to +provide the source code of the modified version running there to the +users of that server. Therefore, public use of a modified version, on +a publicly accessible server, gives the public access to the source +code of the modified version. + + An older license, called the Affero General Public License and +published by Affero, was designed to accomplish similar goals. This is +a different license, not a version of the Affero GPL, but Affero has +released a new version of the Affero GPL which permits relicensing under +this license. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU Affero General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Remote Network Interaction; Use with the GNU General Public License. + + Notwithstanding any other provision of this License, if you modify the +Program, your modified version must prominently offer all users +interacting with it remotely through a computer network (if your version +supports such interaction) an opportunity to receive the Corresponding +Source of your version by providing access to the Corresponding Source +from a network server at no charge, through some standard or customary +means of facilitating copying of software. This Corresponding Source +shall include the Corresponding Source for any work covered by version 3 +of the GNU General Public License that is incorporated pursuant to the +following paragraph. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the work with which it is combined will remain governed by version +3 of the GNU General Public License. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU Affero General Public License from time to time. Such new versions +will be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU Affero General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU Affero General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU Affero General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU Affero General Public License as published + by the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU Affero General Public License for more details. + + You should have received a copy of the GNU Affero General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If your software can interact with users remotely through a computer +network, you should also make sure that it provides a way for users to +get its source. For example, if your program is a web application, its +interface could display a "Source" link that leads users to an archive +of the code. There are many ways you could offer source, and different +solutions will be better for different programs; see section 13 for the +specific requirements. + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU AGPL, see +. diff --git a/DermSynth3D/README.md b/DermSynth3D/README.md new file mode 100644 index 0000000000000000000000000000000000000000..d824200d21b939ddce3b217102e961265329ccc9 --- /dev/null +++ b/DermSynth3D/README.md @@ -0,0 +1,559 @@ +# DermSynth3D +[![CircleCI](https://dl.circleci.com/status-badge/img/gh/sfu-mial/DermSynth3D/tree/main.svg?style=svg&circle-token=176de57353747d240e619bdf9aacf9f716e7d04f)](https://dl.circleci.com/status-badge/redirect/gh/sfu-mial/DermSynth3D/tree/main) +![GPLv3](https://img.shields.io/static/v1.svg?label=📃%20License&message=GPL%20v3.0&color=critical&style=flat-square) +[![arXiv](https://img.shields.io/static/v1.svg?label=📄%20arXiv&message=2305.12621&color=important&style=flat-square)](https://arxiv.org/abs/2305.12621) +[![DOI](https://img.shields.io/static/v1.svg?label=📄%20DOI&message=DOI&color=informational&style=flat-square)](https://doi.org/10.48550/arXiv.2305.12621) +[![request dataset](https://img.shields.io/static/v1.svg?label=Dataset&message=Request%20Dataset&style=flat-square&color=blueviolet)](https://cvi2.uni.lu/3dbodytexdermsynth/) +[![Video](https://img.shields.io/badge/Video-Youtube-ff69b4?style=flat-square)](https://www.youtube.com/watch?v=x3gDBJCI_3k) + +:scroll: This is the official code repository for **DermSynth3D**. + + +PDF thumbnail + + + +:tv: Check out the video abstract for this work: +[![Video Thumbnail](assets/DERMSYNTH_YOUTUBE_THUMB.png)](http://www.youtube.com/watch?v=x3gDBJCI_3k) + +## TL;DR + +A data generation pipeline for creating photorealistic _in-the-wild_ synthetic dermatological data with rich annotations such as semantic segmentation masks, depth maps, and bounding boxes for various skin analysis tasks. + +![main pipeline](assets/pipeline.png) +>_The figure shows the DermSynth3D computational pipeline where 2D segmented skin conditions are blended into the texture image of a 3D mesh on locations outside of the hair and clothing regions. After blending, 2D views of the mesh are rendered with a variety of camera viewpoints and lighting conditions and combined with background images to create a synthetic dermatology dataset._ + +## Motivation + +In recent years, deep learning (DL) has shown great potential in the field of dermatological image analysis. +However, existing datasets in this domain have significant limitations, including a small number of image samples, limited disease conditions, insufficient annotations, and non-standardized image acquisitions. +To address these shortcomings, we propose a novel framework called ${DermSynth3D}$. + +${DermSynth3D}$ blends skin disease patterns onto 3D textured meshes of human subjects using a differentiable renderer and generates 2D images from various camera viewpoints under chosen lighting conditions in diverse background scenes. +Our method adheres to top-down rules that constrain the blending and rendering process to create 2D images with skin conditions that mimic *in-the-wild* acquisitions, resulting in more meaningful results. +The framework generates photo-realistic 2D dermoscopy images and the corresponding dense annotations for semantic segmentation of the skin, skin conditions, body parts, bounding boxes around lesions, depth maps, and other 3D scene parameters, such as camera position and lighting conditions. +${DermSynth3D}$ allows for the creation of custom datasets for various dermatology tasks. + + +## Repository layout + +```bash +DermSynth3D/ +┣ assets/ # assets for the README +┣ configs/ # YAML config files to run the pipeline +┣ logs/ # experiment logs are saved here (auto created) +┣ out/ # the checkpoints are saved here (auto created) +┣ data/ # directory to store the data +┃ ┣ ... # detailed instructions in the dataset.md +┣ dermsynth3d/ # +┃ ┣ datasets/ # class definitions for the datasets +┃ ┣ deepblend/ # code for deep blending +┃ ┣ losses/ # loss functions +┃ ┣ models/ # model definitions +┃ ┣ tools/ # wrappers for synthetic data generation +┃ ┗ utils/ # helper functions +┣ notebooks/ # demo notebooks for the pipeline +┣ scripts/ # scripts for traning and evaluation +┗ skin3d/ # external module +``` + +## Table of Contents +- [DermSynth3D](#dermsynth3d) + - [TL;DR](#tldr) + - [Motivation](#motivation) + - [Repository layout](#repository-layout) + - [Table of Contents](#table-of-contents) + - [Installation](#installation) + - [using conda](#using-conda) + - [using Docker](#using-docker) + - [Datasets](#datasets) + - [The folder structure of data directory should be as follows:](#the-folder-structure-of-data-directory-should-be-as-follows) + - [Data for Blending](#data-for-blending) + - [Download 3DBodyTex.v1 meshes](#download-3dbodytexv1-meshes) + - [Download the 3DBodyTex.v1 annotations](#download-the-3dbodytexv1-annotations) + - [Download the Fitzpatrick17k dataset](#download-the-fitzpatrick17k-dataset) + - [Download the Background Scenes](#download-the-background-scenes) + - [Data For Training](#data-for-training) + - [Download the FUSeg dataset](#download-the-fuseg-dataset) + - [Download the Pratheepan dataset](#download-the-pratheepan-dataset) + - [Download the PH2 dataset](#download-the-ph2-dataset) + - [Download the DermoFit dataset](#download-the-dermofit-dataset) + - [Creating the Synthetic dataset](#creating-the-synthetic-dataset) + - [How to Use DermSynth3D](#how-to-use-dermsynth3d) + - [Generating Synthetic Dataset](#generating-synthetic-dataset) + - [Post-Process Renderings with Unity](#post-process-renderings-with-unity) + - [Click to see the a visual comparison of the renderings obtained from Pytorch3D and Unity.](#click-to-see-the-a-visual-comparison-of-the-renderings-obtained-from-pytorch3d-and-unity) + - [Preparing Dataset for Experiments](#preparing-dataset-for-experiments) + - [Cite](#cite) + - [Demo Notebooks for Dermatology Tasks](#demo-notebooks-for-dermatology-tasks) + - [Lesion Segmentation](#lesion-segmentation) + - [Multi-Task Prediction](#multi-task-prediction) + - [Lesion Detection](#lesion-detection) + - [Acknowledgements](#acknowledgements) + + + +### Installation + + + +#### using conda + +```bash +git clone --recurse-submodules https://github.com/sfu-mial/DermSynth3D.git +cd DermSynth3D +conda env create -f dermsynth3d.yml +conda activate dermsynth3d +``` + + + +#### using Docker + +```bash +# Build the container in the root dir +docker build -t dermsynth3d --build-arg USER=$USER --build-arg UID=$(id -u) --build-arg GID=$(id -g) -f Dockerfile . +# Run the container in interactive mode for using DermSynth3D +# See 3. How to use DermSynth3D +docker run --gpus all --user=root --runtime=nvidia -it --rm -v /path/to/downloaded/data:/data dermsynth3d +``` +We provide some [pre-built docker images](https://hub.docker.com/r/sinashish/dermsynth3d), which can be be used as well to: +```bash +# pull this latest docker image with the latest code +# you need to prepare the data following the instructions below +docker pull sinashish/dermsynth3d:latest + +# pull this image for trying out the code with demo data i.e. lesions and meshes +docker pull sinashish/dermsynth3d:demo_w_code + +# Run the container in interactive GPU mode for generating data and training models +# mount the data directory to the container +docker run --gpus all -it --user=root --runtime=nvidia --rm -v /path/to/downloaded/data:/data dermsynth3d: +``` + +**NOTE**: The code has been tested on Ubuntu 20.04 with CUDA 11.1, python 3.8, pytorch 1.10.0, and pytorch3d 0.7.2, and we don't know if it will work on CPU. + +If you face any issues installing pytorch3d, please refer to their [installation guide](https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md) or this issue [link](https://github.com/facebookresearch/pytorch3d/issues/1076). + + + + +## Datasets + +Follow the instructions below to download the datasets for generating the synthetic data and training models for various tasks. +All the datasets should be downloaded and placed in the `data` directory. + + + + +
+ + + + + ### The folder structure of data directory should be as follows: + + + +```bash +DermSynth3D/ +┣ ... # other source code +┣ data/ # directory to store the data +┃ ┣ 3dbodytex-1.1-highres # data for 3DBodyTex.v1 3d models and texture maps +┃ ┣ fitzpatrick17k/ +┃ ┃ ┣ data/ # Fitzpatrick17k images +┃ ┃ ┗ annotations/ # annotations for Fitzpatrick17k lesions +┃ ┣ ph2/ +┃ ┃ ┣ images/ # PH2 images +┃ ┃ ┗ labels/ # PH2 annotations +┃ ┣ dermofit/ # Dermofit dataset +┃ ┃ ┣ images/ # Dermofit images +┃ ┃ ┗ targets/ # Dermofit annotations +┃ ┣ FUSeg/ +┃ ┃ ┣ train/ # training set with images/labels for FUSeg +┃ ┃ ┣ validation/ # val set with images/labels for FUSeg +┃ ┃ ┗ test/ # test set with images/labels for FUSeg +┃ ┣ Pratheepan_Dataset/ +┃ ┃ ┣ FacePhoto/ # images from Pratheepan dataset +┃ ┃ ┗ GroundT_FacePhoto/ # annotations +┃ ┣ lesions/ # keep the non-skin masks for 3DBodyTex.v1 meshes here +┃ ┣ annotations/ # segmentation masks for Annotated Fitzpatrick17k lesions +┃ ┣ bodytex_anatomy_labels/ # per-vertex labels for anatomy of 3DBodyTex.v1 meshes +┃ ┣ background/ # keep the background scenes for rendering here +┃ ┗ synth_data/ # the generated synthetic data will be stored here + ┣ train/ # training set with images/labels for training on synthetic data + ┣ / # val and test set with images/labels for training on synthetic data +``` +
+ +The datasets used in this work can be broadly categorized into data required for blending and data necessary for evaluation. + +
+ + + + + ### Data for Blending + +
+ +
+ + + + ### Download 3DBodyTex.v1 meshes + + + + ![3dbodytex sample](assets/scans_blurred.png) + > _A few examples of raw 3D scans in sports-clothing from the 3DBodyTex.v1 dataset showing a wide range of body shapes, pose, skin-tone, and gender._ + + + + The `3DBodyTex.v1` dataset can be downloaded from [here](https://cvi2.uni.lu/3dbodytexv1/). + + `3DBodyTex.v1` contains the meshes and texture images used in this work and can be downloaded from the external site linked above (after accepting a license agreement). + + **NOTE**: These textured meshes are needed to run the code to generate the data. + + We provide the non-skin texture maps annotations for 2 meshes: `006-f-run` and `221-m-u`. + Hence, to generate the data, make sure to get the `.obj` files for these two meshes and place them in `data/3dbodytex-1.1-highres` before excecuting `scripts/gen_data.py`. + + After accepting the licence, download and unzip the data in `./data/`. + +
+ +
+ + + + ### Download the 3DBodyTex.v1 annotations + + + + + | _Non-skin texture maps_ | _Anatomy labels_ | + |:-:|:-:| + |

We provide the non-skin texture map ($T_{nonskin}$) annotations for 215 meshes from the `3DBodyTex.v1` dataset [here](https://cvi2.uni.lu/3dbodytexdermsynth/).

|

We provide the per-vertex labels for anatomical parts of the 3DBodyTex.v1 meshes obtained by fitting SCAPE template body model [here](https://cvi2.uni.lu/3dbodytexdermsynth/).

| + |

_A sample texture image showing the annotations for non-skin regions._

|

_A few examples of the scans showing the 7 anatomy labels._

| + + The folders are organised with the same IDs as the meshes in `3DBodyTex.v1` dataset. + + **NOTE**: To download the the 3DBodyTex.v1 annotations with the links referred above, you would need to request access to the 3DBodyTex.DermSynth dataset by following the instructions on this [link](https://cvi2.uni.lu/3dbodytexdermsynth/). + +
+ +
+ + + + ### Download the Fitzpatrick17k dataset + + + + ![fitz_annot_fig](./assets/readme_fitz.png)
+ _An illustration showing lesions from the Fitzpatrick17k dataset in the top row, and it's corresponding manually segmented lesion annotation in the bottom row._ + + + + We used the skin conditions from [Fitzpatrick17k](https://github.com/mattgroh/fitzpatrick17k). + See their instructions to get access to the Fitzpatrick17k images. + We provide the raw images for the Fitzpatrick17k dataset [here](https://vault.sfu.ca/index.php/s/cMuxZNzk6UUHNmX). + + After downloading the dataset, unzip the dataset: + ```bash + unzip fitzpatrick17k.zip -d data/fitzpatrick17k/ + ``` + + We provide a few samples of the densely annotated lesion masks from the Fitzpatrick17k dataset within this repository under the `data` directory. + + More of such annotations can be downloaded from [here](https://vault.sfu.ca/index.php/s/gemdbCeoZXoCqlS). + +
+ +
+ + + + ### Download the Background Scenes + + + + ![bg_scenes](./assets/readme_bg.png) + >_A few examples of the background scenes used for rendering the synthetic data._ + + + Although you can use any scenes as background for generating the random views of the lesioned-meshes, we used [SceneNet RGB-D](https://robotvault.bitbucket.io/scenenet-rgbd.html) for the background IndoorScenes. Specifically, we used [this split](https://www.doc.ic.ac.uk/~bjm113/scenenet_data/train_split/train_0.tar.gz), and sampled 3000 images from it. + + For convenience, the background scenes we used to generate the ssynthetic dataset can be downloaded from [here](https://vault.sfu.ca/index.php/s/r7nc1QHKwgW2FDk). + +
+
+
+
+ + + +### Data For Training + +
+
+ + + + ### Download the FUSeg dataset + + + + ![fu_seg](./assets/fuseg.png) + >_A few examples from the FUSeg dataset showing the images in the top row and, it's corresponding segmentation mask in the bottom row._ + + + The Foot Ulcer Segmentation Challenge (FUSeg) dataset is available to download from [their official repository](https://github.com/uwm-bigdata/wound-segmentation/tree/master/data/Foot%20Ulcer%20Segmentation%20Challenge). + Download and unpack the dataset at `data/FUSeg/`, maintaining the Folder Structure shown above. + + For simplicity, we mirror the FUSeg dataset [here](https://vault.sfu.ca/index.php/s/2mb8kZg8wOltptT). + +
+ +
+ + + + ### Download the Pratheepan dataset + + + + ![prath](./assets/readme_prath.png) + >_A few examples from the Pratheepan dataset showing the images and it's corresponding segmentation mask, in the top and bottom row respectively._ + + The Pratheepan dataset is available to download from [their official website](https://web.fsktm.um.edu.my/~cschan/downloads_skin_dataset.html). + The images and the corresponding ground truth masks are available in a ZIP file hosted on Google Drive. Download and unpack the dataset at `data/Pratheepan_Dataset/`. + +
+ +
+ + + + ### Download the PH2 dataset + + + + ![ph2](./assets/readme_ph2.png) + >_A few examples from the PH2 dataset showing a lesion and it's corresponding segmentation mask, in the top and bottom row respectively._ + + The PH2 dataset can be downloaded from [the official ADDI Project website](https://www.fc.up.pt/addi/ph2%20database.html). + Download and unpack the dataset at `data/ph2/`, maintaining the Folder Structure shown below. + +
+ +
+ + + + ### Download the DermoFit dataset + + + + ![dermo](./assets/readme_df.png) + >_An illustration of a few samples from the DermoFit dataset showing the skin lesions and it's corresponding binary mask, in the top and bottom row respectively._ + + The DermoFit dataset is available through a paid perpetual academic license from the University of Edinburgh. Please access the dataset following the instructions for [the DermoFit Image Library](https://licensing.edinburgh-innovations.ed.ac.uk/product/dermofit-image-library) and unpack it at `data/dermofit/`, maintaining the Folder Structure shown above. + +
+ +
+ + + + ### Creating the Synthetic dataset + + + + ![synthetic data](./assets/fig_1-min.png) + >_Generated synthetic images of multiple subjects across a range of skin tones in various skin conditions, background scene, lighting, and viewpoints._ + + + For convenience, we provide the generated synthetic data we used in this work for various downstream tasks [here](https://cvi2.uni.lu/3dbodytexdermsynth/). + + If you want to train your models on a different split of the synthetic data, you can download a dataset generated by blending lesions on 26 3DBodyTex scans from [here](https://cvi2.uni.lu/3dbodytexdermsynth/). + To prepare the synthetic dataset for training. Sample the `images`, and `targets` from the path where you saved this dataset and then organise them into `train/val`. + + **NOTE**: To download the synthetic 3DBodyTex.DermSynth dataset referred in the links above, you would need to request access by following the instructions on this [link](https://cvi2.uni.lu/3dbodytexdermsynth/). + + Alternatively, you can use the provided script `scripts/prep_data.py` to create it. + + Even better, you can generate your own dataset, by following the instructions [here](./README.md#generating-synthetic-dataset). + + + +
+
+
+ + + +## How to Use DermSynth3D + + + +### Generating Synthetic Dataset + +![annots](./assets/AnnotationOverview.png) + > _A few examples of annotated data synthesized using DermSynth3D. The rows from top to bottom show respectively: the rendered images with blended skin conditions, bounding boxes around the lesions, GT semantic segmentation masks, grouped anatomical labels, and the monocular depth maps produced by the renderer._ + +Before running any code to synthesize a densely annotated data as shown above, make sure that you have downloaded the data necessary for blending as mentioned in [datasets](#data-for-blending) and folder structure is as described above. +If your folder structure is different from ours, then update the paths, such as `bodytex_dir`, `annot_dir`, etc., accordingly in `configs/blend.yaml`. + + + +Now, to *generate* the synthetic data with the default parameters, simply run the following command to generate 2000 views for a specified mesh: + +```bash +python -u scripts/gen_data.py +``` + +To change the blending or synthesis parameters only, run using: +```bash +# Use python scripts/gen_data.py -h for full list of arguments +python -u scripts/gen_data.py --lr \ + -m \ + -s \ + -ps \ + -i \ + -v \ + -n +``` + +Feel free to play around with other `random` parameter in `configs/blend.yaml` to control lighting, material and view points. + + + +### Post-Process Renderings with Unity + +We use Pytorch3D as our choice of differential renderer to generate synthetic data. +However, Pytorch3D is not a Physically Based Renderer (PBR) and hence, the renderings are not photorealistic or may not look photorealistic. +To achieve photorealistic renderings, we use Unity to post-process the renderings obtained from Pytorch3D. + +
+ + +###### Click to see the a visual comparison of the renderings obtained from Pytorch3D and Unity. + + + +![renderer_comp](./assets/media_rendComp.png) +> _A visual comparison of the renderings obtained from Pytorch3D and Unity (Point Lights and Mixed Lighting)._ +
+ +NOTE: This is an optional step. If you are not interested in creating photorealistic renderings, you can skip this step and use the renderings obtained from Pytorch3D directly. We didn't observe a **significant** difference in the performance of the models trained on the renderings obtained from Pytorch3D and Unity. + + + + +Follow the detailed instructions outlined [here](./docs/unity.md) to create photorealistic renderings using Unity. Alternatively, download the renders that we created using Unity [here](https://cvi2.uni.lu/3dbodytexdermsynth/). + + + +## Preparing Dataset for Experiments + + +After creating the syntheic dataset in the previous step, it is now the time to evaluate the utility of the dataset on some real-world tasks. + +Before, you start with any experiments, ideally you would want to organize the generated data into `train/val/test` sets. +We provide a utility script to do the same: +```bash +python scripts/prep_data.py +``` + +You can look at `scripts/prep_data.py` for more details. + + + +## Cite +If you find this work useful or use any part of the code in this repo, please cite our paper: +```bibtext +@misc{sinha2023dermsynth3d, + title={DermSynth3D: Synthesis of in-the-wild Annotated Dermatology Images}, + author={Ashish Sinha and Jeremy Kawahara and Arezou Pakzad and Kumar Abhishek and Matthieu Ruthven and Enjie Ghorbel and Anis Kacem and Djamila Aouada and Ghassan Hamarneh}, + year={2023}, + eprint={2305.12621}, + archivePrefix={arXiv}, + primaryClass={eess.IV} +} +``` + + + +## Demo Notebooks for Dermatology Tasks + +![Qualitative Results](./assets/results.png) +>_Qualitative results for (a) foot ulcer bounding box detection on FUSeg dataset, (b) multi-class segmentation (lesions,skin, and background) and in-the-wild body part prediction, \(c\) skin segmentation and body part prediction on Pratheepan dataset, and (d) multi-class segmentation (lesions, skin, and background) on dermoscopy images from PH2 dataset._ + + + + +### Lesion Segmentation +**Note**: Update the paths to relevant datasets in `configs/train_mix.yaml`. + +To train a lesion segmentation model with default parameters, on a combination of Synthetic and Real Data, simply run: + +```bash +python -u scripts/train_mix_seg.py +``` + +Play around with the following parameters for a combinatorial mix of datasets. +```yaml +real_ratio: 0.5 # fraction of real images to be used from real dataset +real_batch_ratio: 0.5 # fraction of real samples in each batch +pretrain: True # use pretrained DeepLabV3 weights +mode: 1.0 # Fraction of the number of synthetic images to be used for training +``` + +You can also look at [this notebook](./notebooks/train_segmentation.ipynb) for a quick overview for training lesion segmention model. + +For inference of pre-trained models/checkpoints, look at [this notebook](./notebooks/inference_segmentation.ipynb). + + + +### Multi-Task Prediction + +We also train a multi-task model for predicting lesion, anatomy and depth, and evaluate it on multiple datasets. + +For a quick overview of multi-task prediction task, checkout [this notebook](./notebooks/inference_multitask.ipynb). + +For performing inference on your trained models for this task. First update the paths in `configs/multitask.yaml`. Then run: +```bash +python -u scripts/infer_multi_task.py +``` + + + +### Lesion Detection + +For a quick overview for training lesion detection models, please have a look at [this notebook](./notebooks/train_detection.ipynb). + +For doing a quick inference using the pre-trained detection models/ checkpoints, have a look at [this notebook](./notebooks/inference_detection.ipynb). + + + +## Acknowledgements + +We are thankful to the authors of [Skin3D](https://github.com/jeremykawahara/skin3d) for making their code and data public for the task of lesion detection on 3DBodyTex.v1 dataset. diff --git a/DermSynth3D/app.py b/DermSynth3D/app.py new file mode 100644 index 0000000000000000000000000000000000000000..6047f2dd9b62cbeb5b26fe22a0d710ff0b0edaf6 --- /dev/null +++ b/DermSynth3D/app.py @@ -0,0 +1,533 @@ +import streamlit as st + +st.set_page_config( + page_title="DermSynth3D", + page_icon="🧊", + layout="centered", + initial_sidebar_state="auto", + menu_items={ + "Get Help": "https://github.com/sfu-mial/DermSynth3D", + "Report a bug": "https://github.com/sfu-mial/DermSynth3D/issues", + "About": "This is the demo app to try out the pipeline proposed in the paper DermSynth3D: A Dermatological Image Synthesis Framework for 3D Skin Lesions", + }, +) +# from stpyvista import stpyvista +import pandas as pd +import numpy as np +from glob import glob +import os, sys +from PIL import Image +import torch +import torch.nn as nn +import trimesh +import plotly.graph_objects as go +from plotly.subplots import make_subplots +from pytorch3d.renderer import ( + look_at_view_transform, + FoVPerspectiveCameras, + PointLights, + DirectionalLights, + Materials, + RasterizationSettings, + MeshRenderer, + MeshRasterizer, + SoftPhongShader, + TexturesUV, + TexturesVertex, +) +import math +from trimesh import transformations as tf +import os + +import streamlit.components.v1 as components +from math import pi +from IPython.display import display +import matplotlib.pyplot as plt + +import matplotlib.pyplot as plt +from plotly.offline import download_plotlyjs, init_notebook_mode, iplot +import plotly + +import plotly.graph_objects as go +from skimage import io +from plotly.offline import download_plotlyjs, init_notebook_mode, iplot + +init_notebook_mode(connected=True) + +view_width = 400 +view_height = 400 + +import mediapy as mpy + +sys.path.append("./dermsynth3d") +sys.path.append("./skin3d/") +from pytorch3d.io import load_objs_as_meshes +from pytorch3d.structures import Meshes + +st.title("DermSynth3D - Dermatological Image Synthesis Framework") +# st.write('A dermatological image synthesis framework for 3D skin lesions') + + +def setup_paths(): + # get the meshes + mesh_paths = glob("./data/3dbodytex-1.1-highres/*/*.obj") + mesh_names = [os.path.basename(os.path.dirname(x)) for x in mesh_paths] + + # get the textures + all_textures = glob("./data/3dbodytex-1.1-highres/*/*.png") + + get_no_lesion_path = lambda x, y: os.path.join( + "./data/3dbodytex-1.1-highres", x, "model_highres_0_normalized.png" + ) + get_mesh_path = lambda x: os.path.join( + "./data/3dbodytex-1.1-highres", x, "model_highres_0_normalized.obj" + ) + # get the textures with the lesions + get_mask_path = lambda x, y: os.path.join( + "./data/processed_textures/", x, "model_highres_0_normalized.png" + ) + get_dilated_lesion_path = lambda x, y: os.path.join( + "./data/processed_textures/", + x, + f"model_highres_0_normalized_dilated_lesion_{y}.png", + ) + get_blended_lesion_path = lambda x, y: os.path.join( + "./data/processed_textures/", + x, + f"model_highres_0_normalized_blended_lesion_{y}.png", + ) + get_pasted_lesion_path = lambda x, y: os.path.join( + "./data/processed_textures/", + x, + f"model_highres_0_normalized_pasted_lesion_{y}.png", + ) + get_texture_module = lambda x: getattr( + sys.modules[__name__], + f"get_{x.lower().replace(' ', '_')}_path", + ) + # Update the global namespace with the functions + global_namespace = globals() + global_namespace.update( + { + "mesh_paths": mesh_paths, + "mesh_names": mesh_names, + "all_textures": all_textures, + "get_no_lesion_path": get_no_lesion_path, + "get_mesh_path": get_mesh_path, + "get_mask_path": get_mask_path, + "get_dilated_lesion_path": get_dilated_lesion_path, + "get_blended_lesion_path": get_blended_lesion_path, + "get_pasted_lesion_path": get_pasted_lesion_path, + "get_texture_module": get_texture_module, + } + ) + + +@st.cache_data +def set_texture_map_py3d(mesh_name, texture_name, num_lesion=1, device="cpu"): + mesh_path = get_mesh_path(mesh_name) + texture_path = get_texture_module(texture_name)(mesh_name) + mesh = load_objs_as_meshes([mesh_path], device=device) + texture_img = Image.open(texture_path).convert("RGB") + texture_tensor = torch.from_numpy(np.array(texture_img)) + + tmap = TexturesUV( + maps=texture_tensor.float().to(device=mesh.device).unsqueeze(0), + verts_uvs=mesh.textures.verts_uvs_padded(), + faces_uvs=mesh.textures.faces_uvs_padded(), + ) + new_mesh = Meshes( + verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tmap + ) + return new_mesh, texture_img + + +import tempfile + + +def render_images(mesh_name, texture_name, num_lesion=1, device="cuda"): + raise NotImplementedError + + +@st.cache_data +def get_trimesh_attrs(mesh_name): + mesh_path = get_mesh_path(mesh_name) + tri_mesh = trimesh.load(mesh_path) + angle = -math.pi / 2 + direction = [0, 1, 0] + center = [0, 0, 0] + rot_matrix = tf.rotation_matrix(angle, direction, center) + tri_mesh = tri_mesh.apply_transform(rot_matrix) + tri_mesh.apply_transform(tf.rotation_matrix(math.pi, [0, 0, 1], [-1, -1, -1])) + + verts, faces = tri_mesh.vertices, tri_mesh.faces + uvs = tri_mesh.visual.uv + colors = tri_mesh.visual.to_color() + vc = colors.vertex_colors # / 255.0 + timg = tri_mesh.visual.material.image + + return verts, faces, vc, mesh_name + + +@st.cache_data +def plotly_image(image): + fig = go.Figure() + fig.add_trace(go.Image(z=image)) + fig.update_layout( + width=view_width, + height=view_height, + margin=dict(l=0, r=0, b=0, t=0, pad=0), + paper_bgcolor="rgba(0,0,0,0)", + plot_bgcolor="rgba(0,0,0,0)", + ) + fig.update_xaxes(showticklabels=False) + fig.update_yaxes(showticklabels=False) + return fig + + +@st.cache_data +def plotly_mesh(verts, faces, vc, mesh_name): + fig = go.Figure( + data=[ + go.Mesh3d( + x=verts[:, 0], + y=verts[:, 1], + z=verts[:, 2], + i=faces[:, 0], + j=faces[:, 1], + k=faces[:, 2], + vertexcolor=vc, + ) + ] + ) + fig.update_layout(scene_aspectmode="manual", scene_aspectratio=dict(x=1, y=1, z=1)) + fig.update_layout(scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False))) + fig.update_layout(scene=dict(zaxis=dict(visible=False))) + fig.update_layout(scene=dict(camera=dict(up=dict(x=1, y=0, z=1)))) + fig.update_layout(scene=dict(camera=dict(eye=dict(x=-2, y=-2, z=-1)))) + # fig.update_layout(scene=dict(camera=dict(center=dict(x=0, y=0, z=0)))) + + return fig + + +@st.cache_data +def load_mesh_and_texture(mesh_name, texture_name, num_lesion=1, device="cuda"): + mesh_path = get_mesh_path(mesh_name) + texture_path = get_texture_module(texture_name)(mesh_name, num_lesion) + # glb_mesh = convert_to_glb(mesh_path) + mesh = load_objs_as_meshes([mesh_path], device=device) + verts = mesh.verts_packed().detach().cpu().numpy() + faces = mesh.faces_packed().detach().cpu().numpy() + normals = mesh.verts_normals_packed().detach().cpu().numpy() + # tri_mesh = trimesh.load(mesh_path) + + texture_img = Image.open(texture_path).convert("RGB") + texture_tensor = torch.from_numpy(np.array(texture_img)) + + tmap = TexturesUV( + maps=texture_tensor.float().to(device=mesh.device).unsqueeze(0), + verts_uvs=mesh.textures.verts_uvs_padded(), + faces_uvs=mesh.textures.faces_uvs_padded(), + ) + new_mesh = Meshes( + verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tmap + ) + pl_mesh = plotly_mesh(*get_trimesh_attrs(mesh_name)) + # print(tri_mesh, new_mesh, texture_img.resize((256, 256))) + return pl_mesh, new_mesh, texture_img # .resize((256, 256)) + + +@st.cache_resource +def display_mesh(mesh_name, texture_name, num_lesion=1, device="cuda"): + tri_mesh, render_mesh, texture_img = load_mesh_and_texture( + mesh_name, texture_name, num_lesion, device + ) + + plotter = pv.Plotter(border=True, window_size=[view_width, view_width]) + pv_mesh = pv.wrap(tri_mesh) + plotter.add_mesh(pv_mesh) + plotter.background_color = "white" + plotter.view_isometric() + return plotter, render_mesh, texture_img + + +@st.cache_data +def setup_cameras(dist, elev, azim, device="cuda"): + R, T = look_at_view_transform(dist, elev, azim, degrees=True) + cameras = FoVPerspectiveCameras(device=device, R=R, T=T) + return cameras + + +@st.cache_data +def setup_lights( + light_pos, ambient_color, diffuse_color, specular_color, device="cuda" +): + lights = PointLights( + device=device, + location=[[light_pos, light_pos, light_pos]], + ambient_color=[[ambient_color, ambient_color, ambient_color]], + diffuse_color=[[diffuse_color, diffuse_color, diffuse_color]], + specular_color=[[specular_color, specular_color, specular_color]], + ) + return lights + + +@st.cache_data +def setup_materials(shininess, specularity, device="cuda"): + materials = Materials( + device=device, + specular_color=[[specularity, specularity, specularity]], + shininess=[shininess], + ) + return materials + + +# @st.cache_data +def setup_renderer(cameras, lights, materials, device="cuda"): + raster_settings = RasterizationSettings( + image_size=256, + blur_radius=0.0, + faces_per_pixel=10, + # max_faces_per_bin=100, + bin_size=0, + perspective_correct=True, + ) + renderer = MeshRenderer( + rasterizer=MeshRasterizer(cameras=cameras, raster_settings=raster_settings), + shader=SoftPhongShader( + device=device, cameras=cameras, lights=lights, materials=materials + ), + ) + return renderer + + +# @st.cache_resource +def render_images(renderer, mesh, lights, cameras, materials, nviews, device="cuda"): + images = renderer(mesh, lights=lights, cameras=cameras, materials=materials) + return images + + +def main(): + st.sidebar.title("Mesh") + selected_mesh = st.sidebar.selectbox( + "Select the mesh to be used for the synthesis", mesh_names + ) + + # set the texture + st.sidebar.title("Texture Map") + selected_texture = st.sidebar.selectbox( + "Select the texture map to view", + ["No Lesion", "Pasted Lesion", "Blended Lesion", "Dilated Lesion"], + ) + + st.sidebar.title("Lesion Count") + num_lesion = st.sidebar.slider( + "Set the number of lesions to be added to the mesh", + min_value=0, + max_value=30, + value=1, + step=1, + ) + if num_lesion not in [0, 1, 2, 5, 10]: + st.sidebar.error("The number of lesions is not in the default list!") + st.sidebar.warning("We currently only support 1, 5, 15, 30.") + num_lesion = 1 + + # load the texture + texture_img = Image.open( + get_texture_module(selected_texture)(selected_mesh, num_lesion) + ) + + # display the mesh and texture + # based on the selected parameters + with st.spinner(text="Loading Mesh with texture..."): + mesh_place, texture_place = st.columns(2) + tmesh, render_mesh, texture_img = load_mesh_and_texture( + selected_mesh, selected_texture, num_lesion + ) + with mesh_place and st.spinner("Loading Mesh..."): + # mesh_place.info("click on reset camera, if unable to see the whole mesh!") + mesh_place.plotly_chart(tmesh, use_container_width=True, theme=None) + # mesh_place.info("The mesh will be displayed here. Please wait...") + # st.sidebar.success("Mesh with texture loaded!") + # stpyvista(tmesh, key="mesh") + with texture_place and st.spinner("Loading texture..."): + pl_img = plotly_image(texture_img.resize((512, 512))) + texture_place.plotly_chart(pl_img, use_container_width=True, theme=None) + # texture_place.info("The texture will be displayed here. Please wait...") + # texture_place.image( + # texture_img, + # caption=f"Texture map with {selected_texture} for {selected_mesh}", + # use_column_width="auto", + # # width=view_width, + # clamp=True, + # channels="RGB", + # ) + st.sidebar.success("Mesh with texture loaded!", icon="👏") + finished_loading = True + # randomize the rendering parameters + st.sidebar.title("Randomize View Parameters") + activated = st.sidebar.toggle("Randomize?", value=False) + # default = False + st.session_state["randomized"] = False + if activated and finished_loading: + with st.spinner("Randomizing..."): + # set the camera parameters + dist = np.random.uniform(0.0, 1.0) + elev = np.random.uniform(0.0, 1.0) + azim = np.random.uniform(0.0, 1.0) + # set the lighting parameters + light_pos = np.random.uniform(0.0, 1.0) + ambient_color = np.random.uniform(0.0, 1.0) + diffuse_color = np.random.uniform(0.0, 1.0) + specular_color = np.random.uniform(0.0, 1.0) + # set the material parameters + shininess = np.random.uniform(0.0, 1.0) + specularity = np.random.uniform(0.0, 1.0) + camera_values = setup_cameras(dist, elev, azim) + light_values = setup_lights( + light_pos, ambient_color, diffuse_color, specular_color + ) + material_values = setup_materials(shininess, specularity) + renderer = setup_renderer(camera_values, light_values, material_values) + st.session_state["camera_values"] = camera_values + st.session_state["light_values"] = light_values + st.session_state["material_values"] = material_values + st.session_state["renderer"] = renderer + st.session_state["randomized"] = True + if ( + "camera_values" in st.session_state + and "light_values" in st.session_state + and "material_values" in st.session_state + and "renderer" in st.session_state + ): + st.sidebar.success("Randomization done!", icon="👏") + else: + if not st.session_state["randomized"]: + st.sidebar.warning( + "Randomization is disabled!\nDefine the rendering parameters!" + ) + with st.spinner("Set View Parameters"): + # with st.sidebar.expander("Set View Parameters", expanded=True) as view_cont: + # camera parameters + # st.sidebar.header("View Parameters") + cam = st.sidebar.form("Change camera parameters") + cam.subheader("Camera Parameters") # , expanded=False) + dist = cam.slider( + "Distance", min_value=0.0, max_value=10.0, value=0.5, step=0.5 + ) + elev = cam.slider( + "Elevation", min_value=-90, max_value=90, value=0, step=10 + ) + azim = cam.slider("Azimuth", min_value=-90, max_value=90, value=90, step=10) + # camera_values = cam.form_submit_button( + # "Update Camera Parameters", + # on_click=setup_cameras, + # args=(dist, elev, azim), + # ) + # cam.form_submit_button("Update Camera Parameters") + # camera_values = setup_cameras(dist, elev, azim) + + # print(camera_values) + # cam.warning( + # "*Note:* The camera parameters are set to the default values used in the paper" + # ) + + # lighting parameters + # st.sidebar.subheader("Lighting Parameters") + # light = st.sidebar.expander("Change lighting parameters", expanded=False) + # light = st.sidebar.form("Change lighting parameters") # , expanded=False) + # light_pos = light.slider( + # "Light Position", min_value=0.0, max_value=1.0, value=0.5, step=0.1 + # ) + # light_ac = light.slider( + # "Ambient Color", min_value=0.0, max_value=1.0, value=0.5, step=0.1 + # ) + # light_dc = light.slider( + # "Diffuse Color", min_value=0.0, max_value=1.0, value=0.5, step=0.1 + # ) + # light_sc = light.slider( + # "Specular Color", min_value=0.0, max_value=1.0, value=0.5, step=0.1 + # ) + cam.subheader("Lighting Parameters") # , expanded=False) + light_pos = cam.slider( + "Light Position", min_value=0.0, max_value=1.0, value=0.5, step=0.1 + ) + light_ac = cam.slider( + "Ambient Color", min_value=0.0, max_value=1.0, value=0.5, step=0.1 + ) + light_dc = cam.slider( + "Diffuse Color", min_value=0.0, max_value=1.0, value=0.5, step=0.1 + ) + light_sc = cam.slider( + "Specular Color", min_value=0.0, max_value=1.0, value=0.5, step=0.1 + ) + # light.form_submit_button("Update Lighting Parameters") + # light_values = setup_lights(light_pos, light_ac, light_dc, light_sc) + # light.warning( + # "*Note:* The lighting parameters are set to the default values used in the paper" + # ) + # print(light_values) + # material parameters + # st.sidebar.write("Material Parameters") + # mat = st.sidebar.expander("Change material parameters", expanded=False) + # mat = st.sidebar.form("Change material parameters") # , expanded=False) + + # mat_sh = mat.slider( + # "Shininess", min_value=0, max_value=100, value=50, step=10 + # ) + # mat_sc = mat.slider( + # "Specularity", min_value=0.0, max_value=1.0, value=0.5, step=0.1 + # ) + cam.subheader("Material Parameters") # , expanded=False) + mat_sh = cam.slider( + "Shininess", min_value=0, max_value=100, value=50, step=10 + ) + mat_sc = cam.slider( + "Specularity", min_value=0.0, max_value=1.0, value=0.5, step=0.1 + ) + # mat.form_submit_button("Update Material Parameters") + # material_values = setup_materials(mat_sh, mat_sc) + # mat.warning( + # "*Note:* The material parameters are set to the default values used in the paper" + # ) + # update_button = st.form_submit_button("Update Parameters") + cam.form_submit_button("Update View Parameters") + camera_values = setup_cameras(dist, elev, azim) + light_values = setup_lights(light_pos, light_ac, light_dc, light_sc) + material_values = setup_materials(mat_sh, mat_sc) + renderer = setup_renderer(camera_values, light_values, material_values) + + st.session_state["selected_camera_values"] = camera_values + st.session_state["selected_light_values"] = light_values + st.session_state["updated_renderer"] = renderer + st.session_state["selected_material_values"] = material_values + # Rendered Views + st.header("Rendered Views") + st.info("The rendered views will be displayed here. Click on the button to render!") + with st.form("Render Views"): + number_of_views = st.slider( + "Number of views to be rendered", 2, 16, 4, 2 + ) # , key="num_views") + render_button = st.form_submit_button("Render Views") + st.session_state["number_of_views"] = number_of_views + st.session_state["render_button"] = render_button + if st.session_state["render_button"]: + with st.spinner("Rendering..."): + images = render_images( + renderer, + render_mesh, + light_values, + camera_values, + material_values, + number_of_views, + ) + images = images.detach().cpu().numpy() + rendered_img = plotly_image(images[0][..., :3]) + silhouette_img = plotly_image(images[0][..., 3:]) + st.plotly_chart(rendered_img, use_container_width=True, theme=None) + + +if __name__ == "__main__": + setup_paths() + main() diff --git a/DermSynth3D/configs/blend.yaml b/DermSynth3D/configs/blend.yaml new file mode 100644 index 0000000000000000000000000000000000000000..176f4ea5179f217052f49a20b5230b53d9c2b737 --- /dev/null +++ b/DermSynth3D/configs/blend.yaml @@ -0,0 +1,72 @@ +name: DermSynth3d + +# Settings for pasting and blending lesions + +blending: + # Path to 3DBodyTex v1 + # bodytex_dir: "/local-scratch2/asa409/data/dermSynth/3dbodytex-1.1-highres" + bodytex_dir: './data/3dbodytex-1.1-highres/' + # Name of the mesh to blend + mesh_name: '006-f-run' + # Path to FitzPatrick17k lesions + # fitz_dir: "/local-scratch2/asa409/data/dermSynth/data/finalfitz17k" + fitz_dir: './data/fitzpatrick17k/data/finalfitz17k/' + # Path to annotated Fitz17k lesions with masks + annot_dir: './data/annotations/' + # annot_dir: "/local-scratch2/asa409/data/dermSynth/annotations" + # Path to save the new texture maps + tex_dir: './data/lesions/' + # Name of extension to add to new texture maps + ext: 'latest' + # Number of lesions to paste/blend on each mesh + num_paste: 50 + # Number of iterations for blending the lesion + num_iter: 400 + # Learning rate for optimization + lr: 0.005 + # Image size to render + img_w: 64 + img_h: 64 + view_size: (64, 64) + +# Settings for generating 2D views from blended texture maps +generate: + # Number of images to render per mesh + num_views: 2000 + # Name of the mesh to blend + mesh_name: '006-f-run' + # Path to save the rendering and ground truth annotations + save_dir: './out/blended_lesions/' + # Path to anatomy labels for 3DBodyTex v1. + anatomy_dir: './data/bodytex_anatomy_labels/' + # Path to the background scenes + # background_dir: "/local-scratch2/asa409/data/dermSynth/IndoorScene" + background_dir: './data/background/IndoorScene/' + + # Whether to paste lesions for cheap blending + paste: False + # Image size to render + img_w: 64 + img_h: 64 + view_size: (64, 64) + # Threshold amount of lesion to be present to generate a view + percent_skin: 0.1 + # Paths to skin3d repo + skin3d: './skin3d/data/3dbodytex-1.1-highres/bodytex.csv' + # Paths to skin3d nevi annotations + skin3d_annot: './skin3d/data/3dbodytex-1.1-highres/annotations/' + + random: + surface_offset_bounds: (0.1, 1.3) + ambient_bounds: (0.3, 0.99) + specular_bounds: (0, 0.1) + diffuse_bounds : (0.3, 0.99) + mat_diffuse_bounds : (0.3, 0.99) + mat_specular_bounds : (0., 0.05) + znear: 0.01 + light_pos: None + shininess: (30, 60) + sphere_pos: False + elev_bounds : (0, 180) + azim_bounds : (-90, 90) + background_blur_radius_bounds : (0, 3) diff --git a/DermSynth3D/configs/default.yaml b/DermSynth3D/configs/default.yaml new file mode 100644 index 0000000000000000000000000000000000000000..2dbe7a4c53fcacc8e65dc1cafc7dbc935b3ded79 --- /dev/null +++ b/DermSynth3D/configs/default.yaml @@ -0,0 +1,6 @@ +device: 'cuda' +img_w: 64 +img_h: 64 +extension: + image_extension: '.jpg' + target_extension: '.png' diff --git a/DermSynth3D/configs/multitask.yaml b/DermSynth3D/configs/multitask.yaml new file mode 100644 index 0000000000000000000000000000000000000000..986e1f3a494f79e5f01071fea45bfd22639d4a44 --- /dev/null +++ b/DermSynth3D/configs/multitask.yaml @@ -0,0 +1,36 @@ +name: 'Infer MultiTask' + +infer: + multi_head: False + backbone: False + model_path: '/path/to/trained/model/' + + img_size: (320, 320) + + # ImageNet + mean: (0.485, 0.456, 0.406) + std: (0.229, 0.224, 0.225) + + # Test Type + mode: 1 # Choose to test on Fitz17k/ Ph2/ DermoFit + + # Data paths + fitz_imgs: './data/fitzpatrick17k/data/finalfitz17k/' + fitz_annot: './data/fitzpatrick17k/annotations/annotations/' + fitz_test_skin: './data/fitzpatrick17k/annotations/test/skin/' + fitz_test_anatomy: './data/fitzpatrick17k/annotations/test/anatomy/' + fitz_test_imgs: './data/fitzpatrick17k/annotations/test/images/' + + ph2_imgs: './data/ph2/images' + ph2_test_skin: './data/ph2/preds/skin/' + ph2_test_images: './data/ph2/preds/images/' + ph2_test_targets: './data/ph2/preds/targets/' + + derm_imgs: './data/dermofit/images/' + derm_targets: './data/dermofit/targets/' + derm_preds: './data/dermofit/predictions/' + + prath_imgs: './data/Pratheepan_Dataset/FacePhoto/' + prath_tgts: './data/Pratheepan_Dataset/GroundT_FacePhoto/' + prath_preds_skin: './data/Pratheepan_Dataset/predictions/skin/' + prath_preds_anatomy: './data/Pratheepan_Dataset/predictions/anatomy/' \ No newline at end of file diff --git a/DermSynth3D/configs/renderer.yaml b/DermSynth3D/configs/renderer.yaml new file mode 100644 index 0000000000000000000000000000000000000000..a6cc0a8207ba7099ebb8751a58d9cd95eaa43838 --- /dev/null +++ b/DermSynth3D/configs/renderer.yaml @@ -0,0 +1,33 @@ +name: Renderer params + +fov: 30 +faces_per_pixel: 1 + +# Specific Light Source properties +light: + ambient_color: (0.5, 0.5, 0.5) + specular_color: (0.025, 0.025, 0.025) + diffuse_color: (0.5, 0.5, 0.5) + light_location: None + +# Specific Material Properties +material: + ambient_color: (0.5, 0.5, 0.5) + specular_color: (0.025, 0.025, 0.025) + diffuse_color: (0.5, 0.5, 0.5) + shininess: 50. + +# Range for randomizing views/light/material +random: + dists: (0.3, 3) # Distance of subject from camera + elevs: (90, 270) # Elevation + azims: (0,270) # Azimuth + ats: (0.25, 1.75) # camera position + ambients: (0.2, 0.99) # Ambient light + speculars: (0, 0.1) # Specularity + diffuses: (0.2, 0.99) # Diffusivity + shininess: (30., 70.) # Shininess of the material + surface_offset_weight: (0.1, 1.2) # offset camera by a dsitance + znear: 1 + + diff --git a/DermSynth3D/configs/train_mix.yaml b/DermSynth3D/configs/train_mix.yaml new file mode 100644 index 0000000000000000000000000000000000000000..b84643a1053ebb88719d7319493522a2a0788a5f --- /dev/null +++ b/DermSynth3D/configs/train_mix.yaml @@ -0,0 +1,42 @@ +name: Mixed Training + +# Path to generated data +root: './data/synth_data/' +# Path to real data +real: './data/FUSeg/' +# Name of folder to save the models +save_name: 'run1' # checkpoints are saved in '../data/exp/' +save_dir: './out' + +train: + batch_size: 16 # batch size + lr: 0.00005 # learning rate + epochs: 200 # number of epochs + weight_decay: 0.00005 + num_classes: 1 # number of output classes + real_ratio: 0.5 # fraction of real images to be used from real dataset + real_batch_ratio: 0.5 # fraction of real samples in each batch + pretrain: True # use pretrained DeepLabV3 weights + mode: 1.0 # Fraction of the number of synthetic images to be used for training + resume: False # resume training from last saved model + root: './data/synth_data/' + # Path to real data + real: './data/FUSeg/' + + # ImageNet + mean: (0.485, 0.456, 0.406) + std: (0.229, 0.224, 0.225) + # Augmentations + min_v: 0.8 + max_v: 1.2 + img_size: (256, 256) + save_every: 5 + +val: + batch_size: 1 + log_every: 100 + val_every: 500 # Validate every N iterations + +test: + batch_size: 1 + test_every: 500 # Test every N iterations diff --git a/DermSynth3D/data/3dbodytex-1.1-highres/006-f-run/model_highres_0_normalized.mtl b/DermSynth3D/data/3dbodytex-1.1-highres/006-f-run/model_highres_0_normalized.mtl new file mode 100644 index 0000000000000000000000000000000000000000..a4a55d6bf738b7a57a73193798a1ffca0046ee4d --- /dev/null +++ b/DermSynth3D/data/3dbodytex-1.1-highres/006-f-run/model_highres_0_normalized.mtl @@ -0,0 +1,8 @@ +newmtl texture +Ka 0.200000 0.200000 0.200000 +Kd 1.000000 1.000000 1.000000 +Ks 1.000000 1.000000 1.000000 +Tr 0.000000 +illum 2 +Ns 0.000000 +map_Kd model_highres_0_normalized.png diff --git a/DermSynth3D/data/3dbodytex-1.1-highres/006-f-run/model_highres_0_normalized.obj b/DermSynth3D/data/3dbodytex-1.1-highres/006-f-run/model_highres_0_normalized.obj new file mode 100644 index 0000000000000000000000000000000000000000..7f62888ffa3b0a8ff05adcf0d246884904c7236f --- /dev/null +++ b/DermSynth3D/data/3dbodytex-1.1-highres/006-f-run/model_highres_0_normalized.obj @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a6143380968215e1e181f7bf54ea119f04c3b2eebe01bbd1fdc83f5867ba9194 +size 56175506 diff --git a/DermSynth3D/data/3dbodytex-1.1-highres/006-f-run/model_highres_0_normalized.png b/DermSynth3D/data/3dbodytex-1.1-highres/006-f-run/model_highres_0_normalized.png new file mode 100644 index 0000000000000000000000000000000000000000..bf4c22c9bde7ca5df4c0a54394d539e1999ba78f --- /dev/null +++ b/DermSynth3D/data/3dbodytex-1.1-highres/006-f-run/model_highres_0_normalized.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2947d8e2c1a0e6f78da52a96c065ae1909416906679e57173c9560a658630701 +size 9328449 diff --git a/DermSynth3D/data/3dbodytex-1.1-highres/221-m-u/model_highres_0_normalized.mtl b/DermSynth3D/data/3dbodytex-1.1-highres/221-m-u/model_highres_0_normalized.mtl new file mode 100644 index 0000000000000000000000000000000000000000..a4a55d6bf738b7a57a73193798a1ffca0046ee4d --- /dev/null +++ b/DermSynth3D/data/3dbodytex-1.1-highres/221-m-u/model_highres_0_normalized.mtl @@ -0,0 +1,8 @@ +newmtl texture +Ka 0.200000 0.200000 0.200000 +Kd 1.000000 1.000000 1.000000 +Ks 1.000000 1.000000 1.000000 +Tr 0.000000 +illum 2 +Ns 0.000000 +map_Kd model_highres_0_normalized.png diff --git a/DermSynth3D/data/3dbodytex-1.1-highres/221-m-u/model_highres_0_normalized.obj b/DermSynth3D/data/3dbodytex-1.1-highres/221-m-u/model_highres_0_normalized.obj new file mode 100644 index 0000000000000000000000000000000000000000..37a4faa874135d0cf7ee152d2cec79fdce6e1c41 --- /dev/null +++ b/DermSynth3D/data/3dbodytex-1.1-highres/221-m-u/model_highres_0_normalized.obj @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9329f432380d269cf6b8b8c2a54128f0c8842e613349bdd27e45dc010f606dbe +size 56024466 diff --git a/DermSynth3D/data/3dbodytex-1.1-highres/221-m-u/model_highres_0_normalized.png b/DermSynth3D/data/3dbodytex-1.1-highres/221-m-u/model_highres_0_normalized.png new file mode 100644 index 0000000000000000000000000000000000000000..bef5d9d3117d808d8d505356939d91f059abfc7d --- /dev/null +++ b/DermSynth3D/data/3dbodytex-1.1-highres/221-m-u/model_highres_0_normalized.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4a66ac124624c562bd97ea8ba30d05f66d6af32831ac3b9bcf9d5c00d8b41274 +size 7141347 diff --git a/DermSynth3D/data/annotations/annotator1/00f1b7bb9581e91250a2bb224c3321b8/image.jpg b/DermSynth3D/data/annotations/annotator1/00f1b7bb9581e91250a2bb224c3321b8/image.jpg new file mode 100644 index 0000000000000000000000000000000000000000..03617ce8859a0e3d8ae1cb82dd6fb146b8750310 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/00f1b7bb9581e91250a2bb224c3321b8/image.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/00f1b7bb9581e91250a2bb224c3321b8/lesions.png b/DermSynth3D/data/annotations/annotator1/00f1b7bb9581e91250a2bb224c3321b8/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..859893c6ce90a490b5e9bbba92b65f9a9516f5ea Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/00f1b7bb9581e91250a2bb224c3321b8/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/00f1b7bb9581e91250a2bb224c3321b8/nonskin.png b/DermSynth3D/data/annotations/annotator1/00f1b7bb9581e91250a2bb224c3321b8/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..ec12c523d73fb88cb0fdd0667b06987cc07df4f1 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/00f1b7bb9581e91250a2bb224c3321b8/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/00f1b7bb9581e91250a2bb224c3321b8/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/00f1b7bb9581e91250a2bb224c3321b8/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..b8f21018f00cf758041df56c274f6409c04cc51b Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/00f1b7bb9581e91250a2bb224c3321b8/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/01d4e1319fa2defaf41f8a82d6b0992c/01d4e1319fa2defaf41f8a82d6b0992c.jpg b/DermSynth3D/data/annotations/annotator1/01d4e1319fa2defaf41f8a82d6b0992c/01d4e1319fa2defaf41f8a82d6b0992c.jpg new file mode 100644 index 0000000000000000000000000000000000000000..830c12ef7579ca307bcb9f982dc415843ff52e20 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/01d4e1319fa2defaf41f8a82d6b0992c/01d4e1319fa2defaf41f8a82d6b0992c.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/01d4e1319fa2defaf41f8a82d6b0992c/lesions.png b/DermSynth3D/data/annotations/annotator1/01d4e1319fa2defaf41f8a82d6b0992c/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..e1da4d2fafea2925f6cc0f10748a2ac4997e8b71 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/01d4e1319fa2defaf41f8a82d6b0992c/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/01d4e1319fa2defaf41f8a82d6b0992c/nonskin.png b/DermSynth3D/data/annotations/annotator1/01d4e1319fa2defaf41f8a82d6b0992c/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..311198a438a1f8091cf8b58c477a85dd8884c20b Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/01d4e1319fa2defaf41f8a82d6b0992c/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/01d4e1319fa2defaf41f8a82d6b0992c/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/01d4e1319fa2defaf41f8a82d6b0992c/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..e1da4d2fafea2925f6cc0f10748a2ac4997e8b71 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/01d4e1319fa2defaf41f8a82d6b0992c/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/02cf3ed8e245eb520cce87fefbf5d574/02cf3ed8e245eb520cce87fefbf5d574.png b/DermSynth3D/data/annotations/annotator1/02cf3ed8e245eb520cce87fefbf5d574/02cf3ed8e245eb520cce87fefbf5d574.png new file mode 100644 index 0000000000000000000000000000000000000000..c93d29c08f7c3933a8c0e98bffcdd7972f529119 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/02cf3ed8e245eb520cce87fefbf5d574/02cf3ed8e245eb520cce87fefbf5d574.png differ diff --git a/DermSynth3D/data/annotations/annotator1/02cf3ed8e245eb520cce87fefbf5d574/lesions.png b/DermSynth3D/data/annotations/annotator1/02cf3ed8e245eb520cce87fefbf5d574/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..25b66ac38affc4859c4af5b40e15039f3bd66b77 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/02cf3ed8e245eb520cce87fefbf5d574/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/02cf3ed8e245eb520cce87fefbf5d574/nonskin.png b/DermSynth3D/data/annotations/annotator1/02cf3ed8e245eb520cce87fefbf5d574/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..8aa076a69268f2e90032bbfb64ee17dc2937fc89 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/02cf3ed8e245eb520cce87fefbf5d574/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/02cf3ed8e245eb520cce87fefbf5d574/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/02cf3ed8e245eb520cce87fefbf5d574/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..d0838122bd834460aa2b7d0a134026e31807d10a Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/02cf3ed8e245eb520cce87fefbf5d574/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/02dfbc0e14a4655ca9190705fe1b7d56.png b/DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/02dfbc0e14a4655ca9190705fe1b7d56.png new file mode 100644 index 0000000000000000000000000000000000000000..783b23b7f9eeb1beba1b7260c723ae11cc233908 --- /dev/null +++ b/DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/02dfbc0e14a4655ca9190705fe1b7d56.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d8938490b7eb3aa6df84b79058930dbbda5c3fa00ef472fb874d253427e1ff6f +size 4074527 diff --git a/DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/lesions.png b/DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..5c5239d6ed267b9f9bbd34480925d93682eee37e Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/nonskin.png b/DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..16b45d85cc21dedac54c053929c5d53c53aea9a4 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..6a5af2f92edb513bb638fb973a16185766c3553c Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/02dfbc0e14a4655ca9190705fe1b7d56/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0a102c96d763d98ab7eec9efd5a38d79/0a102c96d763d98ab7eec9efd5a38d79.jpg b/DermSynth3D/data/annotations/annotator1/0a102c96d763d98ab7eec9efd5a38d79/0a102c96d763d98ab7eec9efd5a38d79.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7f7f2c67e7aea7b0cdb75a52d0d0ec7dc67ad54e Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0a102c96d763d98ab7eec9efd5a38d79/0a102c96d763d98ab7eec9efd5a38d79.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0a102c96d763d98ab7eec9efd5a38d79/lesions.png b/DermSynth3D/data/annotations/annotator1/0a102c96d763d98ab7eec9efd5a38d79/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..d37c525fb0f6d13b51a187aba2bd8675a1bb61a0 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0a102c96d763d98ab7eec9efd5a38d79/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0a102c96d763d98ab7eec9efd5a38d79/nonskin.png b/DermSynth3D/data/annotations/annotator1/0a102c96d763d98ab7eec9efd5a38d79/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..77f6accc978ca11bb5ff0fdf8bd2cf060045100a Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0a102c96d763d98ab7eec9efd5a38d79/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0a102c96d763d98ab7eec9efd5a38d79/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0a102c96d763d98ab7eec9efd5a38d79/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..d37c525fb0f6d13b51a187aba2bd8675a1bb61a0 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0a102c96d763d98ab7eec9efd5a38d79/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0a55e2e0b4d0241785ba9787829c6dfc/0a55e2e0b4d0241785ba9787829c6dfc.jpg b/DermSynth3D/data/annotations/annotator1/0a55e2e0b4d0241785ba9787829c6dfc/0a55e2e0b4d0241785ba9787829c6dfc.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e1d51adbc4570c69c77332adb740d6cd049f05ef Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0a55e2e0b4d0241785ba9787829c6dfc/0a55e2e0b4d0241785ba9787829c6dfc.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0a55e2e0b4d0241785ba9787829c6dfc/lesions.png b/DermSynth3D/data/annotations/annotator1/0a55e2e0b4d0241785ba9787829c6dfc/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..f6507f204e17f4670392be2d4027bb4480a83d7d Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0a55e2e0b4d0241785ba9787829c6dfc/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0a55e2e0b4d0241785ba9787829c6dfc/nonskin.png b/DermSynth3D/data/annotations/annotator1/0a55e2e0b4d0241785ba9787829c6dfc/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..43c9682c9f7adfede6191e211f985a2c78b71499 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0a55e2e0b4d0241785ba9787829c6dfc/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0a55e2e0b4d0241785ba9787829c6dfc/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0a55e2e0b4d0241785ba9787829c6dfc/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..0cb9301884db5c39151ccec57120a3652a48c754 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0a55e2e0b4d0241785ba9787829c6dfc/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0a8d57f06114ff087d106c7137520927/lesions.png b/DermSynth3D/data/annotations/annotator1/0a8d57f06114ff087d106c7137520927/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..d3638878b08df4a52b4102b2652e13bd195edb49 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0a8d57f06114ff087d106c7137520927/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0a8d57f06114ff087d106c7137520927/nonskin.png b/DermSynth3D/data/annotations/annotator1/0a8d57f06114ff087d106c7137520927/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..519e0110d05174cde987fbe0ccff26e242af5aaa Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0a8d57f06114ff087d106c7137520927/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0a8d57f06114ff087d106c7137520927/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0a8d57f06114ff087d106c7137520927/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..cc9a57858e7b0929b11f38bd24f54ae04e6e26f4 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0a8d57f06114ff087d106c7137520927/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0abb64cc8b25d8272ec1df73300600b3/0abb64cc8b25d8272ec1df73300600b3.jpg b/DermSynth3D/data/annotations/annotator1/0abb64cc8b25d8272ec1df73300600b3/0abb64cc8b25d8272ec1df73300600b3.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ceb328797dcb23894cabfaa7e0587ee23dc1e54b Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0abb64cc8b25d8272ec1df73300600b3/0abb64cc8b25d8272ec1df73300600b3.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0abb64cc8b25d8272ec1df73300600b3/lesions.png b/DermSynth3D/data/annotations/annotator1/0abb64cc8b25d8272ec1df73300600b3/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..1650c532f9d2e13e7cc162bfcc45ad46fa983840 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0abb64cc8b25d8272ec1df73300600b3/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0abb64cc8b25d8272ec1df73300600b3/nonskin.png b/DermSynth3D/data/annotations/annotator1/0abb64cc8b25d8272ec1df73300600b3/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..e6949b775f2b668ec5ac4ac4da940c633be0318e Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0abb64cc8b25d8272ec1df73300600b3/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0abb64cc8b25d8272ec1df73300600b3/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0abb64cc8b25d8272ec1df73300600b3/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..1650c532f9d2e13e7cc162bfcc45ad46fa983840 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0abb64cc8b25d8272ec1df73300600b3/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0aebf00651ef3e45c7ac5b71472a08de/lesions.png b/DermSynth3D/data/annotations/annotator1/0aebf00651ef3e45c7ac5b71472a08de/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..926520502f1c0393b02bf42fc2b26b40fbd3f2d6 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0aebf00651ef3e45c7ac5b71472a08de/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0aebf00651ef3e45c7ac5b71472a08de/nonskin.png b/DermSynth3D/data/annotations/annotator1/0aebf00651ef3e45c7ac5b71472a08de/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..5976baeadeb18a994e540e7f640fb5c4c3549584 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0aebf00651ef3e45c7ac5b71472a08de/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0aebf00651ef3e45c7ac5b71472a08de/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0aebf00651ef3e45c7ac5b71472a08de/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..cc9b0d1038b81e6ebba502d522ee092706a7471b Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0aebf00651ef3e45c7ac5b71472a08de/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0afbf2ec3f745735dc677ca739055838/lesions.png b/DermSynth3D/data/annotations/annotator1/0afbf2ec3f745735dc677ca739055838/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..f53fbb24a76fc32780460b40536c03965759f176 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0afbf2ec3f745735dc677ca739055838/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0afbf2ec3f745735dc677ca739055838/nonskin.png b/DermSynth3D/data/annotations/annotator1/0afbf2ec3f745735dc677ca739055838/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..39de2e89cdc4473918c724692dc07aefad5788e1 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0afbf2ec3f745735dc677ca739055838/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0afbf2ec3f745735dc677ca739055838/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0afbf2ec3f745735dc677ca739055838/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..fa315b67d9b836dcf4d01d2ccb0871fb38e8da36 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0afbf2ec3f745735dc677ca739055838/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0b40c010e442d29b496fa8368746b02a/lesions.png b/DermSynth3D/data/annotations/annotator1/0b40c010e442d29b496fa8368746b02a/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..3cf2568faf5815c185265c5cdaebf6d0c122c1ec Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0b40c010e442d29b496fa8368746b02a/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0b40c010e442d29b496fa8368746b02a/nonskin.png b/DermSynth3D/data/annotations/annotator1/0b40c010e442d29b496fa8368746b02a/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..603a9f71141ec1f55947f0c8c87fcb70879048b2 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0b40c010e442d29b496fa8368746b02a/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0b40c010e442d29b496fa8368746b02a/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0b40c010e442d29b496fa8368746b02a/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..a651be0e10cabed8191b2f63ffbefee2cf6e95b4 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0b40c010e442d29b496fa8368746b02a/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c0700fc7177d09e2df0c6658288cf8f/0c0700fc7177d09e2df0c6658288cf8f.jpg b/DermSynth3D/data/annotations/annotator1/0c0700fc7177d09e2df0c6658288cf8f/0c0700fc7177d09e2df0c6658288cf8f.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4a1722d4575b47f19078a11dbf95c49ff8f00403 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c0700fc7177d09e2df0c6658288cf8f/0c0700fc7177d09e2df0c6658288cf8f.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0c0700fc7177d09e2df0c6658288cf8f/lesions.png b/DermSynth3D/data/annotations/annotator1/0c0700fc7177d09e2df0c6658288cf8f/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..a060b1afa5b56ef63d295d52d1b5b5b0a2bbff53 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c0700fc7177d09e2df0c6658288cf8f/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c0700fc7177d09e2df0c6658288cf8f/nonskin.png b/DermSynth3D/data/annotations/annotator1/0c0700fc7177d09e2df0c6658288cf8f/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..636c5f888557a303a611148f81e99f4ae682af6f Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c0700fc7177d09e2df0c6658288cf8f/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c0700fc7177d09e2df0c6658288cf8f/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0c0700fc7177d09e2df0c6658288cf8f/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..a060b1afa5b56ef63d295d52d1b5b5b0a2bbff53 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c0700fc7177d09e2df0c6658288cf8f/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c6695335edb59409519761fe3c3cfbb/0c6695335edb59409519761fe3c3cfbb.jpg b/DermSynth3D/data/annotations/annotator1/0c6695335edb59409519761fe3c3cfbb/0c6695335edb59409519761fe3c3cfbb.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ddc5db3927005a55d51e0d48c929ac413625fcaa Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c6695335edb59409519761fe3c3cfbb/0c6695335edb59409519761fe3c3cfbb.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0c6695335edb59409519761fe3c3cfbb/lesions.png b/DermSynth3D/data/annotations/annotator1/0c6695335edb59409519761fe3c3cfbb/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..c3dd3022667a18b2c58278e8ba0abe06b4e8c333 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c6695335edb59409519761fe3c3cfbb/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c6695335edb59409519761fe3c3cfbb/nonskin.png b/DermSynth3D/data/annotations/annotator1/0c6695335edb59409519761fe3c3cfbb/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..281f062d5e1560471f182997eb624ca38d4603e8 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c6695335edb59409519761fe3c3cfbb/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c6695335edb59409519761fe3c3cfbb/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0c6695335edb59409519761fe3c3cfbb/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..c3dd3022667a18b2c58278e8ba0abe06b4e8c333 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c6695335edb59409519761fe3c3cfbb/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c7b64342387d294d8f790014182ccab/0c7b64342387d294d8f790014182ccab.jpg b/DermSynth3D/data/annotations/annotator1/0c7b64342387d294d8f790014182ccab/0c7b64342387d294d8f790014182ccab.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ccdd7c45b029b5cb69d8b6a3d654de1661293914 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c7b64342387d294d8f790014182ccab/0c7b64342387d294d8f790014182ccab.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0c7b64342387d294d8f790014182ccab/lesions.png b/DermSynth3D/data/annotations/annotator1/0c7b64342387d294d8f790014182ccab/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..bf5da1b4c8d0451ac245966a7f9ae1481d5b2646 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c7b64342387d294d8f790014182ccab/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c7b64342387d294d8f790014182ccab/nonskin.png b/DermSynth3D/data/annotations/annotator1/0c7b64342387d294d8f790014182ccab/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..5bab0958aeae30ca62cb9aaf1e876fffc2fcf530 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c7b64342387d294d8f790014182ccab/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c7b64342387d294d8f790014182ccab/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0c7b64342387d294d8f790014182ccab/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..bf5da1b4c8d0451ac245966a7f9ae1481d5b2646 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c7b64342387d294d8f790014182ccab/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c843edc73aa0b63ec9a266b937c3a3a/0c843edc73aa0b63ec9a266b937c3a3a.jpg b/DermSynth3D/data/annotations/annotator1/0c843edc73aa0b63ec9a266b937c3a3a/0c843edc73aa0b63ec9a266b937c3a3a.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f00a733201df8676440a900fce0da9e0d25980f7 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c843edc73aa0b63ec9a266b937c3a3a/0c843edc73aa0b63ec9a266b937c3a3a.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0c843edc73aa0b63ec9a266b937c3a3a/lesions.png b/DermSynth3D/data/annotations/annotator1/0c843edc73aa0b63ec9a266b937c3a3a/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..7c727113de27334c28cb96382e94b2cd2b1111ca Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c843edc73aa0b63ec9a266b937c3a3a/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c843edc73aa0b63ec9a266b937c3a3a/nonskin.png b/DermSynth3D/data/annotations/annotator1/0c843edc73aa0b63ec9a266b937c3a3a/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..13916561841d8c6593c81d2dfd624e24e91fe132 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c843edc73aa0b63ec9a266b937c3a3a/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c843edc73aa0b63ec9a266b937c3a3a/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0c843edc73aa0b63ec9a266b937c3a3a/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..7c727113de27334c28cb96382e94b2cd2b1111ca Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c843edc73aa0b63ec9a266b937c3a3a/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c9a63866e446cb601bdeb9a4d3787a6/0c9a63866e446cb601bdeb9a4d3787a6.jpg b/DermSynth3D/data/annotations/annotator1/0c9a63866e446cb601bdeb9a4d3787a6/0c9a63866e446cb601bdeb9a4d3787a6.jpg new file mode 100644 index 0000000000000000000000000000000000000000..133e33872b510b997eb03b741dc7c773ce840903 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c9a63866e446cb601bdeb9a4d3787a6/0c9a63866e446cb601bdeb9a4d3787a6.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0c9a63866e446cb601bdeb9a4d3787a6/lesions.png b/DermSynth3D/data/annotations/annotator1/0c9a63866e446cb601bdeb9a4d3787a6/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..18b9aec22335ddc910964606b7d3e5de31b80702 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c9a63866e446cb601bdeb9a4d3787a6/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c9a63866e446cb601bdeb9a4d3787a6/nonskin.png b/DermSynth3D/data/annotations/annotator1/0c9a63866e446cb601bdeb9a4d3787a6/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..555bde2252404945ac7265d9195394bb6f842881 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c9a63866e446cb601bdeb9a4d3787a6/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0c9a63866e446cb601bdeb9a4d3787a6/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0c9a63866e446cb601bdeb9a4d3787a6/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..18b9aec22335ddc910964606b7d3e5de31b80702 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0c9a63866e446cb601bdeb9a4d3787a6/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d138dfc5437475a31a7718a53be001a/0d138dfc5437475a31a7718a53be001a.jpg b/DermSynth3D/data/annotations/annotator1/0d138dfc5437475a31a7718a53be001a/0d138dfc5437475a31a7718a53be001a.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cbab1070928ae2fe552e1931d6b84d5383a80929 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d138dfc5437475a31a7718a53be001a/0d138dfc5437475a31a7718a53be001a.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0d138dfc5437475a31a7718a53be001a/lesions.png b/DermSynth3D/data/annotations/annotator1/0d138dfc5437475a31a7718a53be001a/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..9422b824b982881b44a0ae96e0dfb271cdf49063 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d138dfc5437475a31a7718a53be001a/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d138dfc5437475a31a7718a53be001a/nonskin.png b/DermSynth3D/data/annotations/annotator1/0d138dfc5437475a31a7718a53be001a/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..c048abc36b545f6c6be565fd038f62ce98f83b1f Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d138dfc5437475a31a7718a53be001a/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d138dfc5437475a31a7718a53be001a/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0d138dfc5437475a31a7718a53be001a/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..3bc09160320cd924c8a5f4ce2d70d9afa6b5dc1c Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d138dfc5437475a31a7718a53be001a/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d4c5e2266a00cd127cd5a676ac872b5/0d4c5e2266a00cd127cd5a676ac872b5.jpg b/DermSynth3D/data/annotations/annotator1/0d4c5e2266a00cd127cd5a676ac872b5/0d4c5e2266a00cd127cd5a676ac872b5.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3cb2171d6c598dcf7b100e3f3b5f71f7a700ed78 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d4c5e2266a00cd127cd5a676ac872b5/0d4c5e2266a00cd127cd5a676ac872b5.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0d4c5e2266a00cd127cd5a676ac872b5/lesions.png b/DermSynth3D/data/annotations/annotator1/0d4c5e2266a00cd127cd5a676ac872b5/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..421fa4fb667e03f48c408aa42237f3ab293a8b9b Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d4c5e2266a00cd127cd5a676ac872b5/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d4c5e2266a00cd127cd5a676ac872b5/nonskin.png b/DermSynth3D/data/annotations/annotator1/0d4c5e2266a00cd127cd5a676ac872b5/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..a27e873a8285157130acf0d1bce5c52b8f05c54f Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d4c5e2266a00cd127cd5a676ac872b5/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d4c5e2266a00cd127cd5a676ac872b5/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0d4c5e2266a00cd127cd5a676ac872b5/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..421fa4fb667e03f48c408aa42237f3ab293a8b9b Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d4c5e2266a00cd127cd5a676ac872b5/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d6908a2080b42cb759ecf7980314d30/0d6908a2080b42cb759ecf7980314d30.jpg b/DermSynth3D/data/annotations/annotator1/0d6908a2080b42cb759ecf7980314d30/0d6908a2080b42cb759ecf7980314d30.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1d2460324a1e273aca91c2808057497e9d6e3403 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d6908a2080b42cb759ecf7980314d30/0d6908a2080b42cb759ecf7980314d30.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0d6908a2080b42cb759ecf7980314d30/lesions.png b/DermSynth3D/data/annotations/annotator1/0d6908a2080b42cb759ecf7980314d30/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..a52191cefe8690b7880caf1236aab214e3f1568a Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d6908a2080b42cb759ecf7980314d30/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d6908a2080b42cb759ecf7980314d30/nonskin.png b/DermSynth3D/data/annotations/annotator1/0d6908a2080b42cb759ecf7980314d30/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..5662a3fe1d44ef44399217b3e44a692ee6180b06 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d6908a2080b42cb759ecf7980314d30/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d6908a2080b42cb759ecf7980314d30/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0d6908a2080b42cb759ecf7980314d30/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..2a8c6d43782631c1b67b95ec9a29da7b252c0032 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d6908a2080b42cb759ecf7980314d30/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d8457afebb67905127da37baece43d8/image.jpg b/DermSynth3D/data/annotations/annotator1/0d8457afebb67905127da37baece43d8/image.jpg new file mode 100644 index 0000000000000000000000000000000000000000..37fe4e9f4b88200f73aff0dd6a561967c1d5b2b2 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d8457afebb67905127da37baece43d8/image.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0d8457afebb67905127da37baece43d8/lesions.png b/DermSynth3D/data/annotations/annotator1/0d8457afebb67905127da37baece43d8/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..3b485f93ebdecac3ebe71bf72410d523e23996a3 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d8457afebb67905127da37baece43d8/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d8457afebb67905127da37baece43d8/nonskin.png b/DermSynth3D/data/annotations/annotator1/0d8457afebb67905127da37baece43d8/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..3bf74c9751437f8d30932bbbdf2969164fcb1518 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d8457afebb67905127da37baece43d8/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d8457afebb67905127da37baece43d8/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0d8457afebb67905127da37baece43d8/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..565ee59a84fa5214464c0338c8b451c853563d24 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d8457afebb67905127da37baece43d8/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d90cd2b2bf339a587dd7072372ff186/lesions.png b/DermSynth3D/data/annotations/annotator1/0d90cd2b2bf339a587dd7072372ff186/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..767fe502a5c3a8c511053a9263ecc249bc8e4fe3 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d90cd2b2bf339a587dd7072372ff186/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d90cd2b2bf339a587dd7072372ff186/nonskin.png b/DermSynth3D/data/annotations/annotator1/0d90cd2b2bf339a587dd7072372ff186/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..550bc9a7fb52ab00c2d64cfbca8d23ba958cc219 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d90cd2b2bf339a587dd7072372ff186/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0d90cd2b2bf339a587dd7072372ff186/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0d90cd2b2bf339a587dd7072372ff186/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..330957524fead1c140b7409a6c8b8dc17a531c42 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0d90cd2b2bf339a587dd7072372ff186/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0db67ec1711c7ab9d13c8fef53e527ea/image.jpg b/DermSynth3D/data/annotations/annotator1/0db67ec1711c7ab9d13c8fef53e527ea/image.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3adcf21d5238ffbdb4829315af124c1a92d4c1ec Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0db67ec1711c7ab9d13c8fef53e527ea/image.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0db67ec1711c7ab9d13c8fef53e527ea/lesions.png b/DermSynth3D/data/annotations/annotator1/0db67ec1711c7ab9d13c8fef53e527ea/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..e01aa5df09ccf6a2699f67158bab66726ab8ecc3 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0db67ec1711c7ab9d13c8fef53e527ea/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0db67ec1711c7ab9d13c8fef53e527ea/nonskin.png b/DermSynth3D/data/annotations/annotator1/0db67ec1711c7ab9d13c8fef53e527ea/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..bbe65e884533b43400a769925d8d8030c9d0b98b Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0db67ec1711c7ab9d13c8fef53e527ea/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0db67ec1711c7ab9d13c8fef53e527ea/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0db67ec1711c7ab9d13c8fef53e527ea/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..e01aa5df09ccf6a2699f67158bab66726ab8ecc3 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0db67ec1711c7ab9d13c8fef53e527ea/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e02faeb96069dafc40b4d74f14a83ce/image.jpg b/DermSynth3D/data/annotations/annotator1/0e02faeb96069dafc40b4d74f14a83ce/image.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b8ee84126e1f343fe19f21f23e50d03f1cca0ba4 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e02faeb96069dafc40b4d74f14a83ce/image.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0e02faeb96069dafc40b4d74f14a83ce/lesions.png b/DermSynth3D/data/annotations/annotator1/0e02faeb96069dafc40b4d74f14a83ce/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..6d9712006943275d7198e7634aae017126bc558c Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e02faeb96069dafc40b4d74f14a83ce/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e02faeb96069dafc40b4d74f14a83ce/nonskin.png b/DermSynth3D/data/annotations/annotator1/0e02faeb96069dafc40b4d74f14a83ce/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..5701a628c3196b648dced1f9ed56d330b1f39b89 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e02faeb96069dafc40b4d74f14a83ce/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e02faeb96069dafc40b4d74f14a83ce/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0e02faeb96069dafc40b4d74f14a83ce/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..22c34c518782ee47789af54c253ebcadc53d5fcf Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e02faeb96069dafc40b4d74f14a83ce/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e16117b2b9d1e457987386e363cc03c/image.jpg b/DermSynth3D/data/annotations/annotator1/0e16117b2b9d1e457987386e363cc03c/image.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2042c2aef39fcaa7a56302e45129fc0a35b6475f Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e16117b2b9d1e457987386e363cc03c/image.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0e16117b2b9d1e457987386e363cc03c/lesions.png b/DermSynth3D/data/annotations/annotator1/0e16117b2b9d1e457987386e363cc03c/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..be4daff6390cb69537c2523b2777ed4a79b27ed5 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e16117b2b9d1e457987386e363cc03c/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e16117b2b9d1e457987386e363cc03c/nonskin.png b/DermSynth3D/data/annotations/annotator1/0e16117b2b9d1e457987386e363cc03c/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..3ff1889cc377e8ebd3be4d81db98b11556123b0d Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e16117b2b9d1e457987386e363cc03c/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e16117b2b9d1e457987386e363cc03c/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0e16117b2b9d1e457987386e363cc03c/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..a38c83852a5189a6c06a8db014c5bb2fe8d1c753 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e16117b2b9d1e457987386e363cc03c/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e539304dcb700d132400c34f44d21b7/lesions.png b/DermSynth3D/data/annotations/annotator1/0e539304dcb700d132400c34f44d21b7/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..2b3eb7c06c29243435679454ef25a8f8f2b9081f Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e539304dcb700d132400c34f44d21b7/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e539304dcb700d132400c34f44d21b7/nonskin.png b/DermSynth3D/data/annotations/annotator1/0e539304dcb700d132400c34f44d21b7/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..d7b8e4bfeff83fc8e35e6e1cbd0b8ee6c9e1d236 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e539304dcb700d132400c34f44d21b7/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e539304dcb700d132400c34f44d21b7/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0e539304dcb700d132400c34f44d21b7/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..58708b64f7bea9398b31eb58f1a58c8cc95ab7d9 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e539304dcb700d132400c34f44d21b7/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e55b54825db2d67edecfe12d01144a6/image.jpg b/DermSynth3D/data/annotations/annotator1/0e55b54825db2d67edecfe12d01144a6/image.jpg new file mode 100644 index 0000000000000000000000000000000000000000..35edc44c7bbe50693bf4dad00411acc6d3ec1bf6 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e55b54825db2d67edecfe12d01144a6/image.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0e55b54825db2d67edecfe12d01144a6/lesions.png b/DermSynth3D/data/annotations/annotator1/0e55b54825db2d67edecfe12d01144a6/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..4cddf816df35d880cbf5e218843b716ae74ffa43 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e55b54825db2d67edecfe12d01144a6/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e55b54825db2d67edecfe12d01144a6/nonskin.png b/DermSynth3D/data/annotations/annotator1/0e55b54825db2d67edecfe12d01144a6/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..8943648e36de377457b4203e66ddcdda1e9e10bf Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e55b54825db2d67edecfe12d01144a6/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e55b54825db2d67edecfe12d01144a6/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0e55b54825db2d67edecfe12d01144a6/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..4cddf816df35d880cbf5e218843b716ae74ffa43 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e55b54825db2d67edecfe12d01144a6/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e5f2b371f082ab91db473d9913d326a/image.jpg b/DermSynth3D/data/annotations/annotator1/0e5f2b371f082ab91db473d9913d326a/image.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8b4d21babe856d996900669e2873e673c2ca42f8 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e5f2b371f082ab91db473d9913d326a/image.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0e5f2b371f082ab91db473d9913d326a/lesions.png b/DermSynth3D/data/annotations/annotator1/0e5f2b371f082ab91db473d9913d326a/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..febebbc3f7fa84b09627004cac46d2606e050e80 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e5f2b371f082ab91db473d9913d326a/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e5f2b371f082ab91db473d9913d326a/nonskin.png b/DermSynth3D/data/annotations/annotator1/0e5f2b371f082ab91db473d9913d326a/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..88f47f5ee6dd98a8d4318d71db36a41de13b52b2 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e5f2b371f082ab91db473d9913d326a/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e5f2b371f082ab91db473d9913d326a/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0e5f2b371f082ab91db473d9913d326a/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..febebbc3f7fa84b09627004cac46d2606e050e80 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e5f2b371f082ab91db473d9913d326a/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e72ba059329555ffcfe32d627a15b7a/image.jpg b/DermSynth3D/data/annotations/annotator1/0e72ba059329555ffcfe32d627a15b7a/image.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6c656b3fd0c9fa7b6a0502395e195692da973211 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e72ba059329555ffcfe32d627a15b7a/image.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0e72ba059329555ffcfe32d627a15b7a/lesions.png b/DermSynth3D/data/annotations/annotator1/0e72ba059329555ffcfe32d627a15b7a/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..4a6ac24978e02725455d196a0c71754a4d5942f3 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e72ba059329555ffcfe32d627a15b7a/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e72ba059329555ffcfe32d627a15b7a/nonskin.png b/DermSynth3D/data/annotations/annotator1/0e72ba059329555ffcfe32d627a15b7a/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..acd343ec63acd014d9de3df9487bcdf78548b921 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e72ba059329555ffcfe32d627a15b7a/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e72ba059329555ffcfe32d627a15b7a/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0e72ba059329555ffcfe32d627a15b7a/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..4a6ac24978e02725455d196a0c71754a4d5942f3 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e72ba059329555ffcfe32d627a15b7a/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e92cad8c3bc07d294b8b99991739b40/0e92cad8c3bc07d294b8b99991739b40.jpg b/DermSynth3D/data/annotations/annotator1/0e92cad8c3bc07d294b8b99991739b40/0e92cad8c3bc07d294b8b99991739b40.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3b8c2b370774e49167e782f7854c87e538abb639 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e92cad8c3bc07d294b8b99991739b40/0e92cad8c3bc07d294b8b99991739b40.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0e92cad8c3bc07d294b8b99991739b40/lesions.png b/DermSynth3D/data/annotations/annotator1/0e92cad8c3bc07d294b8b99991739b40/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..f4794fc3ec4e7501338ff2f6ea39cfe0b2198ec5 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e92cad8c3bc07d294b8b99991739b40/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e92cad8c3bc07d294b8b99991739b40/nonskin.png b/DermSynth3D/data/annotations/annotator1/0e92cad8c3bc07d294b8b99991739b40/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..1e4fcccbe80493e5e2eb14072ff30b529f6bb5be Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e92cad8c3bc07d294b8b99991739b40/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0e92cad8c3bc07d294b8b99991739b40/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0e92cad8c3bc07d294b8b99991739b40/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..f4794fc3ec4e7501338ff2f6ea39cfe0b2198ec5 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0e92cad8c3bc07d294b8b99991739b40/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0eae940a2c38375a082cc48bfc591676/0eae940a2c38375a082cc48bfc591676.jpg b/DermSynth3D/data/annotations/annotator1/0eae940a2c38375a082cc48bfc591676/0eae940a2c38375a082cc48bfc591676.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c093e17b83a4d9d04cd1e24556c6d91a8f1f0974 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0eae940a2c38375a082cc48bfc591676/0eae940a2c38375a082cc48bfc591676.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0eae940a2c38375a082cc48bfc591676/lesions.png b/DermSynth3D/data/annotations/annotator1/0eae940a2c38375a082cc48bfc591676/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..b824f27e613f2ef5c14440f65204bf5c39e72d46 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0eae940a2c38375a082cc48bfc591676/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0eae940a2c38375a082cc48bfc591676/nonskin.png b/DermSynth3D/data/annotations/annotator1/0eae940a2c38375a082cc48bfc591676/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..5511a8eec1ffdc5370997d02e861877373bc8f6d Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0eae940a2c38375a082cc48bfc591676/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0eae940a2c38375a082cc48bfc591676/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0eae940a2c38375a082cc48bfc591676/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..3d15ac13e8b4ea64062d8aef8349e2770bf651a4 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0eae940a2c38375a082cc48bfc591676/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0ee34d8cc387db6430bba2d2ce793ac9/0ee34d8cc387db6430bba2d2ce793ac9.jpg b/DermSynth3D/data/annotations/annotator1/0ee34d8cc387db6430bba2d2ce793ac9/0ee34d8cc387db6430bba2d2ce793ac9.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e9eec6574795bc5d9dacf626fdd9619792ac6ece Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0ee34d8cc387db6430bba2d2ce793ac9/0ee34d8cc387db6430bba2d2ce793ac9.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0ee34d8cc387db6430bba2d2ce793ac9/lesions.png b/DermSynth3D/data/annotations/annotator1/0ee34d8cc387db6430bba2d2ce793ac9/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..45aeeb063b96a48b60846b7e7567dd51b745d92c Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0ee34d8cc387db6430bba2d2ce793ac9/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0ee34d8cc387db6430bba2d2ce793ac9/nonskin.png b/DermSynth3D/data/annotations/annotator1/0ee34d8cc387db6430bba2d2ce793ac9/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..c8de376185c8469e5d411d0b109354caf111caf6 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0ee34d8cc387db6430bba2d2ce793ac9/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0ee34d8cc387db6430bba2d2ce793ac9/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0ee34d8cc387db6430bba2d2ce793ac9/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..45aeeb063b96a48b60846b7e7567dd51b745d92c Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0ee34d8cc387db6430bba2d2ce793ac9/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0ef0d6fa3124b76205a8d514b22fafaa/0ef0d6fa3124b76205a8d514b22fafaa.jpg b/DermSynth3D/data/annotations/annotator1/0ef0d6fa3124b76205a8d514b22fafaa/0ef0d6fa3124b76205a8d514b22fafaa.jpg new file mode 100644 index 0000000000000000000000000000000000000000..06887ec231e668ce701a7d3cbc88150156d8500f Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0ef0d6fa3124b76205a8d514b22fafaa/0ef0d6fa3124b76205a8d514b22fafaa.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0ef0d6fa3124b76205a8d514b22fafaa/lesions.png b/DermSynth3D/data/annotations/annotator1/0ef0d6fa3124b76205a8d514b22fafaa/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..30eba4813a4ca90b9bc50ae0af4a3b68b8270196 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0ef0d6fa3124b76205a8d514b22fafaa/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0ef0d6fa3124b76205a8d514b22fafaa/nonskin.png b/DermSynth3D/data/annotations/annotator1/0ef0d6fa3124b76205a8d514b22fafaa/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..5993f0c776d7a60644afd8914766fb79e726cb96 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0ef0d6fa3124b76205a8d514b22fafaa/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0ef0d6fa3124b76205a8d514b22fafaa/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0ef0d6fa3124b76205a8d514b22fafaa/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..30eba4813a4ca90b9bc50ae0af4a3b68b8270196 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0ef0d6fa3124b76205a8d514b22fafaa/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0f02445f98cf1f8c15392989839ffc5b/0f02445f98cf1f8c15392989839ffc5b.jpg b/DermSynth3D/data/annotations/annotator1/0f02445f98cf1f8c15392989839ffc5b/0f02445f98cf1f8c15392989839ffc5b.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2a5b53ac04d6a05679ef4b5ac85ce461b7ccce4e Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0f02445f98cf1f8c15392989839ffc5b/0f02445f98cf1f8c15392989839ffc5b.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/0f02445f98cf1f8c15392989839ffc5b/lesions.png b/DermSynth3D/data/annotations/annotator1/0f02445f98cf1f8c15392989839ffc5b/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..bbe4f5bac3de1602ff8cc6e96fc8cf30be5adf3c Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0f02445f98cf1f8c15392989839ffc5b/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0f02445f98cf1f8c15392989839ffc5b/nonskin.png b/DermSynth3D/data/annotations/annotator1/0f02445f98cf1f8c15392989839ffc5b/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..fe78b8c61ddcb19f75a3e0bd0b442f7b316f64b2 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0f02445f98cf1f8c15392989839ffc5b/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/0f02445f98cf1f8c15392989839ffc5b/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/0f02445f98cf1f8c15392989839ffc5b/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..7a10ea18ba79f794e6e6c9aa5a543a985408d05f Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/0f02445f98cf1f8c15392989839ffc5b/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1a3485252a20ba5b11e3958881f21b4e/1a3485252a20ba5b11e3958881f21b4e.jpg b/DermSynth3D/data/annotations/annotator1/1a3485252a20ba5b11e3958881f21b4e/1a3485252a20ba5b11e3958881f21b4e.jpg new file mode 100644 index 0000000000000000000000000000000000000000..12cd4824c3f709fb02a26ddaae9e4ddd0f31749e Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1a3485252a20ba5b11e3958881f21b4e/1a3485252a20ba5b11e3958881f21b4e.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/1a3485252a20ba5b11e3958881f21b4e/lesions.png b/DermSynth3D/data/annotations/annotator1/1a3485252a20ba5b11e3958881f21b4e/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..625d57b3ccb4a463d9d54a714c2d5321e5b0502b Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1a3485252a20ba5b11e3958881f21b4e/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1a3485252a20ba5b11e3958881f21b4e/nonskin.png b/DermSynth3D/data/annotations/annotator1/1a3485252a20ba5b11e3958881f21b4e/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..1186c639a70634155c910e62d07008aebab042c5 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1a3485252a20ba5b11e3958881f21b4e/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1a3485252a20ba5b11e3958881f21b4e/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/1a3485252a20ba5b11e3958881f21b4e/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..625d57b3ccb4a463d9d54a714c2d5321e5b0502b Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1a3485252a20ba5b11e3958881f21b4e/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1c31b43cce49c0e53349f4f1adb59b1d/image.jpg b/DermSynth3D/data/annotations/annotator1/1c31b43cce49c0e53349f4f1adb59b1d/image.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4de8673dc1402d5b830653f49177723ebdb63c0f Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1c31b43cce49c0e53349f4f1adb59b1d/image.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/1c31b43cce49c0e53349f4f1adb59b1d/lesions.png b/DermSynth3D/data/annotations/annotator1/1c31b43cce49c0e53349f4f1adb59b1d/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..61235dc83c37c8ea5e62581adb36765f3246b602 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1c31b43cce49c0e53349f4f1adb59b1d/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1c31b43cce49c0e53349f4f1adb59b1d/nonskin.png b/DermSynth3D/data/annotations/annotator1/1c31b43cce49c0e53349f4f1adb59b1d/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..f6bcb3da3d9a5ccd10473059c6ae5f6a3b56d3c7 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1c31b43cce49c0e53349f4f1adb59b1d/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1c31b43cce49c0e53349f4f1adb59b1d/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/1c31b43cce49c0e53349f4f1adb59b1d/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..61235dc83c37c8ea5e62581adb36765f3246b602 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1c31b43cce49c0e53349f4f1adb59b1d/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1c444f036ad09acca39209e85c0a8dec/1c444f036ad09acca39209e85c0a8dec.jpg b/DermSynth3D/data/annotations/annotator1/1c444f036ad09acca39209e85c0a8dec/1c444f036ad09acca39209e85c0a8dec.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f9c1518f21dfe38f8feb1e1e7b694f1940a5cd65 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1c444f036ad09acca39209e85c0a8dec/1c444f036ad09acca39209e85c0a8dec.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/1c444f036ad09acca39209e85c0a8dec/lesions.png b/DermSynth3D/data/annotations/annotator1/1c444f036ad09acca39209e85c0a8dec/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..0668ffe8a1d43e66a7d3de1b5c10b05246ac7a98 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1c444f036ad09acca39209e85c0a8dec/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1c444f036ad09acca39209e85c0a8dec/nonskin.png b/DermSynth3D/data/annotations/annotator1/1c444f036ad09acca39209e85c0a8dec/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..0660a0aadb3a945f34fb3c2c081f726e9f60d361 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1c444f036ad09acca39209e85c0a8dec/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1c444f036ad09acca39209e85c0a8dec/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/1c444f036ad09acca39209e85c0a8dec/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..f3915a3d709e047791693b21c8e4a8b0657b437a Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1c444f036ad09acca39209e85c0a8dec/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1c858c3ce9f9ac220a08cb5338c4305d/1c858c3ce9f9ac220a08cb5338c4305d.jpg b/DermSynth3D/data/annotations/annotator1/1c858c3ce9f9ac220a08cb5338c4305d/1c858c3ce9f9ac220a08cb5338c4305d.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4eb19f8ce383f7056e9be3967e53d88a47b2bead Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1c858c3ce9f9ac220a08cb5338c4305d/1c858c3ce9f9ac220a08cb5338c4305d.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/1c858c3ce9f9ac220a08cb5338c4305d/lesions.png b/DermSynth3D/data/annotations/annotator1/1c858c3ce9f9ac220a08cb5338c4305d/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..586610d1f59971df471eaed1a9efaedabdc143c7 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1c858c3ce9f9ac220a08cb5338c4305d/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1c858c3ce9f9ac220a08cb5338c4305d/nonskin.png b/DermSynth3D/data/annotations/annotator1/1c858c3ce9f9ac220a08cb5338c4305d/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..5811782884a770d116353fb4c3357a48d26b462c Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1c858c3ce9f9ac220a08cb5338c4305d/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1c858c3ce9f9ac220a08cb5338c4305d/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/1c858c3ce9f9ac220a08cb5338c4305d/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..820ebc8b18e01c4c618e162819b330c471a0921d Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1c858c3ce9f9ac220a08cb5338c4305d/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d1ee437001fa401e4a5916c93f7e2ae/1d1ee437001fa401e4a5916c93f7e2ae.jpg b/DermSynth3D/data/annotations/annotator1/1d1ee437001fa401e4a5916c93f7e2ae/1d1ee437001fa401e4a5916c93f7e2ae.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a98e72e9b55d1387b82b480b12c4a4b9ab4b42de Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d1ee437001fa401e4a5916c93f7e2ae/1d1ee437001fa401e4a5916c93f7e2ae.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/1d1ee437001fa401e4a5916c93f7e2ae/lesions.png b/DermSynth3D/data/annotations/annotator1/1d1ee437001fa401e4a5916c93f7e2ae/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..2081f3cbcc25ab6ab0896a51c52d477e5d5294bf Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d1ee437001fa401e4a5916c93f7e2ae/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d1ee437001fa401e4a5916c93f7e2ae/nonskin.png b/DermSynth3D/data/annotations/annotator1/1d1ee437001fa401e4a5916c93f7e2ae/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..06db8d8de648bb72035c5fb3a20eb8fed2ef4f57 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d1ee437001fa401e4a5916c93f7e2ae/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d1ee437001fa401e4a5916c93f7e2ae/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/1d1ee437001fa401e4a5916c93f7e2ae/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..08a07d35dc6b336fe29ee13d3c8bd59ee60aeace Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d1ee437001fa401e4a5916c93f7e2ae/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d21bcb48dc402bd8d7cb028c3e40f23/1d21bcb48dc402bd8d7cb028c3e40f23.jpg b/DermSynth3D/data/annotations/annotator1/1d21bcb48dc402bd8d7cb028c3e40f23/1d21bcb48dc402bd8d7cb028c3e40f23.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e327ac7178e030e56ef9cca6c6e3b67581dd90a9 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d21bcb48dc402bd8d7cb028c3e40f23/1d21bcb48dc402bd8d7cb028c3e40f23.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/1d21bcb48dc402bd8d7cb028c3e40f23/lesions.png b/DermSynth3D/data/annotations/annotator1/1d21bcb48dc402bd8d7cb028c3e40f23/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..8e7a9106cf55de56c4941d62261b1ca697b5de81 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d21bcb48dc402bd8d7cb028c3e40f23/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d21bcb48dc402bd8d7cb028c3e40f23/nonskin.png b/DermSynth3D/data/annotations/annotator1/1d21bcb48dc402bd8d7cb028c3e40f23/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..9289e1569097a4f35d6a8aeba4708d75fd7031fd Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d21bcb48dc402bd8d7cb028c3e40f23/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d21bcb48dc402bd8d7cb028c3e40f23/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/1d21bcb48dc402bd8d7cb028c3e40f23/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..4e0c1a96a6232e5968e79185eff27cc9b112ecbf Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d21bcb48dc402bd8d7cb028c3e40f23/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d3c886701ccc31c91a838bd54a01585/1d3c886701ccc31c91a838bd54a01585.jpg b/DermSynth3D/data/annotations/annotator1/1d3c886701ccc31c91a838bd54a01585/1d3c886701ccc31c91a838bd54a01585.jpg new file mode 100644 index 0000000000000000000000000000000000000000..27e930c92df782017748b8cd37a94c494d05ab8f Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d3c886701ccc31c91a838bd54a01585/1d3c886701ccc31c91a838bd54a01585.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/1d3c886701ccc31c91a838bd54a01585/lesions.png b/DermSynth3D/data/annotations/annotator1/1d3c886701ccc31c91a838bd54a01585/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..2041beeb7164481aa4964d9891290c3c8539f66f Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d3c886701ccc31c91a838bd54a01585/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d3c886701ccc31c91a838bd54a01585/nonskin.png b/DermSynth3D/data/annotations/annotator1/1d3c886701ccc31c91a838bd54a01585/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..a9a909ab8fee456b605e748ba4cd2eeed95f8ff0 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d3c886701ccc31c91a838bd54a01585/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d3c886701ccc31c91a838bd54a01585/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/1d3c886701ccc31c91a838bd54a01585/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..2041beeb7164481aa4964d9891290c3c8539f66f Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d3c886701ccc31c91a838bd54a01585/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d56b7d688b6b276893107a6bdb93bba/1d56b7d688b6b276893107a6bdb93bba.jpg b/DermSynth3D/data/annotations/annotator1/1d56b7d688b6b276893107a6bdb93bba/1d56b7d688b6b276893107a6bdb93bba.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5fab66ed5452e154ffa1c0f5c72b2f01d16b8bbf Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d56b7d688b6b276893107a6bdb93bba/1d56b7d688b6b276893107a6bdb93bba.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/1d56b7d688b6b276893107a6bdb93bba/lesions.png b/DermSynth3D/data/annotations/annotator1/1d56b7d688b6b276893107a6bdb93bba/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..91f2b165eaf932fa90086e8ebd049a62149e1ffe Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d56b7d688b6b276893107a6bdb93bba/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d56b7d688b6b276893107a6bdb93bba/nonskin.png b/DermSynth3D/data/annotations/annotator1/1d56b7d688b6b276893107a6bdb93bba/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..145547478b7e1498bebe604cb20cf272f6daf6b0 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d56b7d688b6b276893107a6bdb93bba/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d56b7d688b6b276893107a6bdb93bba/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/1d56b7d688b6b276893107a6bdb93bba/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..91f2b165eaf932fa90086e8ebd049a62149e1ffe Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d56b7d688b6b276893107a6bdb93bba/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d5fec5379a83b91079dcc0721ba7a11/1d5fec5379a83b91079dcc0721ba7a11.jpg b/DermSynth3D/data/annotations/annotator1/1d5fec5379a83b91079dcc0721ba7a11/1d5fec5379a83b91079dcc0721ba7a11.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c535819bca03db8cf1ef6b3de275de9825aee05 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d5fec5379a83b91079dcc0721ba7a11/1d5fec5379a83b91079dcc0721ba7a11.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/1d5fec5379a83b91079dcc0721ba7a11/lesions.png b/DermSynth3D/data/annotations/annotator1/1d5fec5379a83b91079dcc0721ba7a11/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..7b2be79993bf5d4e230889a67830621bacd9ed56 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d5fec5379a83b91079dcc0721ba7a11/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d5fec5379a83b91079dcc0721ba7a11/nonskin.png b/DermSynth3D/data/annotations/annotator1/1d5fec5379a83b91079dcc0721ba7a11/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..5e371b5b464d44c23afaf01eb7da21a94f7a161e Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d5fec5379a83b91079dcc0721ba7a11/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d5fec5379a83b91079dcc0721ba7a11/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/1d5fec5379a83b91079dcc0721ba7a11/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..7b2be79993bf5d4e230889a67830621bacd9ed56 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d5fec5379a83b91079dcc0721ba7a11/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d76114ea1cee496eb21836e03bb6aca/1d76114ea1cee496eb21836e03bb6aca.jpg b/DermSynth3D/data/annotations/annotator1/1d76114ea1cee496eb21836e03bb6aca/1d76114ea1cee496eb21836e03bb6aca.jpg new file mode 100644 index 0000000000000000000000000000000000000000..af3a49b85195438a5cfd487fcc7dd1beeb89a972 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d76114ea1cee496eb21836e03bb6aca/1d76114ea1cee496eb21836e03bb6aca.jpg differ diff --git a/DermSynth3D/data/annotations/annotator1/1d76114ea1cee496eb21836e03bb6aca/lesions.png b/DermSynth3D/data/annotations/annotator1/1d76114ea1cee496eb21836e03bb6aca/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..3802fa668c80d22f7e8d3f8f062ec21620a93505 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d76114ea1cee496eb21836e03bb6aca/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d76114ea1cee496eb21836e03bb6aca/nonskin.png b/DermSynth3D/data/annotations/annotator1/1d76114ea1cee496eb21836e03bb6aca/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..2bbd9611702026fb242c57a4476be8967b39ad8d Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d76114ea1cee496eb21836e03bb6aca/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/1d76114ea1cee496eb21836e03bb6aca/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/1d76114ea1cee496eb21836e03bb6aca/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..3802fa668c80d22f7e8d3f8f062ec21620a93505 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/1d76114ea1cee496eb21836e03bb6aca/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/2b2e5e50f71b0120cebe36d2aef3c085/2b2e5e50f71b0120cebe36d2aef3c085.png b/DermSynth3D/data/annotations/annotator1/2b2e5e50f71b0120cebe36d2aef3c085/2b2e5e50f71b0120cebe36d2aef3c085.png new file mode 100644 index 0000000000000000000000000000000000000000..0af05980608483edb382ba367af9e7cef1bdfd69 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/2b2e5e50f71b0120cebe36d2aef3c085/2b2e5e50f71b0120cebe36d2aef3c085.png differ diff --git a/DermSynth3D/data/annotations/annotator1/2b2e5e50f71b0120cebe36d2aef3c085/lesions.png b/DermSynth3D/data/annotations/annotator1/2b2e5e50f71b0120cebe36d2aef3c085/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..9467a996bdc86385dd956fe4301e189d74c83f39 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/2b2e5e50f71b0120cebe36d2aef3c085/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/2b2e5e50f71b0120cebe36d2aef3c085/nonskin.png b/DermSynth3D/data/annotations/annotator1/2b2e5e50f71b0120cebe36d2aef3c085/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..9f1a55107245c022f20ccfe489556b939794cba9 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/2b2e5e50f71b0120cebe36d2aef3c085/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/2b2e5e50f71b0120cebe36d2aef3c085/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/2b2e5e50f71b0120cebe36d2aef3c085/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..86c3cce20476feec639c855b1cf91fbdee85058e Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/2b2e5e50f71b0120cebe36d2aef3c085/selected_lesion.png differ diff --git a/DermSynth3D/data/annotations/annotator1/2eb0b126f28b5128240072cc0cb920da/2eb0b126f28b5128240072cc0cb920da.png b/DermSynth3D/data/annotations/annotator1/2eb0b126f28b5128240072cc0cb920da/2eb0b126f28b5128240072cc0cb920da.png new file mode 100644 index 0000000000000000000000000000000000000000..4b0c934bdc19441740111bcb6109fd9670e9f37f Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/2eb0b126f28b5128240072cc0cb920da/2eb0b126f28b5128240072cc0cb920da.png differ diff --git a/DermSynth3D/data/annotations/annotator1/2eb0b126f28b5128240072cc0cb920da/lesions.png b/DermSynth3D/data/annotations/annotator1/2eb0b126f28b5128240072cc0cb920da/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..83d5637f08be769b80a474ed0946885b17f05dde Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/2eb0b126f28b5128240072cc0cb920da/lesions.png differ diff --git a/DermSynth3D/data/annotations/annotator1/2eb0b126f28b5128240072cc0cb920da/nonskin.png b/DermSynth3D/data/annotations/annotator1/2eb0b126f28b5128240072cc0cb920da/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..061396263fcf82db663d5d5e7a45036b4e9f9d05 Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/2eb0b126f28b5128240072cc0cb920da/nonskin.png differ diff --git a/DermSynth3D/data/annotations/annotator1/2eb0b126f28b5128240072cc0cb920da/selected_lesion.png b/DermSynth3D/data/annotations/annotator1/2eb0b126f28b5128240072cc0cb920da/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..a5089a1d01878adb5679e084f0796d41f662dfdf Binary files /dev/null and b/DermSynth3D/data/annotations/annotator1/2eb0b126f28b5128240072cc0cb920da/selected_lesion.png differ diff --git a/DermSynth3D/data/background/IndoorScene/100.jpg b/DermSynth3D/data/background/IndoorScene/100.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3d7c2b98a480bb4829beebb76ef6d35b3f5c338d Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/100.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1025.jpg b/DermSynth3D/data/background/IndoorScene/1025.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f8088a9eb675fc74f35fcc34a4b4ed18d2e54e47 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1025.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1125.jpg b/DermSynth3D/data/background/IndoorScene/1125.jpg new file mode 100644 index 0000000000000000000000000000000000000000..16281a278ae6f30b3402d7de9e413124e1160cb2 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1125.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1150.jpg b/DermSynth3D/data/background/IndoorScene/1150.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4ff31368e867632b317b46808a5c6acb2f2fb9bb Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1150.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1225.jpg b/DermSynth3D/data/background/IndoorScene/1225.jpg new file mode 100644 index 0000000000000000000000000000000000000000..55aece84a4e55242135bfb6db5d2b8b2ffe62563 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1225.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1250.jpg b/DermSynth3D/data/background/IndoorScene/1250.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b3fc1c1d801bf846b9a4265b5cf04d707355abf9 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1250.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1325.jpg b/DermSynth3D/data/background/IndoorScene/1325.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e6f92d58867abfac1783598095d9d5c9ebd60cc6 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1325.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1350.jpg b/DermSynth3D/data/background/IndoorScene/1350.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d23e5d1e3f8f237d87ed224b3b8fcaef54113bf7 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1350.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1425.jpg b/DermSynth3D/data/background/IndoorScene/1425.jpg new file mode 100644 index 0000000000000000000000000000000000000000..50730877c06f8c551b055785a3834df4728b0f10 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1425.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1550.jpg b/DermSynth3D/data/background/IndoorScene/1550.jpg new file mode 100644 index 0000000000000000000000000000000000000000..55d427a90c15be19714441dd778872b7303fda06 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1550.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1625.jpg b/DermSynth3D/data/background/IndoorScene/1625.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4b471b412cbc04596b36da7991139e7a61a41ba3 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1625.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/175.jpg b/DermSynth3D/data/background/IndoorScene/175.jpg new file mode 100644 index 0000000000000000000000000000000000000000..13f7fddd35e0b7daad0a341c9918a8367f792405 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/175.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1750.jpg b/DermSynth3D/data/background/IndoorScene/1750.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8edf1a055cae68a1c355e31d0eb1fd80229cd03f Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1750.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1800.jpg b/DermSynth3D/data/background/IndoorScene/1800.jpg new file mode 100644 index 0000000000000000000000000000000000000000..256e19a91e0d68857e3d3b89a2644761e657f16c Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1800.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/1975.jpg b/DermSynth3D/data/background/IndoorScene/1975.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d5d4cc75dbc1165a39430950fe7dc689e1e86826 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/1975.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/200.jpg b/DermSynth3D/data/background/IndoorScene/200.jpg new file mode 100644 index 0000000000000000000000000000000000000000..681650d9d235225a061654bed4f330dbb5b6ee51 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/200.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2000.jpg b/DermSynth3D/data/background/IndoorScene/2000.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5681ecf8221509bd6b0acd8ea1de46fbf6d49a3f Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2000.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2075.jpg b/DermSynth3D/data/background/IndoorScene/2075.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6158fe03057f8cfac6091071d7129a7059d1d946 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2075.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2100.jpg b/DermSynth3D/data/background/IndoorScene/2100.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b736b86d3b8a221c1c2cd929025ca5e43e41f861 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2100.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2200.jpg b/DermSynth3D/data/background/IndoorScene/2200.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d8ceb05f5b781232601fa2285e038ce5f49651c2 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2200.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2275.jpg b/DermSynth3D/data/background/IndoorScene/2275.jpg new file mode 100644 index 0000000000000000000000000000000000000000..26b3a5716e7bc5b87311f4f1cf559b1617832c50 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2275.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2300.jpg b/DermSynth3D/data/background/IndoorScene/2300.jpg new file mode 100644 index 0000000000000000000000000000000000000000..06a98d05ba76d0e8316f06daaa2000fd682f9e23 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2300.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2375.jpg b/DermSynth3D/data/background/IndoorScene/2375.jpg new file mode 100644 index 0000000000000000000000000000000000000000..856ad678ebf982a9b96e2997e065046773bea8ce Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2375.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2475.jpg b/DermSynth3D/data/background/IndoorScene/2475.jpg new file mode 100644 index 0000000000000000000000000000000000000000..825d95680984b88509d5d07bcbb9c662d9212edc Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2475.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2500.jpg b/DermSynth3D/data/background/IndoorScene/2500.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8d29b63d60ad8af578c7972b69a9b673c6d721b0 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2500.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2675.jpg b/DermSynth3D/data/background/IndoorScene/2675.jpg new file mode 100644 index 0000000000000000000000000000000000000000..df2553dd9815c1da9abab4aff87c8b27e05fe7f5 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2675.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2700.jpg b/DermSynth3D/data/background/IndoorScene/2700.jpg new file mode 100644 index 0000000000000000000000000000000000000000..bd6d4c30ed07213271a59e7c09111c890a74432f Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2700.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2850.jpg b/DermSynth3D/data/background/IndoorScene/2850.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f805bb1c82206b2b2d8880e754e4a60fd6477b82 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2850.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/2925.jpg b/DermSynth3D/data/background/IndoorScene/2925.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f3e8b36f39a027ca04def49dfebcdcd68fef4884 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/2925.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/300.jpg b/DermSynth3D/data/background/IndoorScene/300.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8d297b8f6f1e40837d4d36b8478bd7d35ed43c34 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/300.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3025.jpg b/DermSynth3D/data/background/IndoorScene/3025.jpg new file mode 100644 index 0000000000000000000000000000000000000000..10b6568b65494326bc3e4747ad39a68d593fb8ac Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3025.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3150.jpg b/DermSynth3D/data/background/IndoorScene/3150.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fe99ac556f505ed23616d5a2da0840df22f35a4a Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3150.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3225.jpg b/DermSynth3D/data/background/IndoorScene/3225.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a4b027ed801947ff5e0f5f3aca24b68adc1e94d9 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3225.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3350.jpg b/DermSynth3D/data/background/IndoorScene/3350.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c7cd46276d5de70c331d54837ff5a440eb564102 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3350.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3425.jpg b/DermSynth3D/data/background/IndoorScene/3425.jpg new file mode 100644 index 0000000000000000000000000000000000000000..05526abf4bd75e181c43906952a9eda0dd371f3e Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3425.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3450.jpg b/DermSynth3D/data/background/IndoorScene/3450.jpg new file mode 100644 index 0000000000000000000000000000000000000000..07a443ecc1a842134b36942a7837bf7a5254cb1b Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3450.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3550.jpg b/DermSynth3D/data/background/IndoorScene/3550.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fecc68e4772ac8edd051b1ddd6038a987c084863 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3550.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3625.jpg b/DermSynth3D/data/background/IndoorScene/3625.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fbe15167eec20ee18a3f4e1ff359c41222c063d2 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3625.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3650.jpg b/DermSynth3D/data/background/IndoorScene/3650.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7ea6aa0edfb271841a5a39062777f7c996e676db Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3650.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3725.jpg b/DermSynth3D/data/background/IndoorScene/3725.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b8c22de15978d703ae53b7c23da5c37e433ec900 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3725.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/375.jpg b/DermSynth3D/data/background/IndoorScene/375.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3454a8880ccc724fe1cfc02bfc8005cf21921279 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/375.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3750.jpg b/DermSynth3D/data/background/IndoorScene/3750.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e3dee82e2f7109193e37151704610ab30c195b5b Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3750.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3800.jpg b/DermSynth3D/data/background/IndoorScene/3800.jpg new file mode 100644 index 0000000000000000000000000000000000000000..80a7f50e3294a94959a0caa7d8608c4d922d6b76 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3800.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3875.jpg b/DermSynth3D/data/background/IndoorScene/3875.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d3d7b93e0c595ca42c35a9544c872ace435aeaa8 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3875.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/3975.jpg b/DermSynth3D/data/background/IndoorScene/3975.jpg new file mode 100644 index 0000000000000000000000000000000000000000..4f65de73e48afa50acccc80870fa6095dc5ffdb6 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/3975.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/400.jpg b/DermSynth3D/data/background/IndoorScene/400.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9d25286af3b0538d7489667898a3d8949cd37fdf Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/400.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4000.jpg b/DermSynth3D/data/background/IndoorScene/4000.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1c46835441f4c91711009f67e77687e8f698e16a Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4000.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4075.jpg b/DermSynth3D/data/background/IndoorScene/4075.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ced123324bd02ed4a8ceb2ec44be54d7e09c1167 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4075.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4175.jpg b/DermSynth3D/data/background/IndoorScene/4175.jpg new file mode 100644 index 0000000000000000000000000000000000000000..84a6776e47a2d66dee38777bc8d084b2ffa500ae Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4175.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4200.jpg b/DermSynth3D/data/background/IndoorScene/4200.jpg new file mode 100644 index 0000000000000000000000000000000000000000..d561da10cf64b75d007b184239247015e601980d Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4200.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4275.jpg b/DermSynth3D/data/background/IndoorScene/4275.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1afb9923b60df36700323bbea11e1eaa1880cff5 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4275.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4300.jpg b/DermSynth3D/data/background/IndoorScene/4300.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5ad3ab77594ac7a3f71ed2bf3694a1ba126b1d88 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4300.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4375.jpg b/DermSynth3D/data/background/IndoorScene/4375.jpg new file mode 100644 index 0000000000000000000000000000000000000000..78e345819c381bb1a09e092a34c62fc2480cd93f Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4375.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4400.jpg b/DermSynth3D/data/background/IndoorScene/4400.jpg new file mode 100644 index 0000000000000000000000000000000000000000..08b12254ba6493359ad53cf17623621bdaebc0ce Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4400.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4575.jpg b/DermSynth3D/data/background/IndoorScene/4575.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6d3617284e7bd86d2012807092e21c070e44a310 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4575.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4600.jpg b/DermSynth3D/data/background/IndoorScene/4600.jpg new file mode 100644 index 0000000000000000000000000000000000000000..21a51a0910bc2b155bda2bc752eb0a40dde879f0 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4600.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4775.jpg b/DermSynth3D/data/background/IndoorScene/4775.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8db0aea2c00945a500b938bf56d384ab9e023b23 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4775.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4825.jpg b/DermSynth3D/data/background/IndoorScene/4825.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cffda5278daada1ba10b4824c67bbc8b6e5ba230 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4825.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/4950.jpg b/DermSynth3D/data/background/IndoorScene/4950.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b16e99ee7cda252150adeacb58ebb12078c4e87f Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/4950.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5050.jpg b/DermSynth3D/data/background/IndoorScene/5050.jpg new file mode 100644 index 0000000000000000000000000000000000000000..426fb7a53ae6a1a592e3b58d2a9fa0c4de09ddb4 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5050.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5125.jpg b/DermSynth3D/data/background/IndoorScene/5125.jpg new file mode 100644 index 0000000000000000000000000000000000000000..006dadfc600fb44fca41c77be0a6664f1aac898f Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5125.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5250.jpg b/DermSynth3D/data/background/IndoorScene/5250.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6f36db4ef6ef53d14d2ec6d99fc020dce315724b Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5250.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5325.jpg b/DermSynth3D/data/background/IndoorScene/5325.jpg new file mode 100644 index 0000000000000000000000000000000000000000..5862ce10033e1fc25265bf55f8d5269e52f753b0 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5325.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5425.jpg b/DermSynth3D/data/background/IndoorScene/5425.jpg new file mode 100644 index 0000000000000000000000000000000000000000..eaf0efc73cb78d97fc009d11bde0d069a764effd Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5425.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5450.jpg b/DermSynth3D/data/background/IndoorScene/5450.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1e60e9c4fd9f5e9e15c818eabfab55e0a051d9be Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5450.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5525.jpg b/DermSynth3D/data/background/IndoorScene/5525.jpg new file mode 100644 index 0000000000000000000000000000000000000000..91d18f5e2dcde917f0b6025f2b91a485c02b587e Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5525.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5625.jpg b/DermSynth3D/data/background/IndoorScene/5625.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2c4e89370b390cf922a96e042dbcc011cf9d8401 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5625.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5650.jpg b/DermSynth3D/data/background/IndoorScene/5650.jpg new file mode 100644 index 0000000000000000000000000000000000000000..8f3074a7a2585e5ddd0809e1938709e2ecb53680 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5650.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5725.jpg b/DermSynth3D/data/background/IndoorScene/5725.jpg new file mode 100644 index 0000000000000000000000000000000000000000..704fd4e65224a4c192a34a5401c457f6bb641b51 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5725.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/575.jpg b/DermSynth3D/data/background/IndoorScene/575.jpg new file mode 100644 index 0000000000000000000000000000000000000000..cb746bd9cd32826d1b0b6fa6bc0938167d9b3a4a Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/575.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5750.jpg b/DermSynth3D/data/background/IndoorScene/5750.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6a18c5a0f6c407dca477021737ee230a2d31e6e8 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5750.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5800.jpg b/DermSynth3D/data/background/IndoorScene/5800.jpg new file mode 100644 index 0000000000000000000000000000000000000000..35eec23d60d04f6f2682d2ecac1a8ff30e4266d5 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5800.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5875.jpg b/DermSynth3D/data/background/IndoorScene/5875.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f08858341e9a8c573e37bf7fb79fb08f37017872 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5875.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/5900.jpg b/DermSynth3D/data/background/IndoorScene/5900.jpg new file mode 100644 index 0000000000000000000000000000000000000000..ac970a6ecba0551f9cdcf6f2d4edf48af071794f Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/5900.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/600.jpg b/DermSynth3D/data/background/IndoorScene/600.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a7b8338ef8625bef460470d21d77ba72eac8afc8 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/600.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6000.jpg b/DermSynth3D/data/background/IndoorScene/6000.jpg new file mode 100644 index 0000000000000000000000000000000000000000..01adecedfb722b907f40e29b161e8f953d0f13c1 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6000.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6175.jpg b/DermSynth3D/data/background/IndoorScene/6175.jpg new file mode 100644 index 0000000000000000000000000000000000000000..593aca1f5fa33e199a0af631bca958c79af7a7a8 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6175.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6200.jpg b/DermSynth3D/data/background/IndoorScene/6200.jpg new file mode 100644 index 0000000000000000000000000000000000000000..279aa7460c068af571e8e8f6fc9a72c728018263 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6200.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6375.jpg b/DermSynth3D/data/background/IndoorScene/6375.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b22cd7a6ff667d18794f43f6d6f6ba73baf1c32c Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6375.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6400.jpg b/DermSynth3D/data/background/IndoorScene/6400.jpg new file mode 100644 index 0000000000000000000000000000000000000000..dd6856cd4a9db3412d418b36b40ee278492dc02a Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6400.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6500.jpg b/DermSynth3D/data/background/IndoorScene/6500.jpg new file mode 100644 index 0000000000000000000000000000000000000000..67a2051d5653721c6854d8dad84e5047de8919fb Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6500.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6575.jpg b/DermSynth3D/data/background/IndoorScene/6575.jpg new file mode 100644 index 0000000000000000000000000000000000000000..c9264b342a20e55b4a78624b15eda2869cb34138 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6575.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6600.jpg b/DermSynth3D/data/background/IndoorScene/6600.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e03b3caec8d85a7a13a7ecb3236bafab9d7815ac Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6600.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6675.jpg b/DermSynth3D/data/background/IndoorScene/6675.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a1dfb9a96fe7d3d50b124d39fd44f0a17513ad24 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6675.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6700.jpg b/DermSynth3D/data/background/IndoorScene/6700.jpg new file mode 100644 index 0000000000000000000000000000000000000000..89702b737fa850b8e16b0c2d492e70fd3f0b222c Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6700.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6775.jpg b/DermSynth3D/data/background/IndoorScene/6775.jpg new file mode 100644 index 0000000000000000000000000000000000000000..db582f424076caae8a8597d7934529ebcc1b6f9f Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6775.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6825.jpg b/DermSynth3D/data/background/IndoorScene/6825.jpg new file mode 100644 index 0000000000000000000000000000000000000000..585ac189d9347b032f90364694f4746442b3492d Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6825.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6925.jpg b/DermSynth3D/data/background/IndoorScene/6925.jpg new file mode 100644 index 0000000000000000000000000000000000000000..77771a4ca0f9337f5e74fb71dd2d08d8c7779143 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6925.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/6950.jpg b/DermSynth3D/data/background/IndoorScene/6950.jpg new file mode 100644 index 0000000000000000000000000000000000000000..e31f6c49eb519c43f5c9a421e386d73b3a951af6 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/6950.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/7050.jpg b/DermSynth3D/data/background/IndoorScene/7050.jpg new file mode 100644 index 0000000000000000000000000000000000000000..70e3deed75c715f2287285dde76a0415fcb1cf61 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/7050.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/7125.jpg b/DermSynth3D/data/background/IndoorScene/7125.jpg new file mode 100644 index 0000000000000000000000000000000000000000..3df00f1b912ed2174739b63a3ae546cedbda3f96 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/7125.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/7225.jpg b/DermSynth3D/data/background/IndoorScene/7225.jpg new file mode 100644 index 0000000000000000000000000000000000000000..fbd97d53b1bc8f4a9a8363de1598114d13247cdd Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/7225.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/7250.jpg b/DermSynth3D/data/background/IndoorScene/7250.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9da0052e39bf5fa9dc60bb26d46211c76fafe2f1 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/7250.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/7325.jpg b/DermSynth3D/data/background/IndoorScene/7325.jpg new file mode 100644 index 0000000000000000000000000000000000000000..2a9ff39c5a715dba0fad3b44f761c2ef03093431 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/7325.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/7350.jpg b/DermSynth3D/data/background/IndoorScene/7350.jpg new file mode 100644 index 0000000000000000000000000000000000000000..90ef66ff869d2da1142e19a24c6ac6b1b188e935 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/7350.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/7450.jpg b/DermSynth3D/data/background/IndoorScene/7450.jpg new file mode 100644 index 0000000000000000000000000000000000000000..04d2dba625e990da5b5e9e0986ddb51b6ea20338 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/7450.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/75.jpg b/DermSynth3D/data/background/IndoorScene/75.jpg new file mode 100644 index 0000000000000000000000000000000000000000..9a07b8d53f857da5542c53d9090ec7704932aa0a Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/75.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/775.jpg b/DermSynth3D/data/background/IndoorScene/775.jpg new file mode 100644 index 0000000000000000000000000000000000000000..82003477a2dc330d832683bbc50357206c1fc579 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/775.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/825.jpg b/DermSynth3D/data/background/IndoorScene/825.jpg new file mode 100644 index 0000000000000000000000000000000000000000..a47ecf902e0a05304ab97f3899700463240fcdd0 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/825.jpg differ diff --git a/DermSynth3D/data/background/IndoorScene/950.jpg b/DermSynth3D/data/background/IndoorScene/950.jpg new file mode 100644 index 0000000000000000000000000000000000000000..0216671432efce665adad7822ff8a69ae30f3378 Binary files /dev/null and b/DermSynth3D/data/background/IndoorScene/950.jpg differ diff --git a/DermSynth3D/data/bodytex_anatomy_labels/006-f-run/vertslabels_scan.npy b/DermSynth3D/data/bodytex_anatomy_labels/006-f-run/vertslabels_scan.npy new file mode 100644 index 0000000000000000000000000000000000000000..bce756804c6c0cb0c78835c9e2145f1a6ef8bf4d --- /dev/null +++ b/DermSynth3D/data/bodytex_anatomy_labels/006-f-run/vertslabels_scan.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f7ba4a0c04d0c17cd3edc838201c0c5278bb0cbcd9d3754a6a213292c2e3b556 +size 2400128 diff --git a/DermSynth3D/data/bodytex_anatomy_labels/221-m-u/vertslabels_scan.npy b/DermSynth3D/data/bodytex_anatomy_labels/221-m-u/vertslabels_scan.npy new file mode 100644 index 0000000000000000000000000000000000000000..a640ed6ce47cd7da500b2fbe447291d217658599 --- /dev/null +++ b/DermSynth3D/data/bodytex_anatomy_labels/221-m-u/vertslabels_scan.npy @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bd3dcce1fec50f40b49420f7aee5a7b8ff4f19e91cb86cf2d8bcc28ff266bad5 +size 2400144 diff --git a/DermSynth3D/data/fitz17k_annotations_image_urls.csv b/DermSynth3D/data/fitz17k_annotations_image_urls.csv new file mode 100644 index 0000000000000000000000000000000000000000..c1997f274cbf9be77aad999c70f0c5c35f6aec3e --- /dev/null +++ b/DermSynth3D/data/fitz17k_annotations_image_urls.csv @@ -0,0 +1,51 @@ +name,label,three_partition_label,nine_partition_label,fitzpatrick,url +0e5f2b371f082ab91db473d9913d326a,lentigo maligna,malignant,malignant melanoma,3,https://www.dermaamin.com/site/images/clinical-pic/L/lentigo-maligna/lentigo-maligna47.jpg +1d56b7d688b6b276893107a6bdb93bba,melanoma,malignant,malignant melanoma,5,http://atlasdermatologico.com.br/img?imageId=4320 +0e02faeb96069dafc40b4d74f14a83ce,lupus erythematosus,non-neoplastic,inflammatory,3,http://atlasdermatologico.com.br/img?imageId=4050 +1a3485252a20ba5b11e3958881f21b4e,seborrheic keratosis,benign,benign epidermal,2,https://www.dermaamin.com/site/images/clinical-pic/s/seborrheic-keratoses/seborrheic-keratoses39.jpg +0d6908a2080b42cb759ecf7980314d30,neutrophilic dermatoses,non-neoplastic,inflammatory,2,https://www.dermaamin.com/site/images/clinical-pic/s/sweet-syndrome/sweet-syndrome86.jpg +0c9a63866e446cb601bdeb9a4d3787a6,telangiectases,benign,benign dermal,2,https://www.dermaamin.com/site/images/clinical-pic/g/glucagonoma_syndrome/glucagonoma_syndrome4.jpg +0abb64cc8b25d8272ec1df73300600b3,neutrophilic dermatoses,non-neoplastic,inflammatory,2,https://www.dermaamin.com/site/images/clinical-pic/p/pyoderma-gangrenosum/pyoderma-gangrenosum5.jpg +1d76114ea1cee496eb21836e03bb6aca,nevocytic nevus,benign,benign melanocyte,4,https://www.dermaamin.com/site/images/clinical-pic/n/nevocyticn-nevus/nevocyticn-nevus37.jpg +0b40c010e442d29b496fa8368746b02a,tick bite,non-neoplastic,inflammatory,2,https://www.dermaamin.com/site/images/clinical-pic/t/tick-bite/tick-bite1.jpg +1d5fec5379a83b91079dcc0721ba7a11,pyogenic granuloma,benign,benign dermal,2,https://www.dermaamin.com/site/images/clinical-pic/p/pyogenic-granuloma/pyogenic-granuloma106.jpg +0e539304dcb700d132400c34f44d21b7,squamous cell carcinoma,malignant,malignant epidermal,3,http://atlasdermatologico.com.br/img?imageId=3023 +02cf3ed8e245eb520cce87fefbf5d574,necrobiosis lipoidica,non-neoplastic,inflammatory,2,https://www.dermaamin.com/site/images/clinical-pic/n/necrobiois-lipoidica-diabeticorum/necrobiois-lipoidica-diabeticorum69.jpg +0e92cad8c3bc07d294b8b99991739b40,porokeratosis of mibelli,benign,benign epidermal,2,https://www.dermaamin.com/site/images/clinical-pic/p/porokeratosis_of_mibelli/porokeratosis_of_mibelli43.jpg +0c0700fc7177d09e2df0c6658288cf8f,basal cell carcinoma,malignant,malignant epidermal,3,https://www.dermaamin.com/site/images/clinical-pic/c/carcinome_basocellulaire_nodulaire/carcinome_basocellulaire_nodulaire6.jpg +1e4917eb8252158b3e1de9ab8a4110ff,melanoma,malignant,malignant melanoma,2,https://www.dermaamin.com/site/images/clinical-pic/m/melanome-superficiel-extensif/melanome-superficiel-extensif12.jpg +2eb0b126f28b5128240072cc0cb920da,scleroderma,non-neoplastic,inflammatory,1,https://www.dermaamin.com/site/images/clinical-pic/s/scleredema/scleredema46.jpg +0d138dfc5437475a31a7718a53be001a,mycosis fungoides,malignant,malignant cutaneous lymphoma,2,https://www.dermaamin.com/site/images/clinical-pic/m/mycosis-fongoide/mycosis-fongoide77.jpg +0db67ec1711c7ab9d13c8fef53e527ea,dermatofibroma,benign,benign dermal,2,https://www.dermaamin.com/site/images/clinical-pic/d/dermatofibroma/dermatofibroma60.jpg +1e105e35045a4c4147faee0e690fb580,neurodermatitis,non-neoplastic,inflammatory,4,https://www.dermaamin.com/site/images/clinical-pic/n/nummula-dermatitis/nummula-dermatitis5.jpg +0c6695335edb59409519761fe3c3cfbb,granuloma annulare,non-neoplastic,inflammatory,5,https://www.dermaamin.com/site/images/clinical-pic/g/granuloma_annulare/granuloma_annulare38.jpg +1c31b43cce49c0e53349f4f1adb59b1d,superficial spreading melanoma ssm,malignant,malignant melanoma,3,https://www.dermaamin.com/site/images/clinical-pic/s/superfacial-spreading-melanoma/superfacial-spreading-melanoma70.jpg +0ee34d8cc387db6430bba2d2ce793ac9,superficial spreading melanoma ssm,malignant,malignant melanoma,2,https://www.dermaamin.com/site/images/clinical-pic/s/superfacial-spreading-melanoma/superfacial-spreading-melanoma92.jpg +0d90cd2b2bf339a587dd7072372ff186,tuberous sclerosis,non-neoplastic,genodermatoses,4,https://www.dermaamin.com/site/images/clinical-pic/t/tuberous_sclerosis/tuberous_sclerosis106.jpg +0e72ba059329555ffcfe32d627a15b7a,squamous cell carcinoma,malignant,malignant epidermal,2,https://www.dermaamin.com/site/images/clinical-pic/b/bowens_disease/bowens_disease31.jpg +1d955fd4c6bc13509b5beb8e710b72b0,photodermatoses,non-neoplastic,inflammatory,4,https://www.dermaamin.com/site/images/clinical-pic/p/phytophotodermatitis/phytophotodermatitis34.jpg +0a8d57f06114ff087d106c7137520927,port wine stain,benign,benign dermal,2,https://www.dermaamin.com/site/images/clinical-pic/p/port-wine-stain/port-wine-stain57.jpg +0aebf00651ef3e45c7ac5b71472a08de,necrobiosis lipoidica,non-neoplastic,inflammatory,5,http://atlasdermatologico.com.br/img?imageId=4756 +01d4e1319fa2defaf41f8a82d6b0992c,granuloma annulare,non-neoplastic,inflammatory,1,https://www.dermaamin.com/site/images/clinical-pic/g/granuloma_annulare/granuloma_annulare56.jpg +0ef0d6fa3124b76205a8d514b22fafaa,basal cell carcinoma,malignant,malignant epidermal,3,https://www.dermaamin.com/site/images/clinical-pic/b/basal_cell_carcinoma/basal_cell_carcinoma64.jpg +1c858c3ce9f9ac220a08cb5338c4305d,neutrophilic dermatoses,non-neoplastic,inflammatory,5,https://www.dermaamin.com/site/images/clinical-pic/p/pyoderma-gangrenosum/pyoderma-gangrenosum55.jpg +0e55b54825db2d67edecfe12d01144a6,basal cell carcinoma,malignant,malignant epidermal,3,https://www.dermaamin.com/site/images/clinical-pic/b/basal_cell_carcinoma/basal_cell_carcinoma53.jpg +0f02445f98cf1f8c15392989839ffc5b,pityriasis rosea,non-neoplastic,inflammatory,2,http://atlasdermatologico.com.br/img?imageId=5628 +0d8457afebb67905127da37baece43d8,melanoma,malignant,malignant melanoma,5,https://www.dermaamin.com/site/images/clinical-pic/m/melanoma/melanoma34.jpg +0c843edc73aa0b63ec9a266b937c3a3a,drug eruption,non-neoplastic,inflammatory,3,https://www.dermaamin.com/site/images/clinical-pic/d/drug_eruption/drug_eruption108.jpg +0c7b64342387d294d8f790014182ccab,granuloma annulare,non-neoplastic,inflammatory,4,https://www.dermaamin.com/site/images/clinical-pic/g/granuloma_annulare/granuloma_annulare95.jpg +0a55e2e0b4d0241785ba9787829c6dfc,porokeratosis actinic,benign,benign epidermal,3,http://atlasdermatologico.com.br/img?imageId=5952 +0afbf2ec3f745735dc677ca739055838,superficial spreading melanoma ssm,malignant,malignant melanoma,2,https://www.dermaamin.com/site/images/clinical-pic/s/superfacial-spreading-melanoma/superfacial-spreading-melanoma78.jpg +1d3c886701ccc31c91a838bd54a01585,neutrophilic dermatoses,non-neoplastic,inflammatory,3,https://www.dermaamin.com/site/images/clinical-pic/p/pyoderma-gangrenosum/pyoderma-gangrenosum80.jpg +1c444f036ad09acca39209e85c0a8dec,disseminated actinic porokeratosis,benign,benign epidermal,2,https://www.dermaamin.com/site/images/clinical-pic/d/disseminated_superficial_actinic_porokeratosis/disseminated_superficial_actinic_porokeratosis53.jpg +2b2e5e50f71b0120cebe36d2aef3c085,acquired autoimmune bullous diseaseherpes gestationis,non-neoplastic,inflammatory,1,https://www.dermaamin.com/site/images/clinical-pic/h/herpes_gestationis/herpes_gestationis46.jpg +02dfbc0e14a4655ca9190705fe1b7d56,pyogenic granuloma,benign,benign dermal,3,https://www.dermaamin.com/site/images/clinical-pic/p/pyogenic-granuloma/pyogenic-granuloma2.jpg +0a102c96d763d98ab7eec9efd5a38d79,squamous cell carcinoma,malignant,malignant epidermal,6,http://atlasdermatologico.com.br/img?imageId=3010 +0d4c5e2266a00cd127cd5a676ac872b5,squamous cell carcinoma,malignant,malignant epidermal,3,https://www.dermaamin.com/site/images/clinical-pic/s/squamous-cell-carcinoma/squamous-cell-carcinoma94.jpg +00f1b7bb9581e91250a2bb224c3321b8,melanoma,malignant,malignant melanoma,4,https://www.dermaamin.com/site/images/clinical-pic/m/melanoma/melanoma26.jpg +1d21bcb48dc402bd8d7cb028c3e40f23,lupus erythematosus,non-neoplastic,inflammatory,5,http://atlasdermatologico.com.br/img?imageId=4113 +1e357b97835a4defa6add9bcc0034a89,juvenile xanthogranuloma,non-neoplastic,inflammatory,1,https://www.dermaamin.com/site/images/clinical-pic/J/juvenile-xanthogranuloma/juvenile-xanthogranuloma85.jpg +0e16117b2b9d1e457987386e363cc03c,porokeratosis actinic,benign,benign epidermal,3,http://atlasdermatologico.com.br/img?imageId=8988 +1d1ee437001fa401e4a5916c93f7e2ae,kaposi sarcoma,malignant,malignant dermal,1,http://atlasdermatologico.com.br/img?imageId=2914 +0eae940a2c38375a082cc48bfc591676,neutrophilic dermatoses,non-neoplastic,inflammatory,3,http://atlasdermatologico.com.br/img?imageId=6913 +1e5066d9aa2063760e8378f311aef2a8,factitial dermatitis,non-neoplastic,inflammatory,3,https://www.dermaamin.com/site/images/clinical-pic/f/factitial_dermatitis/factitial_dermatitis37.jpg diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/fitz17k_test_image_urls.csv b/DermSynth3D/data/fitzpatrick17k/annotations/fitz17k_test_image_urls.csv new file mode 100644 index 0000000000000000000000000000000000000000..dcfbdaa11c0bf0eb06229f3d19156474a959d2d6 --- /dev/null +++ b/DermSynth3D/data/fitzpatrick17k/annotations/fitz17k_test_image_urls.csv @@ -0,0 +1,26 @@ +name,label,three_partition_label,nine_partition_label,fitzpatrick,url +1ea28a7fe3bb5a28a1e6dd7611ebaa8f,porokeratosis of mibelli,benign,benign epidermal,3,https://www.dermaamin.com/site/images/clinical-pic/p/porokeratosis_of_mibelli/porokeratosis_of_mibelli55.jpg +1ecd46ecb902f7b2a9e32d233968f8f2,granuloma pyogenic,benign,benign dermal,1,http://atlasdermatologico.com.br/img?imageId=2313 +1ed53774dfae21b81495cab1d16f1149,squamous cell carcinoma,malignant,malignant epidermal,2,http://atlasdermatologico.com.br/img?imageId=6851 +2aa5dac8b5f87535800796c039a818c8,actinic keratosis,malignant,malignant epidermal,3,http://atlasdermatologico.com.br/img?imageId=3085 +1ed50f19272049669f7227ff256d5340,squamous cell carcinoma,malignant,malignant epidermal,2,https://www.dermaamin.com/site/images/clinical-pic/k/keratoacanthoma/keratoacanthoma32.jpg +2b6b64192a8e86c179cf24bff74068ae,hailey hailey disease,non-neoplastic,genodermatoses,3,https://www.dermaamin.com/site/images/clinical-pic/h/hailey_hailey_disease/hailey_hailey_disease37.jpg +2a3750d8efa55a7097804b13def1f6b1,neutrophilic dermatoses,non-neoplastic,inflammatory,4,https://www.dermaamin.com/site/images/clinical-pic/p/pyoderma-gangrenosum/pyoderma-gangrenosum3.jpg +2a229d7dad11d2cb5a7ead308aff9faa,juvenile xanthogranuloma,non-neoplastic,inflammatory,2,https://www.dermaamin.com/site/images/clinical-pic/J/juvenile-xanthogranuloma/juvenile-xanthogranuloma2.jpg +2b758f099c785d7caad65a8932958799,sarcoidosis,non-neoplastic,inflammatory,5,https://www.dermaamin.com/site/images/clinical-pic/d/discoid_le/discoid_le69.jpg +1ee7c2a9070946d3b7b583c9ba4590f8,solid cystic basal cell carcinoma,malignant,malignant epidermal,1,https://www.dermaamin.com/site/images/clinical-pic/s/solid-cysticbasalcell-carcinoma/solid-cysticbasalcell-carcinoma28.jpg +2b2c5a9ca6f5c5b04334b72264b1d711,porokeratosis actinic,benign,benign epidermal,3,https://www.dermaamin.com/site/images/clinical-pic/p/porokeratosis_actinic/porokeratosis_actinic19.jpg +2bceb0364ef64fe3ef5236db2cfbe02a,basal cell carcinoma,malignant,malignant epidermal,4,http://atlasdermatologico.com.br/img?imageId=677 +1edc419cfccfb2728ee1743bc921facb,melanoma,malignant,malignant melanoma,2,https://www.dermaamin.com/site/images/clinical-pic/a/acral_melanoma/acral_melanoma2.jpg +2b3e440a698da4a7ccf592c8b5ea771c,lichen planus,non-neoplastic,inflammatory,3,http://atlasdermatologico.com.br/img?imageId=3898 +1f86593be7ade70623c093be3b87919b,pyogenic granuloma,benign,benign dermal,2,https://www.dermaamin.com/site/images/clinical-pic/p/pyogenic-granuloma/pyogenic-granuloma32.jpg +2c8d74827d43e4fe97ef79ef47f70feb,neutrophilic dermatoses,non-neoplastic,inflammatory,4,http://atlasdermatologico.com.br/img?imageId=6391 +2dbfde719030684dfeb4475ada20ef66,basal cell carcinoma,malignant,malignant epidermal,1,https://www.dermaamin.com/site/images/clinical-pic/b/basal_cell_carcinoma/basal_cell_carcinoma15.jpg +01ed6482ab261012f398c19db7dfcc6c,juvenile xanthogranuloma,non-neoplastic,inflammatory,1,https://www.dermaamin.com/site/images/clinical-pic/J/juvenile-xanthogranuloma/juvenile-xanthogranuloma63.jpg +1ff8de263d66d65f021bbd13e83d9c17,pityriasis rosea,non-neoplastic,inflammatory,4,https://www.dermaamin.com/site/images/clinical-pic/p/pityriasis_rosea/pityriasis_rosea30.jpg +2a2587617556cded2731e1ba285604a7,allergic contact dermatitis,non-neoplastic,inflammatory,4,https://www.dermaamin.com/site/images/clinical-pic/p/patch-testing/patch-testing2.jpg +1f9fe1370af69d7a3b059a99988ea84b,lymphangioma,benign,benign dermal,5,https://www.dermaamin.com/site/images/clinical-pic/L/lymphangioma/lymphangioma23.jpg +02ace201c9314ade38ccb3e0f1c1663e,xanthomas,non-neoplastic,inflammatory,2,https://www.dermaamin.com/site/images/clinical-pic/a/anthrax/anthrax18.jpg +1f24cd91d3536af05573c716cee9afe3,superficial spreading melanoma ssm,malignant,malignant melanoma,1,https://www.dermaamin.com/site/images/clinical-pic/s/superfacial-spreading-melanoma/superfacial-spreading-melanoma97.jpg +2cd4cd289e9c8b7c9cac0c9cf0b9fdd1,malignant melanoma,malignant,malignant melanoma,3,https://www.dermaamin.com/site/images/clinical-pic/m/malignant-melanoma/malignant-melanoma78.jpg +2c80528309aa066a38f56cb560565fa9,nevocytic nevus,benign,benign melanocyte,1,https://www.dermaamin.com/site/images/clinical-pic/n/nevocyticn-nevus/nevocyticn-nevus6.jpg diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/01ed6482ab261012f398c19db7dfcc6c/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/01ed6482ab261012f398c19db7dfcc6c/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..b249a16c8972128d270cba1314d84dbc01f003e7 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/01ed6482ab261012f398c19db7dfcc6c/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/01ed6482ab261012f398c19db7dfcc6c/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/01ed6482ab261012f398c19db7dfcc6c/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..93561f3b043b77726b959990335dafaba90f3534 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/01ed6482ab261012f398c19db7dfcc6c/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/01ed6482ab261012f398c19db7dfcc6c/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/01ed6482ab261012f398c19db7dfcc6c/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..6c72ef5adca648ba31cc445cc72822f41a7119db Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/01ed6482ab261012f398c19db7dfcc6c/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/02ace201c9314ade38ccb3e0f1c1663e/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/02ace201c9314ade38ccb3e0f1c1663e/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..84bf1ea6c5b0e31b6f7c03f6c609d53e33bb79a9 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/02ace201c9314ade38ccb3e0f1c1663e/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/02ace201c9314ade38ccb3e0f1c1663e/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/02ace201c9314ade38ccb3e0f1c1663e/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..6ea074f748a53f16ac483a9375016f656a032b6f Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/02ace201c9314ade38ccb3e0f1c1663e/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/02ace201c9314ade38ccb3e0f1c1663e/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/02ace201c9314ade38ccb3e0f1c1663e/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..84bf1ea6c5b0e31b6f7c03f6c609d53e33bb79a9 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/02ace201c9314ade38ccb3e0f1c1663e/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ea28a7fe3bb5a28a1e6dd7611ebaa8f/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ea28a7fe3bb5a28a1e6dd7611ebaa8f/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..a34e20e13ee2d78e0f7a600097014f0bddec333c Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ea28a7fe3bb5a28a1e6dd7611ebaa8f/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ea28a7fe3bb5a28a1e6dd7611ebaa8f/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ea28a7fe3bb5a28a1e6dd7611ebaa8f/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..da055adf924619d68b9a00cfcd9f9fb5f655ac9a Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ea28a7fe3bb5a28a1e6dd7611ebaa8f/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ea28a7fe3bb5a28a1e6dd7611ebaa8f/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ea28a7fe3bb5a28a1e6dd7611ebaa8f/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..d8c8d7222473689dab3e3a41ec79931610ad57eb Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ea28a7fe3bb5a28a1e6dd7611ebaa8f/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ecd46ecb902f7b2a9e32d233968f8f2/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ecd46ecb902f7b2a9e32d233968f8f2/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..7b555bc6d78db81a54a6369d755925f7c94ce865 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ecd46ecb902f7b2a9e32d233968f8f2/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ecd46ecb902f7b2a9e32d233968f8f2/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ecd46ecb902f7b2a9e32d233968f8f2/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..0faf1ad030ce2fa55294a0d580826791eb58d2be Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ecd46ecb902f7b2a9e32d233968f8f2/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ecd46ecb902f7b2a9e32d233968f8f2/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ecd46ecb902f7b2a9e32d233968f8f2/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..7b555bc6d78db81a54a6369d755925f7c94ce865 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ecd46ecb902f7b2a9e32d233968f8f2/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed50f19272049669f7227ff256d5340/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed50f19272049669f7227ff256d5340/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..6e33a9f6413f604d0b84b3e17150858ba54fc169 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed50f19272049669f7227ff256d5340/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed50f19272049669f7227ff256d5340/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed50f19272049669f7227ff256d5340/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..aef007f72f703bdf3f5f577b6f4aae7ea6aa0a11 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed50f19272049669f7227ff256d5340/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed50f19272049669f7227ff256d5340/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed50f19272049669f7227ff256d5340/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..6e33a9f6413f604d0b84b3e17150858ba54fc169 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed50f19272049669f7227ff256d5340/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed53774dfae21b81495cab1d16f1149/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed53774dfae21b81495cab1d16f1149/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..dda8dc6b741ab512d2397e7b50f4e6215df8f56d Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed53774dfae21b81495cab1d16f1149/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed53774dfae21b81495cab1d16f1149/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed53774dfae21b81495cab1d16f1149/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..8544da4d1fc816b599e547b91245cf461af22732 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed53774dfae21b81495cab1d16f1149/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed53774dfae21b81495cab1d16f1149/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed53774dfae21b81495cab1d16f1149/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..dda8dc6b741ab512d2397e7b50f4e6215df8f56d Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ed53774dfae21b81495cab1d16f1149/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1edc419cfccfb2728ee1743bc921facb/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1edc419cfccfb2728ee1743bc921facb/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..312f1663245255ecfa634e16ad5ef1c6648b60ca Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1edc419cfccfb2728ee1743bc921facb/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1edc419cfccfb2728ee1743bc921facb/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1edc419cfccfb2728ee1743bc921facb/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..fbcd0293b8b548bda84b73648709755208a154ad Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1edc419cfccfb2728ee1743bc921facb/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1edc419cfccfb2728ee1743bc921facb/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1edc419cfccfb2728ee1743bc921facb/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..312f1663245255ecfa634e16ad5ef1c6648b60ca Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1edc419cfccfb2728ee1743bc921facb/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ee7c2a9070946d3b7b583c9ba4590f8/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ee7c2a9070946d3b7b583c9ba4590f8/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..eecea9a2ddc5f79d38f99d2fff1936712ea4f8c7 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ee7c2a9070946d3b7b583c9ba4590f8/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ee7c2a9070946d3b7b583c9ba4590f8/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ee7c2a9070946d3b7b583c9ba4590f8/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..bc2e07f0a5af84b3f6975883ccfe883f76366ffc Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ee7c2a9070946d3b7b583c9ba4590f8/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ee7c2a9070946d3b7b583c9ba4590f8/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ee7c2a9070946d3b7b583c9ba4590f8/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..eecea9a2ddc5f79d38f99d2fff1936712ea4f8c7 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ee7c2a9070946d3b7b583c9ba4590f8/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1f24cd91d3536af05573c716cee9afe3/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f24cd91d3536af05573c716cee9afe3/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..b27a05bd7c63f436d56758e87d78704f4ecbb7c7 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f24cd91d3536af05573c716cee9afe3/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1f24cd91d3536af05573c716cee9afe3/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f24cd91d3536af05573c716cee9afe3/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..42daea5460ccb563886208caaff00d82c3ab084d Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f24cd91d3536af05573c716cee9afe3/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1f24cd91d3536af05573c716cee9afe3/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f24cd91d3536af05573c716cee9afe3/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..b27a05bd7c63f436d56758e87d78704f4ecbb7c7 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f24cd91d3536af05573c716cee9afe3/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1f86593be7ade70623c093be3b87919b/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f86593be7ade70623c093be3b87919b/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..2b1d3b2c84fd9c14be961f2b85af206a5a915371 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f86593be7ade70623c093be3b87919b/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1f86593be7ade70623c093be3b87919b/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f86593be7ade70623c093be3b87919b/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..df24a2953d5b1a837835642705bf3dd640b82ba6 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f86593be7ade70623c093be3b87919b/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1f86593be7ade70623c093be3b87919b/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f86593be7ade70623c093be3b87919b/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..2b1d3b2c84fd9c14be961f2b85af206a5a915371 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f86593be7ade70623c093be3b87919b/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1f9fe1370af69d7a3b059a99988ea84b/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f9fe1370af69d7a3b059a99988ea84b/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..2a0a02be22d82da8ec142527f394c3f0d75ae01e Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f9fe1370af69d7a3b059a99988ea84b/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1f9fe1370af69d7a3b059a99988ea84b/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f9fe1370af69d7a3b059a99988ea84b/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..99c46c0dce209ad0d108a0144cb5247fd819d843 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f9fe1370af69d7a3b059a99988ea84b/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1f9fe1370af69d7a3b059a99988ea84b/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f9fe1370af69d7a3b059a99988ea84b/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..2a0a02be22d82da8ec142527f394c3f0d75ae01e Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1f9fe1370af69d7a3b059a99988ea84b/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ff8de263d66d65f021bbd13e83d9c17/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ff8de263d66d65f021bbd13e83d9c17/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..c9f5d7db2b16b30fc3f530dfdb3c98fa37e8d495 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ff8de263d66d65f021bbd13e83d9c17/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ff8de263d66d65f021bbd13e83d9c17/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ff8de263d66d65f021bbd13e83d9c17/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..601f4169d3888a39c81152089966587ebb5afa99 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ff8de263d66d65f021bbd13e83d9c17/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/1ff8de263d66d65f021bbd13e83d9c17/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ff8de263d66d65f021bbd13e83d9c17/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..b5237fc59e6487df7dd8e69498cce5309540eb89 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/1ff8de263d66d65f021bbd13e83d9c17/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2a229d7dad11d2cb5a7ead308aff9faa/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a229d7dad11d2cb5a7ead308aff9faa/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..f362585612a639b02dd5543412a416495f9e65ac Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a229d7dad11d2cb5a7ead308aff9faa/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2a229d7dad11d2cb5a7ead308aff9faa/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a229d7dad11d2cb5a7ead308aff9faa/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..ec20b18a4f01e33bbfb74d932857f6a956e421e9 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a229d7dad11d2cb5a7ead308aff9faa/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2a229d7dad11d2cb5a7ead308aff9faa/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a229d7dad11d2cb5a7ead308aff9faa/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..f362585612a639b02dd5543412a416495f9e65ac Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a229d7dad11d2cb5a7ead308aff9faa/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2a2587617556cded2731e1ba285604a7/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a2587617556cded2731e1ba285604a7/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..8828336cabffe0d5cc18ed98f4d0df8041d07091 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a2587617556cded2731e1ba285604a7/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2a2587617556cded2731e1ba285604a7/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a2587617556cded2731e1ba285604a7/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..3d54cefa769eb2f3945985cf53f875d3a2ded2d8 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a2587617556cded2731e1ba285604a7/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2a2587617556cded2731e1ba285604a7/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a2587617556cded2731e1ba285604a7/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..8828336cabffe0d5cc18ed98f4d0df8041d07091 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a2587617556cded2731e1ba285604a7/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2a3750d8efa55a7097804b13def1f6b1/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a3750d8efa55a7097804b13def1f6b1/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..e53ecee78fec2ce0b85a2ab7506f406a087b67e7 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a3750d8efa55a7097804b13def1f6b1/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2a3750d8efa55a7097804b13def1f6b1/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a3750d8efa55a7097804b13def1f6b1/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..98739d949cad8bc93f5e11d0a1ad654f2c42d770 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a3750d8efa55a7097804b13def1f6b1/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2a3750d8efa55a7097804b13def1f6b1/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a3750d8efa55a7097804b13def1f6b1/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..e53ecee78fec2ce0b85a2ab7506f406a087b67e7 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2a3750d8efa55a7097804b13def1f6b1/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2aa5dac8b5f87535800796c039a818c8/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2aa5dac8b5f87535800796c039a818c8/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..fa2db7917caa6ff2df6411fdc0a3b13ebbcb2df9 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2aa5dac8b5f87535800796c039a818c8/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2aa5dac8b5f87535800796c039a818c8/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2aa5dac8b5f87535800796c039a818c8/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..c5ce1ce2cb221b4258a4545f0cba4a83de14be97 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2aa5dac8b5f87535800796c039a818c8/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2aa5dac8b5f87535800796c039a818c8/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2aa5dac8b5f87535800796c039a818c8/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..fa2db7917caa6ff2df6411fdc0a3b13ebbcb2df9 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2aa5dac8b5f87535800796c039a818c8/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2b2c5a9ca6f5c5b04334b72264b1d711/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b2c5a9ca6f5c5b04334b72264b1d711/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..3b8870c7ce9910790f918313b664a76b470b2b97 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b2c5a9ca6f5c5b04334b72264b1d711/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2b2c5a9ca6f5c5b04334b72264b1d711/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b2c5a9ca6f5c5b04334b72264b1d711/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..1b5234ae16ed7175ec218387ed888eab4442e982 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b2c5a9ca6f5c5b04334b72264b1d711/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2b2c5a9ca6f5c5b04334b72264b1d711/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b2c5a9ca6f5c5b04334b72264b1d711/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..3b8870c7ce9910790f918313b664a76b470b2b97 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b2c5a9ca6f5c5b04334b72264b1d711/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2b3e440a698da4a7ccf592c8b5ea771c/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b3e440a698da4a7ccf592c8b5ea771c/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..1b40144b974589f2c1ebf8edbd5f2f0ff09396ca Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b3e440a698da4a7ccf592c8b5ea771c/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2b3e440a698da4a7ccf592c8b5ea771c/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b3e440a698da4a7ccf592c8b5ea771c/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..52fac13c87ae454343afe869af8b31b3423d6569 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b3e440a698da4a7ccf592c8b5ea771c/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2b3e440a698da4a7ccf592c8b5ea771c/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b3e440a698da4a7ccf592c8b5ea771c/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..1b40144b974589f2c1ebf8edbd5f2f0ff09396ca Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b3e440a698da4a7ccf592c8b5ea771c/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2b6b64192a8e86c179cf24bff74068ae/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b6b64192a8e86c179cf24bff74068ae/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..a6c638470e88a16c2a4c8d72c37880fe8574810d Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b6b64192a8e86c179cf24bff74068ae/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2b6b64192a8e86c179cf24bff74068ae/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b6b64192a8e86c179cf24bff74068ae/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..56c66575d818851a15df7960edcd2ceef44da11b Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b6b64192a8e86c179cf24bff74068ae/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2b6b64192a8e86c179cf24bff74068ae/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b6b64192a8e86c179cf24bff74068ae/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..a6c638470e88a16c2a4c8d72c37880fe8574810d Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b6b64192a8e86c179cf24bff74068ae/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2b758f099c785d7caad65a8932958799/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b758f099c785d7caad65a8932958799/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..9cf94837e71106df5054d1bc404de1a3adc04be8 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b758f099c785d7caad65a8932958799/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2b758f099c785d7caad65a8932958799/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b758f099c785d7caad65a8932958799/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..0ad3b54bfc478dc3f67077160e2f47b35cdb3f33 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b758f099c785d7caad65a8932958799/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2b758f099c785d7caad65a8932958799/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b758f099c785d7caad65a8932958799/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..9cf94837e71106df5054d1bc404de1a3adc04be8 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2b758f099c785d7caad65a8932958799/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2bceb0364ef64fe3ef5236db2cfbe02a/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2bceb0364ef64fe3ef5236db2cfbe02a/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..503f7086bd3407b617ea39fb19c8baf267b5abe6 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2bceb0364ef64fe3ef5236db2cfbe02a/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2bceb0364ef64fe3ef5236db2cfbe02a/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2bceb0364ef64fe3ef5236db2cfbe02a/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..18b86205e3b7c4160105b59b2a29444aa8bbe802 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2bceb0364ef64fe3ef5236db2cfbe02a/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2bceb0364ef64fe3ef5236db2cfbe02a/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2bceb0364ef64fe3ef5236db2cfbe02a/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..503f7086bd3407b617ea39fb19c8baf267b5abe6 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2bceb0364ef64fe3ef5236db2cfbe02a/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2c80528309aa066a38f56cb560565fa9/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2c80528309aa066a38f56cb560565fa9/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..0cfa914d19b936b715a8b3c3c683f21055c85c0e Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2c80528309aa066a38f56cb560565fa9/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2c80528309aa066a38f56cb560565fa9/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2c80528309aa066a38f56cb560565fa9/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..219e3fb085631623993498d9190f357289740f62 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2c80528309aa066a38f56cb560565fa9/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2c80528309aa066a38f56cb560565fa9/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2c80528309aa066a38f56cb560565fa9/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..0cfa914d19b936b715a8b3c3c683f21055c85c0e Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2c80528309aa066a38f56cb560565fa9/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2c8d74827d43e4fe97ef79ef47f70feb/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2c8d74827d43e4fe97ef79ef47f70feb/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..b2e48d139468dc8e0c1d66141b3fcbde9505fcb8 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2c8d74827d43e4fe97ef79ef47f70feb/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2c8d74827d43e4fe97ef79ef47f70feb/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2c8d74827d43e4fe97ef79ef47f70feb/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..c7a1a3fdfd85e29de634ba9b16d3d5873656b253 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2c8d74827d43e4fe97ef79ef47f70feb/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2c8d74827d43e4fe97ef79ef47f70feb/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2c8d74827d43e4fe97ef79ef47f70feb/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..b2e48d139468dc8e0c1d66141b3fcbde9505fcb8 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2c8d74827d43e4fe97ef79ef47f70feb/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2cd4cd289e9c8b7c9cac0c9cf0b9fdd1/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2cd4cd289e9c8b7c9cac0c9cf0b9fdd1/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..de9a5570d533f712a0c2981a646708be9cd8a7f6 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2cd4cd289e9c8b7c9cac0c9cf0b9fdd1/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2cd4cd289e9c8b7c9cac0c9cf0b9fdd1/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2cd4cd289e9c8b7c9cac0c9cf0b9fdd1/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..30fa741206644fe058c380081e24b5d2dca595ca Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2cd4cd289e9c8b7c9cac0c9cf0b9fdd1/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2cd4cd289e9c8b7c9cac0c9cf0b9fdd1/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2cd4cd289e9c8b7c9cac0c9cf0b9fdd1/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..de9a5570d533f712a0c2981a646708be9cd8a7f6 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2cd4cd289e9c8b7c9cac0c9cf0b9fdd1/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2dbfde719030684dfeb4475ada20ef66/lesions.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2dbfde719030684dfeb4475ada20ef66/lesions.png new file mode 100644 index 0000000000000000000000000000000000000000..a660f01c6c424a3dd2353f22f1ec239bb2b9926d Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2dbfde719030684dfeb4475ada20ef66/lesions.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2dbfde719030684dfeb4475ada20ef66/nonskin.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2dbfde719030684dfeb4475ada20ef66/nonskin.png new file mode 100644 index 0000000000000000000000000000000000000000..40f2e5a4de6597da54cd11dd469529d8af1a7de8 Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2dbfde719030684dfeb4475ada20ef66/nonskin.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/annotations/test/2dbfde719030684dfeb4475ada20ef66/selected_lesion.png b/DermSynth3D/data/fitzpatrick17k/annotations/test/2dbfde719030684dfeb4475ada20ef66/selected_lesion.png new file mode 100644 index 0000000000000000000000000000000000000000..a660f01c6c424a3dd2353f22f1ec239bb2b9926d Binary files /dev/null and b/DermSynth3D/data/fitzpatrick17k/annotations/test/2dbfde719030684dfeb4475ada20ef66/selected_lesion.png differ diff --git a/DermSynth3D/data/fitzpatrick17k/read_this_file.txt b/DermSynth3D/data/fitzpatrick17k/read_this_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..b80abbedd97d4c922293d28abb960be75ad52f4d --- /dev/null +++ b/DermSynth3D/data/fitzpatrick17k/read_this_file.txt @@ -0,0 +1 @@ +download the fitz17k.zip file from this link: https://vault.sfu.ca/index.php/s/cMuxZNzk6UUHNmX and unzip it in this folder. diff --git a/DermSynth3D/dermsynth3d.yml b/DermSynth3D/dermsynth3d.yml new file mode 100644 index 0000000000000000000000000000000000000000..fa1a0bbf08884d0c2875d0cdc021ffa404f2a0f8 --- /dev/null +++ b/DermSynth3D/dermsynth3d.yml @@ -0,0 +1,199 @@ +name: dermsynth3d +channels: + - pytorch3d + - iopath + - bottler + - pytorch + - fvcore + - pytorch + - conda-forge + - defaults +dependencies: + - _libgcc_mutex=0.1=conda_forge + - _openmp_mutex=4.5=2_kmp_llvm + - brotlipy=0.7.0=py38h27cfd23_1003 + - ca-certificates=2022.12.7=ha878542_0 + - certifi=2022.12.7=py38h06a4308_0 + - cffi=1.15.1=py38h4a40e3a_3 + - charset-normalizer=2.0.4=pyhd3eb1b0_0 + - colorama=0.4.6=pyhd8ed1ab_0 + - cryptography=38.0.1=py38h9ce1e76_0 + - cudatoolkit=11.3.1=h2bc3f7f_2 + - freetype=2.12.1=hca18f0e_1 + - future=0.18.2=pyhd8ed1ab_6 + - fvcore=0.1.5.post20210915=py38 + - idna=3.4=py38h06a4308_0 + - intel-openmp=2021.4.0=h06a4308_3561 + - iopath=0.1.9=py38 + - jbig=2.1=h7f98852_2003 + - jpeg=9e=h166bdaf_2 + - lcms2=2.12=hddcbb42_0 + - ld_impl_linux-64=2.38=h1181459_1 + - lerc=3.0=h295c915_0 + - libblas=3.9.0=12_linux64_mkl + - libcblas=3.9.0=12_linux64_mkl + - libdeflate=1.8=h7f8727e_5 + - libffi=3.4.2=h6a678d5_6 + - libgcc-ng=12.2.0=h65d4601_19 + - liblapack=3.9.0=12_linux64_mkl + - libpng=1.6.39=h753d276_0 + - libprotobuf=3.19.4=h780b84a_0 + - libstdcxx-ng=11.2.0=h1234567_1 + - libtiff=4.3.0=h6f004c6_2 + - libwebp-base=1.2.4=h166bdaf_0 + - libzlib=1.2.13=h166bdaf_4 + - llvm-openmp=15.0.6=he0ac6c6_0 + - lz4-c=1.9.3=h9c3ff4c_1 + - mkl=2021.4.0=h06a4308_640 + - ncurses=6.3=h5eee18b_3 + - ninja=1.11.0=h924138e_0 + - numpy=1.22.3=py38h99721a1_2 + - olefile=0.46=pyh9f0ad1d_1 + - openjpeg=2.5.0=h7d73246_0 + - openssl=1.1.1s=h0b41bf4_1 + - pillow=8.4.0=py38h8e6f84c_0 + - pip=22.3.1=py38h06a4308_0 + - portalocker=2.6.0=py38h578d9bd_1 + - pycparser=2.21=pyhd8ed1ab_0 + - pyopenssl=22.0.0=pyhd3eb1b0_0 + - pysocks=1.7.1=py38h06a4308_0 + - python=3.8.15=h7a1cb2a_2 + - python_abi=3.8=2_cp38 + - pytorch + - torchvision + - pytorch3d=0.7.2=py38_cu113_pyt1100 + - pyyaml=6.0=py38h0a891b7_5 + - readline=8.2=h5eee18b_0 + - requests=2.28.1=py38h06a4308_0 + - setuptools=65.5.0=py38h06a4308_0 + - six=1.16.0=pyh6c4a22f_0 + - sleef=3.5.1=h9b69904_2 + - sqlite=3.40.0=h5082296_0 + - tabulate=0.9.0=pyhd8ed1ab_1 + - termcolor=2.1.1=pyhd8ed1ab_0 + - tk=8.6.12=h1ccaba5_0 + - tqdm=4.64.1=pyhd8ed1ab_0 + - typing_extensions=4.4.0=pyha770c72_0 + - urllib3=1.26.13=py38h06a4308_0 + - wheel=0.37.1=pyhd3eb1b0_0 + - xz=5.2.8=h5eee18b_0 + - yacs=0.1.8=pyhd8ed1ab_0 + - yaml=0.2.5=h7f98852_2 + - zlib=1.2.13=h166bdaf_4 + - zstd=1.5.2=h8a70e8d_1 + - pip: + - absl-py==1.4.0 + - albumentations==1.3.0 + - anyio==3.6.2 + - argon2-cffi==21.3.0 + - argon2-cffi-bindings==21.2.0 + - arrow==1.2.3 + - asttokens==2.2.1 + - attrs==22.2.0 + - babel==2.11.0 + - backcall==0.2.0 + - beautifulsoup4==4.11.1 + - bleach==5.0.1 + - boto3==1.26.47 + - botocore==1.29.47 + - comm==0.1.2 + - contourpy==1.0.6 + - cycler==0.11.0 + - debugpy==1.6.4 + - decorator==5.1.1 + - defusedxml==0.7.1 + - entrypoints==0.4 + - executing==1.2.0 + - fastjsonschema==2.16.2 + - fonttools==4.38.0 + - fqdn==1.5.1 + - imageio==2.23.0 + - importlib-metadata==5.2.0 + - importlib-resources==5.10.2 + - ipykernel==6.19.4 + - ipython==8.7.0 + - ipython-genutils==0.2.0 + - ipywidgets==8.0.4 + - isoduration==20.11.0 + - jedi==0.18.2 + - jinja2==3.1.2 + - jmespath==1.0.1 + - joblib==1.2.0 + - json5==0.9.10 + - jsonpointer==2.3 + - jsonschema==4.17.3 + - jupyter-client==7.4.8 + - jupyter-core==5.1.1 + - jupyter-events==0.5.0 + - jupyter-server==2.0.6 + - jupyter-server-terminals==0.4.3 + - jupyterlab==3.5.2 + - jupyterlab-pygments==0.2.2 + - jupyterlab-server==2.17.0 + - jupyterlab-widgets==3.0.5 + - kiwisolver==1.4.4 + - markupsafe==2.1.1 + - matplotlib==3.6.2 + - matplotlib-inline==0.1.6 + - mistune==2.0.4 + - nbclassic==0.4.8 + - nbclient==0.7.2 + - nbconvert==7.2.7 + - nbformat==5.7.1 + - nest-asyncio==1.5.6 + - networkx==2.8.8 + - nibabel==5.0.0 + - notebook==6.5.2 + - notebook-shim==0.2.2 + - opencv-python==4.6.0.66 + - opencv-python-headless==4.6.0.66 + - packaging==22.0 + - pandas==1.5.2 + - pandocfilters==1.5.0 + - parso==0.8.3 + - pexpect==4.8.0 + - pickleshare==0.7.5 + - pkgutil-resolve-name==1.3.10 + - platformdirs==2.6.2 + - prometheus-client==0.15.0 + - prompt-toolkit==3.0.36 + - psutil==5.9.4 + - ptyprocess==0.7.0 + - pure-eval==0.2.2 + - pygments==2.13.0 + - pyparsing==3.0.9 + - pyrsistent==0.19.3 + - python-dateutil==2.8.2 + - python-json-logger==2.0.4 + - pytz==2022.7 + - pywavelets==1.4.1 + - pyzmq==24.0.1 + - qudida==0.0.4 + - regex==2022.10.31 + - rfc3339-validator==0.1.4 + - rfc3986-validator==0.1.1 + - rtree==1.0.1 + - s3transfer==0.6.0 + - scikit-image==0.19.3 + - scikit-learn==1.2.0 + - scipy==1.9.3 + - seaborn==0.12.2 + - send2trash==1.8.0 + - sniffio==1.3.0 + - soupsieve==2.3.2.post1 + - stack-data==0.6.2 + - terminado==0.17.1 + - threadpoolctl==3.1.0 + - tornado==6.2 + - traitlets==5.8.0 + - trimesh==3.17.1 + - uri-template==1.2.0 + - wcwidth==0.2.5 + - webcolors==1.12 + - webencodings==0.5.1 + - websocket-client==1.4.2 + - widgetsnbextension==4.0.5 + - zipp==3.11.0 + - streamlit + - plotly +prefix: /localhome/asa409/miniconda3/envs/dermsynth3d diff --git a/DermSynth3D/dermsynth3d/__init__.py b/DermSynth3D/dermsynth3d/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3bc2fc018259ab20e8152745d3ddfc22d27dc459 --- /dev/null +++ b/DermSynth3D/dermsynth3d/__init__.py @@ -0,0 +1 @@ +from .tools import BlendLesions, SelectAndPaste, Generate2DViews diff --git a/DermSynth3D/dermsynth3d/__pycache__/__init__.cpython-310.pyc b/DermSynth3D/dermsynth3d/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0cffc0790d68569812de8fbc3eb6b8b8cccb65a1 Binary files /dev/null and b/DermSynth3D/dermsynth3d/__pycache__/__init__.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/datasets/__pycache__/datasets.cpython-310.pyc b/DermSynth3D/dermsynth3d/datasets/__pycache__/datasets.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..02c6b5d34f93e40845a424c7bd0411bd3f0ed20e Binary files /dev/null and b/DermSynth3D/dermsynth3d/datasets/__pycache__/datasets.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/datasets/__pycache__/synth_dataset.cpython-310.pyc b/DermSynth3D/dermsynth3d/datasets/__pycache__/synth_dataset.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c23846de56d9fd8b3f1226322e42993d6875b706 Binary files /dev/null and b/DermSynth3D/dermsynth3d/datasets/__pycache__/synth_dataset.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/datasets/datasets.py b/DermSynth3D/dermsynth3d/datasets/datasets.py new file mode 100644 index 0000000000000000000000000000000000000000..31113b62285cdfb754048f62e4e196a0b4719ca6 --- /dev/null +++ b/DermSynth3D/dermsynth3d/datasets/datasets.py @@ -0,0 +1,819 @@ +import os +import json +import cv2 +import random +import pdb + +import numpy as np +import pandas as pd + +from PIL import Image, ImageDraw, ImageFilter +from typing import Optional, List +from collections.abc import Callable + +from skimage.measure import label +import torch +from torchvision.ops import masks_to_boxes + +from dermsynth3d.utils.image import ( + load_image, + uint8_to_float32, + crop_amount, + # float_img_to_uint8, +) +from dermsynth3d.utils.annotate import ( + poly_from_xy, +) +from dermsynth3d.utils.channels import Target +from dermsynth3d.utils.mask import ( + can_blend_mask, + box_crop_lesion, +) + + +class ImageDataset: + def __init__( + self, + dir_images: str, + dir_targets: str, + dir_depth: Optional[str] = None, + name: str = "dataset", + dir_predictions: Optional[str] = None, + image_extension: str = ".png", + target_extension: Optional[str] = ".png", + spatial_transform: Optional[Callable] = None, + image_augment=None, + image_preprocess=None, + target_preprocess=None, + totensor=None, + color_constancy=None, + ): + """ + Base class to load 2D image datasets. + """ + + self.dir_images = dir_images + self.dir_targets = dir_targets + self.dir_depth = dir_depth + self.name = name + self.dir_predictions = dir_predictions + + self.image_extension = image_extension + self.target_extension = target_extension + + self.spatial_transform = spatial_transform + self.image_augment = image_augment + self.image_preprocess = image_preprocess + self.target_preprocess = target_preprocess + self.totensor = totensor + self.color_constancy = color_constancy + self.file_ids = self.file_ids() + + def __len__(self): + return len(self.file_ids) + + def file_ids(self) -> List[str]: + """Return a list of the unique file identifiers.""" + return [fname.split(".")[0] for fname in os.listdir(self.dir_images)] + + def image_filepath(self, image_id): + return os.path.join(self.dir_images, image_id + self.image_extension) + + def depth_filepath(self, image_id): + return os.path.join(self.dir_depth, image_id + self.image_extension) + + def image( + self, image_id: str, img_size: Optional[tuple] = None, resample=Image.BILINEAR + ): + """Returns a PIL image for the given `image_id`. + + Args: + image_id (string): _description_ + img_size (Optional[tuple], optional): _description_. Defaults to None. + + Returns: + _type_: _description_ + """ + img = load_image( + self.image_filepath(image_id), img_size=img_size, resample=resample + ) + if self.color_constancy: + img = self.color_constancy(np.asarray(img)) + img = Image.fromarray(img) + + return img + + def target_filepath(self, image_id): + return os.path.join(self.dir_targets, image_id + self.target_extension) + + def target(self, image_id, img_size: Optional[tuple] = None): + return load_image(self.target_filepath(image_id), img_size) + + def prediction_filepath(self, image_id): + return os.path.join(self.dir_predictions, image_id + self.target_extension) + + def prediction(self, image_id): + return load_image(self.prediction_filepath(image_id)) + + def bbox_from_target(self, mask): + labels = label(mask, background=0, connectivity=2) + mask = torch.tensor(labels).unsqueeze(0) + + obj_ids = torch.unique(mask) + + obj_ids = obj_ids[1:] + + masks = mask == obj_ids[:, None, None] + + boxes = masks_to_boxes(masks) + + boxes = boxes[boxes[:, 0] < boxes[:, 2]] + boxes = boxes[boxes[:, 1] < boxes[:, 3]] + + return boxes + + def get_target_from_mask(self, mask): + mask_labels = label(mask, background=0, connectivity=2) + mask = torch.tensor(mask_labels).unsqueeze(0) + + obj_ids = torch.unique(mask) + + obj_ids = obj_ids[1:] + masks = mask == obj_ids[:, None, None] + + boxes = masks_to_boxes(masks) + + boxes = boxes[boxes[:, 0] < boxes[:, 2]] + boxes = boxes[boxes[:, 1] < boxes[:, 3]] + + # there is only one class + labels = torch.ones((masks.shape[0],), dtype=torch.int64) + + target = {} + target["boxes"] = boxes + target["labels"] = labels + + return target + + def __getitem__(self, idx: int): + file_id = self.file_ids[idx] + img = np.asarray(self.image(file_id)) + target = np.asarray(self.target(file_id)) + + if self.spatial_transform is not None: + spatial_transformed = self.spatial_transform( + image=img, + mask=target, + ) + + img = spatial_transformed["image"] + target = spatial_transformed["mask"] + + if self.image_augment is not None: + img_transformed = self.image_augment(image=img) + img = img_transformed["image"] + + if self.image_preprocess: + preprocess_image = self.image_preprocess(image=img) + img = preprocess_image["image"] + + if self.totensor: + tensors = self.totensor(image=img, mask=target) + img = tensors["image"] + target = tensors["mask"] + + return self.name, file_id, img, target + + +class RealDataset_Detection(ImageDataset): + def bbox(self, image_id): + mask = np.asarray(self.target(image_id))[:, :, 0] + return self.bbox_from_target(mask) + + def __getitem__(self, idx: int): + file_id = self.file_ids[idx] + img = np.asarray(self.image(file_id)) + mask = np.asarray(self.target(file_id)) + + if self.spatial_transform is not None: + spatial_transformed = self.spatial_transform( + image=img, + mask=mask, + ) + + img = spatial_transformed["image"] + mask = spatial_transformed["mask"] + + if self.image_augment is not None: + img_transformed = self.image_augment(image=img) + img = img_transformed["image"] + + if self.image_preprocess: + preprocess_image = self.image_preprocess(image=img) + img = preprocess_image["image"] + + target = self.get_target_from_mask(mask[:, :, 0]) + if self.totensor: + tensors = self.totensor(image=img, mask=mask) + img = tensors["image"] + mask = tensors["mask"] + + return self.name, file_id, img, mask, target + + +class SynthDataset_Detection(ImageDataset): + def target(self, image_id): + target = np.load(self.target_filepath(image_id)) + target = target["masks"] + return target + + def save_image(self, target_id: str, img: np.array): + im = Image.fromarray(img) + im.save(self.image_filepath(target_id)) + + def save_target(self, target_id: str, masks: np.array): + np.savez_compressed(self.target_filepath(target_id), masks=masks) + + def bbox(self, image_id): + mask = self.target(image_id)[:, :, 0] + return self.bbox_from_target(mask) + + def __getitem__(self, idx: int): + file_id = self.file_ids[idx] + img = np.asarray(self.image(file_id)) + mask = np.asarray(self.target(file_id)) + + if self.spatial_transform is not None: + spatial_transformed = self.spatial_transform( + image=img, + mask=mask, + ) + + img = spatial_transformed["image"] + mask = spatial_transformed["mask"] + + if self.image_augment is not None: + img_transformed = self.image_augment(image=img) + img = img_transformed["image"] + + if self.image_preprocess: + preprocess_image = self.image_preprocess(image=img) + img = preprocess_image["image"] + + target = self.get_target_from_mask(mask[:, :, 0]) + if self.totensor: + tensors = self.totensor(image=img, mask=mask) + img = tensors["image"] + mask = tensors["mask"] + + return self.name, file_id, img, mask, target + + +class PratheepanSkinDataset(ImageDataset): + """ + GT loader for Pratheepan Skin Dataset + """ + + def target(self, image_id, img_size: Optional[tuple] = None): + target = load_image(self.target_filepath(image_id), img_size) + target = np.asarray(target) / 255 + return target[:, :, 0] + + +class BinarySegementationDataset(ImageDataset): + """ + GT loader for Binary Segmentation + """ + + def target(self, image_id, img_size: Optional[tuple] = None): + target = load_image(self.target_filepath(image_id), img_size) + target = np.asarray(target) / 255 + + return target + + +class HGRDataset(ImageDataset): + """ + GT loader for HGR Dataset + """ + + def target(self, image_id, img_size: Optional[tuple] = None): + target = load_image(self.target_filepath(image_id), img_size) + target = np.asarray(target) + target = ~target + target = target / 255 + + return target + + +class SynthDataset(ImageDataset): + """ + Helper function to load and savee synthesized GTs. + """ + + def target(self, image_id): + target = np.load(self.target_filepath(image_id)) + target = target["masks"] + + return target + + def save_image(self, target_id: str, img: np.array): + im = Image.fromarray(img) + im.save(self.image_filepath(target_id)) + + def save_target(self, target_id: str, masks: np.array): + np.savez_compressed(self.target_filepath(target_id), masks=masks) + + +class FitzDataset(ImageDataset): + def __init__( + self, + df: pd.DataFrame, + dir_images: str, + dir_annotations: Optional[str] = None, + image_extension: Optional[str] = ".jpg", + spatial_transform=None, + image_augment=None, + image_preprocess=None, + totensor=None, + annotation_type="csv", + color_constancy=None, + ): + self.df = df + self.dir_annotations = dir_annotations + self.annotation_type = annotation_type + # All annotation IDs. + self.all_annotation_ids = self.all_annotation_ids() + # Only the annotations IDs that have non-empty selected lesions. + self.annotation_ids = self.select_lesion_ids() + + super().__init__( + dir_images=dir_images, + dir_targets=None, + dir_depth=None, + name="Fitz17k", + dir_predictions=None, + image_extension=image_extension, + target_extension=None, + spatial_transform=spatial_transform, + image_augment=image_augment, + image_preprocess=image_preprocess, + target_preprocess=None, + totensor=totensor, + color_constancy=color_constancy, + ) + + def file_ids(self) -> List[str]: + """Return a list of the unique file identifiers.""" + if self.df is None: + return list() + + return list(self.df.md5hash.values) + + def image_transformed(self, image_id): + img = np.asarray(self.image(image_id)) + if self.spatial_transform: + img_transformed = self.spatial_transform(image=img) + img = img_transformed["image"] + + if self.image_augment: + img_transformed = self.image_augment(image=img) + img = img_transformed["image"] + + if self.image_preprocess: + img_transformed = self.image_preprocess(image=img) + img = img_transformed["image"] + + if self.totensor: + img_transformed = self.totensor(image=img) + img = img_transformed["image"] + + return img + + def __getitem__(self, idx: int): + record = self.df.iloc[idx] + img = self.image_transformed(record.md5hash) + return ( + record.md5hash, + record.fitzpatrick, + img, + ) + + def all_annotation_ids(self): + filenames = sorted(os.listdir(self.dir_annotations)) + if self.annotation_type == "csv": + return [fname.split(".")[0] for fname in filenames] + + return [fname for fname in filenames if fname[0] != "."] + + def annotation_filepath(self, image_id): + return os.path.join(self.dir_annotations, image_id + ".csv") + + def selected_lesion_filepath(self, image_id): + return os.path.join(self.dir_annotations, image_id, "selected_lesion.png") + + def lesions_filepath(self, image_id): + return os.path.join(self.dir_annotations, image_id, "lesions.png") + + def nonskin_filepath(self, image_id): + return os.path.join(self.dir_annotations, image_id, "nonskin.png") + + def mask(self, filepath, img_size=None): + mask = load_image(filepath, img_size, mode="L") + mask = np.asarray(mask) + mask = uint8_to_float32(mask) + return mask + + def mask_nonskin(self, image_id, img_size=None): + return self.mask(self.nonskin_filepath(image_id), img_size) + + def mask_skin(self, image_id, exclude_lesion=True, img_size=None): + nonskin = self.mask_nonskin(image_id, img_size=img_size) + lesions = self.mask_lesions(image_id, img_size=img_size) + if exclude_lesion: + skin = (1 - nonskin) * (1 - lesions) + else: + skin = 1 - nonskin + + return skin + + def mask_lesions(self, image_id, img_size=None): + return self.mask(self.lesions_filepath(image_id), img_size) + + def mask_selected_lesion(self, image_id, img_size=None): + return self.mask(self.selected_lesion_filepath(image_id), img_size) + + def annotation_df(self, image_id): + ann_df = pd.read_csv(self.annotation_filepath(image_id)) + for f in ann_df.filename: + assert f == image_id + ".jpg", "Error: Wrong filename" + + return ann_df + + def poly_shapes(self, image_id: str): + shape_dict = self.poly_dict(image_id) + + poly = poly_from_xy(shape_dict["all_points_x"], shape_dict["all_points_y"]) + + return poly + + def poly_dict(self, image_id: str): + ann_df = self.annotation_df(image_id) + assert len(ann_df) == 1, "Error: only supports 1 shape per image." + + shape_str = ann_df.region_shape_attributes.iloc[0] + shape_dict = json.loads(shape_str) + return shape_dict + + def poly_xy(self, image_id: str): + shape_dict = self.poly_dict(image_id) + x = np.asarray(shape_dict["all_points_x"]) + y = np.asarray(shape_dict["all_points_y"]) + return x, y + + def contour_image(self, image_id: str): + img = self.image(image_id) + poly = self.poly_shapes(image_id) + out = cv2.drawContours(np.asarray(img), [np.asarray(poly)], -1, (0, 255, 0), 3) + return out + + def shape_mask(self, image_id: str): + img = self.image(image_id) + poly = self.poly_shapes(image_id) + poly_img = Image.new("L", img.size, 0) + ImageDraw.Draw(poly_img).polygon(poly, outline=1, fill=255) + + return poly_img + + def box_crop_lesion( + self, + image_id: str, + pad: int = 8, + force_even_dims=False, + asfloat=False, + ): + """Returns the image and mask cropped around the lesion. + + Args: + image_id (str): _description_ + pad (int, optional): Amount to pad around the mask. Defaults to 8. + A certain amount of padding is needed to compute the gradients + around the border. If we go less than 8, have to check other code. + force_even_dims (bool, optional): _description_. Defaults to False. + asfloat (bool, optional): _description_. Defaults to False. + + Returns: + _type_: _description_ + """ + img = self.image(image_id) + img = np.asarray(img) + + if self.annotation_type == "csv": + mask = self.shape_mask(image_id) + mask = np.asarray(mask) + poly_x, poly_y = self.poly_xy(image_id) + else: + mask = self.mask_selected_lesion(image_id) + # Flip x,y for np.where(). + poly_y, poly_x = np.where(mask) + + # Doesn't check for out of bounds with padding. + start_x = poly_x.min() - pad + end_x = poly_x.max() + pad + start_y = poly_y.min() - pad + end_y = poly_y.max() + pad + + if force_even_dims: + if (end_x - start_x) % 2: + start_x = start_x - 1 + if (end_y - start_y) % 2: + start_y = start_y - 1 + + img_crop = img[start_y:end_y, start_x:end_x, :] + mask_crop = mask[start_y:end_y, start_x:end_x] + + if asfloat: + img_crop = uint8_to_float32(img_crop) + if self.annotation_type == "csv": + mask_crop = uint8_to_float32(mask_crop) + + return img_crop, mask_crop + + def select_lesion_ids(self): + """Returns the IDs of non-empty selected lesions.""" + selected_lesion_ids = [] + for fitz_id in self.all_annotation_ids: + sel_lesion_filepath = self.selected_lesion_filepath(fitz_id) + mask = load_image(sel_lesion_filepath, mode="L") + if np.max(mask) > 0: + selected_lesion_ids.append(fitz_id) + + return selected_lesion_ids + + +class Background2d: + """ + Base Class to add background scene to the renderings. + """ + + def __init__( + self, + dir_images: str, + image_filenames: Optional[list] = None, + ): + self.dir_images = dir_images + self.image_filenames = image_filenames + + if self.image_filenames is None: + self.image_filenames = os.listdir(self.dir_images) + + def image_filepath(self, image_filename): + return os.path.join(self.dir_images, image_filename) + + def random_image_filename(self): + image_idx = np.random.randint(0, len(self.image_filenames)) + img_filename = self.image_filenames[image_idx] + return img_filename + + def image( + self, + img_filename=None, + img_size: Optional[tuple] = None, + asfloat=False, + resample=Image.BILINEAR, + blur_radius: Optional[int] = None, + ): + if img_filename is None: + img_filename = self.random_image_filename() + + img_filepath = self.image_filepath(img_filename) + img = load_image(img_filepath, img_size=img_size, resample=resample) + + if blur_radius is not None: + img = img.filter(ImageFilter.GaussianBlur(blur_radius)) + + if asfloat: + img = np.asarray(img, np.float32) / 255 + + return img + + def hue_image(self, img_size=(512, 512)): + back_img = np.ones(shape=(img_size + (3,)), dtype=np.float32) + # Give background hues. + back_img[:, :, 0] = np.round(random.uniform(0.75, 1), 2) + back_img[:, :, 1] = np.round(random.uniform(0.0, 1), 2) + back_img[:, :, 2] = np.round(random.uniform(0.0, 1), 2) + + return back_img + + +class NoGTDataset(ImageDataset): + def __getitem__(self, idx: int): + file_id = self.file_ids[idx] + img = np.asarray(self.image(file_id)) + if self.spatial_transform: + img_transformed = self.spatial_transform(image=img) + img = img_transformed["image"] + + if self.image_augment: + img_transformed = self.image_augment(image=img) + img = img_transformed["image"] + + if self.image_preprocess: + img_transformed = self.image_preprocess(image=img) + img = img_transformed["image"] + + if self.totensor: + img_transformed = self.totensor(image=img) + img = img_transformed["image"] + + return self.name, file_id, img, [] + + +class Ph2Dataset(ImageDataset): + def file_ids(self): + """Return a list of the unique file identifiers.""" + return [fname for fname in os.listdir(self.dir_images)] + + def image_filepath(self, image_id): + return os.path.join( + self.dir_images, + image_id, + image_id + "_Dermoscopic_Image", + image_id + self.image_extension, + ) + + def target_filepath(self, image_id): + return os.path.join( + self.dir_targets, + image_id, + image_id + "_lesion", + image_id + "_lesion" + self.image_extension, + ) + + def target(self, image_id, img_size: Optional[tuple] = None): + target = load_image(self.target_filepath(image_id), img_size) + # return np.asarray(target)[:,:,0] + return target + + +class Fitz17KAnnotations(ImageDataset): + def file_ids(self): + # Custom directory structure + self.annotators = os.listdir(self.dir_targets) + self.folder_ids = [] + for ann in self.annotators: + ann_filepath = os.path.join(self.dir_targets, ann) + ann_file_ids = os.listdir(ann_filepath) + for f_id in ann_file_ids: + self.folder_ids.extend([os.path.join(ann, f_id)]) + + self.file_ids_folders = {} + for folder_file_id in self.folder_ids: + file_id = folder_file_id.split("/")[1] + self.file_ids_folders[file_id] = folder_file_id + + file_ids = [folder_file_id.split("/")[1] for folder_file_id in self.folder_ids] + # IDs of the annotations with selected lesions that pass + # the blending criteria. These IDs can be used for blending. + self.annotation_ids = self.selected_lesion_ids(file_ids) + return file_ids + + def selected_lesion_ids(self, file_ids=None): + """Returns the IDs of non-empty selected lesions.""" + if file_ids is None: + file_ids = self.file_ids + + selected_lesion_ids = [] + for fitz_id in file_ids: + mask = self.selected_lesion(fitz_id) + if can_blend_mask(mask): + selected_lesion_ids.append(fitz_id) + + return selected_lesion_ids + + def lesions_filepath(self, image_id): + folder_file_id = self.file_ids_folders[image_id] + fpath = os.path.join( + self.dir_targets, folder_file_id, "lesions" + self.target_extension + ) + return fpath + + def nonskin_filepath(self, image_id): + folder_file_id = self.file_ids_folders[image_id] + return os.path.join( + self.dir_targets, folder_file_id, "nonskin" + self.target_extension + ) + + def selected_lesion_filepath(self, image_id): + folder_file_id = self.file_ids_folders[image_id] + return os.path.join( + self.dir_targets, folder_file_id, "selected_lesion" + self.target_extension + ) + + def mask(self, filepath, img_size=None): + mask = load_image( + filepath, + img_size, + mode="L", + resample=Image.NEAREST, + ) + + mask = np.asarray(mask) / 255 + return mask.astype(np.float32) + + def lesions(self, image_id): + return self.mask(self.lesions_filepath(image_id)) + + def nonskin(self, image_id): + return self.mask(self.nonskin_filepath(image_id)) + + def selected_lesion(self, image_id, img_size=None): + return self.mask( + filepath=self.selected_lesion_filepath(image_id), + img_size=img_size, + ) + + def target(self, image_id): + lesions = np.asarray(self.lesions(image_id)) > 0 + nonskin = np.asarray(self.nonskin(image_id)) > 0 + healthy_skin = ~nonskin & ~lesions + mask = np.zeros(shape=(lesions.shape[0], lesions.shape[1], 3), dtype=np.float32) + mask[:, :, Target.LESION] = lesions * 1 + mask[:, :, Target.SKIN] = healthy_skin * 1 + mask[:, :, Target.NONSKIN] = nonskin * 1 + return mask # Image.fromarray(mask) + + def box_crop_lesion( + self, + image_id: str, + force_even_dims: bool = True, + asfloat: bool = True, + ): + """Returns the image and mask cropped around the lesion. + + Args: + image_id (str): The ID of image with a selected lesion. + pad (int, optional): Amount to pad around the mask. Defaults to 8. + + force_even_dims (bool, optional): + Force the returned cropped image to have even dimensions. + asfloat (bool, optional): Return the cropped image as a float32, + with the values scaled by 255. Else returns the original uint8. + + Returns: + np.arrays: The cropped image and mask. + """ + img = self.image(image_id) + img = np.asarray(img) + mask = self.selected_lesion(image_id) + img_crop, mask_crop = box_crop_lesion( + img=img, + mask=mask, + force_even_dims=force_even_dims, + asfloat=asfloat, + ) + + return img_crop, mask_crop + + +class DermoFit(ImageDataset): + def file_ids(self) -> List[str]: + file_ids = [fname.split(".")[0] for fname in os.listdir(self.dir_images)] + + self.annotation_ids = [] + for file_id in file_ids: + target = self.target(file_id) + if can_blend_mask(np.asarray(target)[:, :, 0]): + self.annotation_ids.append(file_id) + + return file_ids + + def binary_mask(self, image_id, img_size=None): + filepath = self.target_filepath(image_id) + mask = load_image( + filepath, + img_size, + mode="L", + resample=Image.NEAREST, + ) + + mask = np.asarray(mask) / 255 + return mask.astype(np.float32) + + def box_crop_lesion( + self, + image_id: str, + force_even_dims: bool = True, + asfloat: bool = True, + ): + img = self.image(image_id) + img = np.asarray(img) + mask = self.binary_mask(image_id) + img_crop, mask_crop = box_crop_lesion( + img=img, + mask=mask, + force_even_dims=force_even_dims, + asfloat=asfloat, + ) + return img_crop, mask_crop diff --git a/DermSynth3D/dermsynth3d/datasets/synth_dataset.py b/DermSynth3D/dermsynth3d/datasets/synth_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..a9eaaf572b42924e5b2731a657df5a404e3421f1 --- /dev/null +++ b/DermSynth3D/dermsynth3d/datasets/synth_dataset.py @@ -0,0 +1,91 @@ +import os +import numpy as np +import pandas as pd +from PIL import Image +import uuid + +from dermsynth3d.datasets.datasets import ImageDataset + +from dermsynth3d.utils.utils import ( + make_masks, + blend_background, + random_resize_crop_seg_lesion, +) +from dermsynth3d.utils.tensor import window_overlap_mask +from dermsynth3d.deepblend.utils import make_canvas_mask +from dermsynth3d.deepblend.blend import paste_blend + + +class SynthesizeDataset(ImageDataset): + def __init__( + self, + dir_root, + image_extension=".png", + target_extension=".npz", + ): + self.dir_root = dir_root + + # Directories to save images and targets. + dir_images = os.path.join(self.dir_root, "images") + dir_targets = os.path.join(self.dir_root, "targets") + dir_depth = os.path.join(self.dir_root, "depth") + self.csv_filename = os.path.join(self.dir_root, "data.csv") + + # Create if not exists. + if not os.path.isdir(self.dir_root): + os.makedirs(self.dir_root) + if not os.path.isdir(dir_images): + os.makedirs(dir_images) + if not os.path.isdir(dir_targets): + os.makedirs(dir_targets) + if not os.path.isdir(dir_depth): + os.makedirs(dir_depth) + + super().__init__( + dir_images=dir_images, + dir_targets=dir_targets, + dir_depth=dir_depth, + name="Synth", + dir_predictions=None, + image_extension=image_extension, + target_extension=target_extension, + image_augment=None, + image_preprocess=None, + target_preprocess=None, + ) + + self.blend_df = pd.DataFrame([]) + if os.path.isfile(self.csv_filename): + # Load data-frame if already exists. + self.blend_df = pd.read_csv(self.csv_filename) + + self.all_params = [] + + def generate_target_name(self): + return uuid.uuid4().hex + + def target(self, image_id): + target = np.load(self.target_filepath(image_id)) + target = target["masks"] + return target + + def save_image(self, target_id: str, img: np.array): + im = Image.fromarray(img) + im.save(self.image_filepath(target_id)) + + def save_depth(self, target_id: str, img: np.array): + im = Image.fromarray(img) + im.save(self.depth_filepath(target_id)) + + def save_target(self, target_id: str, masks: np.array): + """Saves a compressed numpy array of the target variables.""" + np.savez_compressed(self.target_filepath(target_id), masks=masks) + + def update_params(self, params): + self.all_params.append(params) + + def save_params(self): + new_df = pd.DataFrame.from_records(self.all_params) + extended_df = pd.concat((self.blend_df, new_df), ignore_index=True) + extended_df.to_csv(self.csv_filename, index=False) + self.blend_df = extended_df diff --git a/DermSynth3D/dermsynth3d/deepblend/__pycache__/blend.cpython-310.pyc b/DermSynth3D/dermsynth3d/deepblend/__pycache__/blend.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..49b140805d713ee552613b509dc0a2c620c832be Binary files /dev/null and b/DermSynth3D/dermsynth3d/deepblend/__pycache__/blend.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/deepblend/__pycache__/blend3d.cpython-310.pyc b/DermSynth3D/dermsynth3d/deepblend/__pycache__/blend3d.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..993157f9f1cf2f2cb654d4380d1779093551c25f Binary files /dev/null and b/DermSynth3D/dermsynth3d/deepblend/__pycache__/blend3d.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/deepblend/__pycache__/utils.cpython-310.pyc b/DermSynth3D/dermsynth3d/deepblend/__pycache__/utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c96422dc7795eb7bd7c61dd41348398944b92043 Binary files /dev/null and b/DermSynth3D/dermsynth3d/deepblend/__pycache__/utils.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/deepblend/blend.py b/DermSynth3D/dermsynth3d/deepblend/blend.py new file mode 100644 index 0000000000000000000000000000000000000000..d7e7d4c9d8b13fbe68712edc4b116b4bd3641c38 --- /dev/null +++ b/DermSynth3D/dermsynth3d/deepblend/blend.py @@ -0,0 +1,890 @@ +from scipy import ndimage +from PIL import Image + +import numpy as np + +import torch +import torchvision +import pytorch3d + + +from dermsynth3d.deepblend.utils import ( + single_channel_to_rgb_tensor, + numpy2tensor, + laplacian_filter_tensor, +) +from dermsynth3d.utils.utils import ( + mask2boundingbox, + random_offset, + random_bound, +) +from dermsynth3d.models.model import Vgg16 +from dermsynth3d.losses.deepblend_loss import ( + total_variation_loss, + gradient_loss, + style_gram_loss, +) +from dermsynth3d.utils.textures import UVViewMapper +from dermsynth3d.utils.image import simple_augment, float_img_to_uint8, uint8_to_float32 +from dermsynth3d.tools.renderer import ( + camera_pos_from_normal, +) + + +def texture_mask_of_lesion_mask_id(texture_mask, lesion_mask_id: int, device): + mask_lesion = texture_mask.cpu().detach().numpy() == lesion_mask_id / 255 + lesion_id_texture_mask = torch.tensor( + mask_lesion, dtype=torch.float32, device=device + ) + return lesion_id_texture_mask + +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + +class PasteTextureImage: + """ + Pastes lesions into texture images and create masks. + """ + + def __init__( + self, + original_texture_image_tensor, + nonskin_texture_mask_tensor, + mesh_renderer, + view_size, + n_samples: int = 10000, + ): + self.original_texture_image_tensor = original_texture_image_tensor + self.nonskin_texture_mask_tensor = nonskin_texture_mask_tensor + self.mesh_renderer = mesh_renderer + self.view_size = view_size + self.blend = None + self.blend_dilated = None + + self.max_depth_diff = None + self.mask_id = None + + # Sample points on the skin. + self._sample_skin_points(n_samples) + # Keeps track of the index of the random samples. + self.sample_counter = -1 + + # Initialize textures and masks that we'll use to paste the lesions. + self.initialize_pasted_masks_and_textures() + + def view_params(self): + p = { + "look_at": list(self.sample_look_at), + "normal": list(self.sample_normal), + "camera_pos": list(self.sample_camera_pos), + "normal_weight": self.normal_weight, + "max_depth_diff": self.max_depth_diff, + "lesion_mask_id": self.mask_id, + } + return p + + def sample_next_view(self, surface_offset_bounds=(0.4, 0.6)): + """Sample a random view with the center pixel containing skin.""" + self.sample_counter += 1 + # If out-of-bounds, may need to increase `n_samples`. + # Or there may not be a suitable location to paste. + sample_idx = self.sample_skin_indexes[self.sample_counter] + + self.sample_look_at = self.sample_coords[sample_idx] + self.sample_normal = self.sample_normals[sample_idx] + + self.normal_weight = random_bound(*surface_offset_bounds) + + # Determine the camera position. + self.sample_camera_pos = camera_pos_from_normal( + look_at=self.sample_look_at, + normal=self.sample_normal, + normal_weight=self.normal_weight, + ) + + self.set_renderer_view( + face_idx=None, + surface_offset_range=None, + look_at=self.sample_look_at, + camera_pos=self.sample_camera_pos, + ) + + def _sample_skin_points(self, n_samples: int = 10000): + """Samples points on the mesh and determines if the point is on skin.""" + + # Set texture to the non-skin mask. + self.mesh_renderer.set_texture_image(self.nonskin_texture_mask_tensor) + + coords, normals, textures = pytorch3d.ops.sample_points_from_meshes( + meshes=self.mesh_renderer.mesh, + num_samples=n_samples, + return_normals=True, + return_textures=True, + ) + + sample_textures = textures.cpu().detach().numpy().squeeze() + # `sample_textures` will have [1,1,1] for each pixel that is non-skin. + # So if the sum < 3, then is a skin pixel. + samples_is_skin = sample_textures.sum(axis=1) < 3 + # Randomly permute the skin indexes - likely not necessary as these are already sampled. + self.sample_skin_indexes = np.random.permutation(np.where(samples_is_skin)[0]) + + # Spatial coordinates of the surface of the mesh. + self.sample_coords = coords.cpu().detach().numpy().squeeze() + # Normals corresponding to the surface points. + self.sample_normals = normals.cpu().detach().numpy().squeeze() + + def paste_on_texture(self, img, mask, mask_id: int, depth_diff_thresh=0.02): + self.max_depth_diff = None + self.mask_id = None + + self.init_target_lesion(img, mask) + max_depth_diff = self.lesion_max_depth_diff() + if max_depth_diff > depth_diff_thresh: + return "Skipping sample {} due to high depth change".format( + self.sample_counter + ) + + accepted = self.paste_masks_and_texture_images(mask_id) + if not accepted: + return "Skipping sample {} as overlaps with existing lesion.".format( + self.sample_counter + ) + + self.max_depth_diff = max_depth_diff + self.mask_id = mask_id + return None + + def original_view(self): + self.mesh_renderer.set_texture_image(self.original_texture_image_tensor) + view2d = self.mesh_renderer.render_view(asnumpy=True, asRGB=True) + return view2d + + def nonskin_mask(self): + self.mesh_renderer.set_texture_image(self.nonskin_texture_mask_tensor) + nonskin_mask = self.mesh_renderer.render_view(asnumpy=True, asRGB=True) + return nonskin_mask + + def skin_mask(self): + nonskin_mask = self.nonskin_mask() + skin_mask = self.mesh_renderer.skin_mask(nonskin_mask[:, :, 0] > 0.5) + return skin_mask + + def lesion_max_depth_diff(self): + view_seg_dilated = self.blend_dilated.view_seg() + skin_mask = self.skin_mask() + target_value = None + + max_depth_diff = self.mesh_renderer.max_depth_difference_to_target( + view_seg_dilated, skin_mask, target_value=target_value + ) + return max_depth_diff + + def set_renderer_view( + self, + face_idx, + surface_offset_range=(0.4, 0.6), + look_at=None, + camera_pos=None, + ): + self.mesh_renderer.randomize_view_parameters( + ambients=(1, 1), + speculars=(0, 0), + diffuses=(0, 0), + surface_offset_weight=surface_offset_range, + face_idx=face_idx, + view_size=self.view_size, + znear=1.0, # SET TO 1 for DEEP BLENDING. 0.01 gives artefacts. + look_at=look_at, + camera_pos=camera_pos, + ) + + def init_target_lesion( + self, + lesion_img, + lesion_seg, + augment=True, + resize=True, + ): + """Set the 2D lesion and mask.""" + + if augment: + lesion_img, lesion_seg = simple_augment(lesion_img, lesion_seg) + + if resize: + # Resize as some lesions are very large + # relative to the view size we are taking. + # Only allow the lesion to be a third of the size of the view. + new_size = np.asarray(self.view_size) // 3 + lesion_img = Image.fromarray(float_img_to_uint8(lesion_img)) + lesion_seg = Image.fromarray(float_img_to_uint8(lesion_seg)) + lesion_img.thumbnail(size=new_size, resample=Image.BILINEAR) + lesion_seg.thumbnail(size=new_size, resample=Image.NEAREST) + lesion_img = uint8_to_float32(np.asarray(lesion_img)) + lesion_seg = uint8_to_float32(np.asarray(lesion_seg)) + # We need even dimensions. + # Force this by dropping the last row/col if not even. + if lesion_seg.shape[0] % 2: + lesion_img = lesion_img[:-1, :, :] + lesion_seg = lesion_seg[:-1, :] + + if lesion_seg.shape[1] % 2: + lesion_img = lesion_img[:, :-1, :] + lesion_seg = lesion_seg[ + :, + :-1, + ] + + self.blend = Blend( + lesion_img=lesion_img, + lesion_seg=lesion_seg, + view_size=self.view_size, + ) + lesion_seg_dilated = ndimage.binary_dilation( + self.blend.lesion_seg, iterations=8 + ) + self.blend_dilated = Blend( + lesion_img=lesion_img, + lesion_seg=lesion_seg_dilated, + view_size=self.view_size, + ) + + def pasted_image(self): + view2d = self.original_view() + return self.blend.view_lesion(view2d) + + def initialize_pasted_masks_and_textures(self): + self.original_texture_np = np.asarray( + self.original_texture_image_tensor.cpu().detach() * 255, dtype=np.uint8 + ) + self.pasted_texture = self.original_texture_np.copy() + self.pasted_dilated_texture = self.original_texture_np.copy() + + self.lesion_mask = np.zeros( + shape=( + self.original_texture_np.shape[0], + self.original_texture_np.shape[1], + 1, + ), + dtype=np.uint8, + ) + self.lesion_dilated_mask = self.lesion_mask.copy() + + def paste_masks_and_texture_images(self, lesion_mask_id): + view2d = self.original_view() + uv_view_mapper_dilated = UVViewMapper( + view_uvs=self.mesh_renderer.view_uvs(), + paste_img=self.blend_dilated.view_lesion(view2d), + body_mask_view=self.mesh_renderer.body_mask(), + lesion_mask_view=self.blend_dilated.view_seg(), + texture_img_size=4096, + ) + mask_pad4_dilated, tex_pad4_dilated = uv_view_mapper_dilated.texture_pad( + seam_thresh=0.1, niter=4 + ) + + partial_pad_pasted_texture = np.asarray(tex_pad4_dilated * 255, dtype=np.uint8) + + partial_lesion_pad_mask_dilated = ( + uv_view_mapper_dilated.padder.padded_lesion_mask(mask_pad4_dilated) + ) + + if sum(self.lesion_dilated_mask[partial_lesion_pad_mask_dilated]) > 0: + # Overlaps with existing lesion. Do not proceed. + return False + + self.pasted_dilated_texture = ( + partial_pad_pasted_texture * partial_lesion_pad_mask_dilated + ) + (self.pasted_dilated_texture * ~partial_lesion_pad_mask_dilated) + + self.lesion_dilated_mask[partial_lesion_pad_mask_dilated] = lesion_mask_id + + uv_view_mapper = UVViewMapper( + view_uvs=self.mesh_renderer.view_uvs(), + paste_img=self.blend.view_lesion(view2d), + body_mask_view=self.mesh_renderer.body_mask(), + lesion_mask_view=self.blend.view_seg(), + texture_img_size=4096, + ) + + mask_pad4, tex_pad4 = uv_view_mapper.texture_pad(seam_thresh=0.1, niter=4) + partial_pasted_texture = np.asarray(tex_pad4 * 255, dtype=np.uint8) + partial_pasted_lesion_mask = uv_view_mapper.padder.padded_lesion_mask(mask_pad4) + self.pasted_texture = (partial_pasted_texture * partial_pasted_lesion_mask) + ( + self.pasted_texture * ~partial_pasted_lesion_mask + ) + self.lesion_mask[partial_pasted_lesion_mask] = lesion_mask_id + return True + + +class DeepTextureBlend3d: + def __init__( + self, + blended3d, + mesh_renderer, + deepblend, + device, + view_size=None, + ): + self.blended3d = blended3d + self.mesh_renderer = mesh_renderer + self.deepblend = deepblend + self.device = device + self.view_size = view_size + if self.view_size is None: + self.view_size = (512, 512) + + # Original texture image. + self.original_texture = self.blended3d.texture_image(astensor=True).to(self.device) + # Mask for the texture image. + self.texture_mask = self.blended3d.lesion_texture_mask(astensor=True).to(self.device) + # Pasted lesion on the texture image. + self.pasted_texture = self.blended3d.pasted_texture_image(astensor=True).to(self.device) + # Lesion with expanded borders on the texture image. + self.dilated_texture = self.blended3d.dilated_texture_image(astensor=True).to(self.device) + + # This is the texture image we are blending on. + # Load once so can blend multiple lesions. + self.texture_image = self.pasted_texture.clone().detach().contiguous().to(self.device) + self.texture_image.requires_grad = True + + def set_params(self, params): + self.params = params + self.lesion_id_texture_mask = texture_mask_of_lesion_mask_id( + self.texture_mask, params.lesion_mask_id, self.device + ) + + def randomize_view_offset(self, offset=None): + # View with a random distance offset. + if offset is None: + offset = random_offset() + + normal_weight = self.params.normal_weight + lower = normal_weight - offset + upper = normal_weight + offset + surface_offset_weight = [lower, upper] + + look_at = None + camera_pos = None + face_idx = None + if "face_idx" in self.params: + face_idx = int(self.params.face_idx) + + if "look_at" in self.params: + # If 'look_at' exists in the params, + # then override the `face_idx` option + # and instead use `look_at` with `camera_pos` + # to determine the view to render. + face_idx = None + surface_offset_weight = None + look_at = np.asarray(self.params["look_at"]) + normal = np.asarray(self.params["normal"]) + camera_pos = camera_pos_from_normal( + look_at=look_at, + normal=normal, + normal_weight=normal_weight, + ) + + self.mesh_renderer.randomize_view_parameters( + ambients=(1, 1), + speculars=(0, 0), + diffuses=(0, 0), + surface_offset_weight=surface_offset_weight, + face_idx=face_idx, + view_size=self.view_size, + znear=1.0, + look_at=look_at, + camera_pos=camera_pos, + ) + + def render_texture_views(self, pad: int = 32): + tensors, gt_gradient = render_views_with_textures( + self.mesh_renderer, + self.texture_image, + self.lesion_id_texture_mask, + self.pasted_texture, + self.dilated_texture, + self.original_texture, + lesion_mask_id=None, # params.lesion_mask_id, + pad=pad, + ) + + return tensors, gt_gradient + + def compute_loss_of_random_offset_view(self, pad: int = 32): + # Blended image. We are learning this. Clamp to acceptable range. + self.texture_image.data.clamp_(0, 1) + # Randomize the offset of the view. + self.randomize_view_offset(offset=None) + + tensors, gt_gradient = self.render_texture_views(pad) + loss = self.deepblend.loss( + tensors["composite"], + tensors["original"], + tensors["mask"], + tensors["pasted"], + gt_gradient, + ) + + return loss + + def postprocess_blended_texture_image(self): + """ + After we blend the texture image, artefacts can still occur, + especially at the border of the blended texture. + + As well, the seams are not padded during the blending process. + + This function combines the blended texture image with + the original texture image and performs seam padding as needed. + + In this part, we: + - replace the textures outside of the lesion mask + with the original textures to replace border artefacts + - perform texture padding for the blended lesion + (only needed if blending across seams) + + Returns: + The processed texture image with blended lesions. + """ + + # Initialize the merged texture as the original texture. + merged_texture_np = np.asarray(self.blended3d.texture_image()) + + # Clamp to acceptable range. + self.texture_image.data.clamp_(0, 1) + blended_texture_np = (self.texture_image.detach().cpu().numpy() * 255).astype( + np.uint8 + ) + + # Mask of the lesions. + texture_mask_np = ( + np.asarray(self.texture_mask.cpu().detach()[:, :, np.newaxis]) * 255 + ) + + params_df = self.blended3d.lesion_params() + + for row_idx, params in params_df.iterrows(): + face_idx = None + surface_offset_weight = None + + normal_weight = params.normal_weight + + if "face_idx" in params: + face_idx = int(params["face_idx"]) + surface_offset_weight = [normal_weight, normal_weight] + + if "look_at" in params: + # Override face_idx if look_at is given. + face_idx = None + surface_offset_weight = None + look_at = np.asarray(params["look_at"]) + normal = np.asarray(params["normal"]) + camera_pos = camera_pos_from_normal( + look_at=look_at, + normal=normal, + normal_weight=normal_weight, + ) + + lesion_mask_id = params.lesion_mask_id + # No offset in the surface_weight. + self.mesh_renderer.randomize_view_parameters( + ambients=(1, 1), + speculars=(0, 0), + diffuses=(0, 0), + surface_offset_weight=surface_offset_weight, + face_idx=face_idx, + view_size=self.view_size, + znear=1.0, + ) + + # Set to the blended texture image. + self.mesh_renderer.set_texture_image(texture_image=self.texture_image) + + # Blended image. + img = self.mesh_renderer.render_view(asnumpy=True, asRGB=True) + + # Texture mask for only the `lesion_mask_id` + lesion_id_texture_mask = texture_mask_of_lesion_mask_id( + self.texture_mask, lesion_mask_id, self.device + ) + + # Render the texture mask for the specific lesion. + self.mesh_renderer.set_texture_image( + texture_image=lesion_id_texture_mask[:, :, np.newaxis] + ) + mask2d = self.mesh_renderer.render_lesion_mask(asnumpy=True, asRGB=True) + + # Remove background on mask. + lesion_mask = mask2d * self.mesh_renderer.body_mask()[:, :, np.newaxis] + lesion_mask = (lesion_mask[:, :, 0] > 0.5) * 1 + + # Pad if across seams. + uv_view_mapper = UVViewMapper( + view_uvs=self.mesh_renderer.view_uvs(), + paste_img=img, # Blended image. + body_mask_view=self.mesh_renderer.body_mask(), + lesion_mask_view=lesion_mask, + texture_img_size=4096, + ) + mask_pad4, tex_pad4 = uv_view_mapper.texture_pad(seam_thresh=0.1, niter=4) + lesion_pad_channel = uv_view_mapper.padder.LESION_PAD_CHANNEL + padded_blended_texture = np.asarray(tex_pad4 * 255, dtype=np.uint8) + lesion_pad_mask = mask_pad4[:, :, lesion_pad_channel] == 1 + lesion_pad_mask = lesion_pad_mask[:, :, np.newaxis] + texture_mask_lesion = texture_mask_np == lesion_mask_id + + # Use the blended lesions for the lesion mask, + # use the earlier iteration of the blended_texture for non-masked. + merged_texture_np = (blended_texture_np * texture_mask_lesion) + ( + merged_texture_np * ~texture_mask_lesion + ) + + # Call this after to overwrite the lesion padding at the seams. + # Use padded blended textures for lesion padded areas, + merged_texture_np = (padded_blended_texture * lesion_pad_mask) + ( + merged_texture_np * ~lesion_pad_mask + ) + + return merged_texture_np + + +class DeepImageBlend: + def __init__( + self, + normalize=None, + gpu_id=0, + grad_weight=100000, + style_weight=1000000, + content_weight=2, + tv_weight=0.0001, + ): + self.normalize = normalize + self.gpu_id = gpu_id + + if self.normalize is None: + self.normalize = torchvision.transforms.Normalize( + mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225], + ) + + self.model = Vgg16().to(gpu_id) + + self.mse = torch.nn.MSELoss() + + # Loss function weights. + # These are set empirically such that each term + # roughly contributes the same amount to the loss. + self.grad_weight = grad_weight + self.style_weight = style_weight + self.content_weight = content_weight + self.tv_weight = tv_weight + + self.losses = [] + + def loss( + self, + composite_img_tensor, + original_img_tensor, + lesion_mask_tensor, + pasted_img_tensor, + gt_gradient, + ): + grad_loss = self.gradient_loss(composite_img_tensor, gt_gradient) + content_loss = self.content_loss( + composite_img_tensor, lesion_mask_tensor, pasted_img_tensor + ) + style_loss = self.style_loss(composite_img_tensor, original_img_tensor) + tv_loss = self.total_variation_loss(composite_img_tensor) + total_loss = grad_loss + content_loss + style_loss + tv_loss + + self.losses.append( + { + "grad": grad_loss.item(), + "content": content_loss.item(), + "style": style_loss.item(), + "tv": tv_loss.item(), + "loss": total_loss.item(), + } + ) + return total_loss + + def gradient_loss( + self, + composite_img_tensor, + gt_gradient, + ): + grad_loss = gradient_loss( + composite_img_tensor, gt_gradient, self.mse, self.gpu_id + ) + grad_loss *= self.grad_weight + return grad_loss + + def content_loss( + self, + composite_img_tensor, + lesion_mask_tensor, + pasted_img_tensor, + ): + blend_object_features = self.model( + self.normalize(composite_img_tensor * lesion_mask_tensor) + ) + source_object_features = self.model( + self.normalize(pasted_img_tensor * lesion_mask_tensor) + ) + # Assumes VGG16 here. + content_loss = self.mse( + blend_object_features.relu2_2, source_object_features.relu2_2 + ) + content_loss *= self.content_weight + return content_loss + + def style_loss( + self, + composite_img_tensor, + original_img_tensor, + ): + blend_features_style = self.model(self.normalize(composite_img_tensor)) + original_features_style = self.model(self.normalize(original_img_tensor)) + + # Assumes VGG features. + style_loss = style_gram_loss( + original_features_style, blend_features_style, self.mse + ) + style_loss *= self.style_weight + return style_loss + + def total_variation_loss(self, composite_img_tensor): + tv_loss = total_variation_loss(composite_img_tensor) + tv_loss *= self.tv_weight + return tv_loss + + +class Blend: + def __init__( + self, + lesion_img, + lesion_seg, + view_size=(512, 512), + x_start=None, + y_start=None, + ): + self._lesion_img = lesion_img + self.lesion_seg = lesion_seg + self.view_size = view_size + self.x_start = x_start + self.y_start = y_start + + if self.x_start is None: + self.x_start = self.view_size[0] // 2 + + if self.y_start is None: + self.y_start = self.view_size[1] // 2 + + def lesion_seg_dilated(self, iterations=3): + return ndimage.binary_dilation(self.lesion_seg, iterations=iterations) + + def view_seg_dilated(self, iterations=3, asrgbtensor=False): + lesion_seg_dilated = self.lesion_seg_dilated(iterations) + view_seg_dilated = paste_blend( + x_start=self.x_start, + y_start=self.y_start, + img=np.ones(shape=self.lesion_seg.shape, dtype=np.float32), + mask=lesion_seg_dilated > 0, + canvas=np.zeros(shape=self.view_size, dtype=np.float32), + ) + + if asrgbtensor: + view_seg_dilated = single_channel_to_rgb_tensor(view_seg_dilated) + + return view_seg_dilated + + def view_seg(self, asrgbtensor=False): + view_seg = paste_blend( + x_start=self.x_start, + y_start=self.y_start, + img=np.ones(shape=self.lesion_seg.shape, dtype=np.float32), + mask=self.lesion_seg > 0, + canvas=np.zeros(shape=self.view_size, dtype=np.float32), + ) + + if asrgbtensor: + view_seg = single_channel_to_rgb_tensor(view_seg) + + return view_seg + + def view_lesion(self, view2d): + return paste_blend( + x_start=self.x_start, + y_start=self.y_start, + img=self._lesion_img, + mask=self.lesion_seg[:, :, np.newaxis] > 0, + canvas=view2d, + ) + + def lesion_img(self, astensor=False): + if astensor: + return numpy2tensor(self._lesion_img, gpu_id=device) + + return self._lesion_img + + def lesion_mask(self, asrgbtensor=False): + if asrgbtensor: + return single_channel_to_rgb_tensor(self.lesion_seg) + + return self.lesion_seg + + +def paste_blend( + x_start: int, + y_start: int, + img, + mask: np.ndarray, + canvas, +) -> np.ndarray: + if (img.shape[0] % 2) != 0: + raise ValueError("Assumes even shape") + + if (img.shape[1]) % 2 != 0: + raise ValueError("Assumes even shape") + + x_range_start = int(x_start - mask.shape[0] * 0.5) + x_range_end = int(x_start + mask.shape[0] * 0.5) + + img_blend = canvas.copy() + target_region = canvas[ + x_range_start:x_range_end, + int(y_start - mask.shape[1] * 0.5) : int(y_start + mask.shape[1] * 0.5), + ] + img_blend[ + x_range_start:x_range_end, + int(y_start - mask.shape[1] * 0.5) : int(y_start + mask.shape[1] * 0.5), + ] = (mask * img) + (~mask * target_region) + + return img_blend + + +def blend_gradients(background_img, foreground_img, mask, gpu_id=0): + """Blends the gradients of two images based on the mask. + + For proper gradient blending at the boundaries of the `mask`, + the foreground image should have the textures of the original + lesion that extend beyond the mask. + + Otherwise, there will can be a high gradient at the boundaries + of the mask based on the color differences. + + Code borrowed from: https://github.com/owenzlz/DeepImageBlending/blob/94e6a1fb5a9a4d78ee07cf6b85431cf3bcdfb158/utils.py#L61 + + Args: + img (np.ndarray): H x W x 3 background image. + dilated_paste_img (np.ndarray): H x W x 3 foreground image. + The foreground object within the `mask` should have + the original textures surrounding the `mask`. + mask (np.ndarray): H x W binary mask, where a value of + 1 indicates the foreground and 0 indicates the background. + + Returns: + list of tenors: A list of tensors of the blended grandients. + The list contains three tensors representing the RGB gradients. + Each tensor is of shape H x W. + """ + + paste_tensor = numpy2tensor(foreground_img, gpu_id = device) + img_tensor = numpy2tensor(background_img, gpu_id = device) + + img_gradient = laplacian_filter_tensor(img_tensor, gpu_id=device) + img_r_grad = img_gradient[0].squeeze().cpu().detach().numpy() + img_g_grad = img_gradient[1].squeeze().cpu().detach().numpy() + img_b_grad = img_gradient[2].squeeze().cpu().detach().numpy() + + dilated_gradient = laplacian_filter_tensor(paste_tensor, gpu_id=device) + dilated_r_grad = dilated_gradient[0].squeeze().cpu().detach().numpy() + dilated_g_grad = dilated_gradient[1].squeeze().cpu().detach().numpy() + dilated_b_grad = dilated_gradient[2].squeeze().cpu().detach().numpy() + + r_grad_mod = dilated_r_grad * mask + img_r_grad * (1 - mask) + g_grad_mod = dilated_g_grad * mask + img_g_grad * (1 - mask) + b_grad_mod = dilated_b_grad * mask + img_b_grad * (1 - mask) + rgb_gradient = [ + numpy2tensor(r_grad_mod, gpu_id = device), + numpy2tensor(g_grad_mod, gpu_id = device), + numpy2tensor(b_grad_mod, gpu_id = device), + ] + + return rgb_gradient + + +def composite_image(input_img, canvas_mask, target_img): + return canvas_mask * input_img + (1 - canvas_mask) * target_img + + +def render_views_with_textures( + mesh_renderer, + texture_image, + texture_mask, + pasted_texture, + dilated_texture, + original_texture, + lesion_mask_id, + pad=10, +): + # Blended image. We are learning this. + mesh_renderer.set_texture_image(texture_image=texture_image) + # False for tensor. + blended_images = mesh_renderer.render_view(asnumpy=False) + blended_img_tensor = blended_images[:, ..., :3].transpose(1, 3).transpose(2, 3) + + # Lesion mask. + mesh_renderer.set_texture_image(texture_image=texture_mask[:, :, np.newaxis]) + mask2d = mesh_renderer.render_view(asnumpy=True, asRGB=True) + # lesion_mask = mesh_renderer.lesion_mask(mask2d[:, :, 0], lesion_mask_id) + lesion_mask = mask2d * mesh_renderer.body_mask()[:, :, np.newaxis] + lesion_mask = (lesion_mask[:, :, 0] > 0.5) * 1 + lesion_mask_tensor = numpy2tensor(lesion_mask[:, :, np.newaxis], gpu_id=device) + xmin, xmax, ymin, ymax = mask2boundingbox(lesion_mask > 0.5, pad=pad) + + if xmin < 0: + xmin = 0 + if ymin < 0: + ymin = 0 + if xmax > lesion_mask.shape[0]: + xmax = lesion_mask.shape[0] + if ymax > lesion_mask.shape[1]: + ymax = lesion_mask.shape[1] + + # Pasted image. + mesh_renderer.set_texture_image(texture_image=pasted_texture) + pasted_img = mesh_renderer.render_view(asnumpy=True, asRGB=True) + pasted_img_tensor = numpy2tensor(pasted_img, gpu_id=device) + + # Dilated image. + mesh_renderer.set_texture_image(texture_image=dilated_texture) + dilated_img = mesh_renderer.render_view(asnumpy=True, asRGB=True) + + # Original image. + mesh_renderer.set_texture_image(texture_image=original_texture) + original_img = mesh_renderer.render_view(asnumpy=True, asRGB=True) + original_img_tensor = numpy2tensor(original_img, gpu_id=device) + + # Composite foreground and background to make the blended image. + composite_img_tensor = composite_image( + blended_img_tensor, lesion_mask_tensor, original_img_tensor + ) + + # Gradient loss. + gt_gradient = blend_gradients( + original_img[xmin:xmax, ymin:ymax, :], + dilated_img[xmin:xmax, ymin:ymax, :], + lesion_mask[xmin:xmax, ymin:ymax], + ) + + composite = composite_img_tensor[:, :, xmin:xmax, ymin:ymax] + original = original_img_tensor[:, :, xmin:xmax, ymin:ymax] + mask = lesion_mask_tensor[:, :, xmin:xmax, ymin:ymax] + pasted = pasted_img_tensor[:, :, xmin:xmax, ymin:ymax] + return { + "composite": composite, + "original": original, + "mask": mask, + "pasted": pasted, + }, gt_gradient diff --git a/DermSynth3D/dermsynth3d/deepblend/blend3d.py b/DermSynth3D/dermsynth3d/deepblend/blend3d.py new file mode 100644 index 0000000000000000000000000000000000000000..bc62f451d7d5b0223b0d9fb8f1c58cc8655cfcaf --- /dev/null +++ b/DermSynth3D/dermsynth3d/deepblend/blend3d.py @@ -0,0 +1,286 @@ +import os +import json + +from typing import Optional, Set +from PIL import Image + +import numpy as np +import pandas as pd +from ast import literal_eval + +from dermsynth3d.utils.image import load_image +from dermsynth3d.utils.tensor import pil_to_tensor + + +class Blended3d: + """ + Loading and saving common files related to 3D blending. + + The code in the __init__ is specific to the 3DBodyTex.v1 + directory structure and would need to be changed for other datasets. + """ + + def __init__( + self, + mesh_filename: str, + device: str, + dir_blended_textures: str, + dir_nonskin_faces: Optional[str] = None, + dir_anatomy: Optional[str] = None, + extension: str = "random_pytorch", + ): + self.dir_blended_textures = dir_blended_textures + self.dir_nonskin_faces = None # dir_nonskin_faces + + self.dir_anatomy = dir_anatomy + self.device = device + + # This assumes that `mesh_filename` is in the format of 3dBodyTex.v1 + self.dir_original_mesh = mesh_filename.split("model_highres_0_normalized.obj")[ + 0 + ] + + split_filename = mesh_filename.split("/") + self.subject_id = split_filename[-2] + self.mesh_name = split_filename[-1] + self.texture_name = self.mesh_name.split(".")[0] # + '.png' + self.extension = extension + + self.dir_subject = os.path.join(self.dir_blended_textures, self.subject_id) + + if not os.path.isdir(self.dir_subject): + # Create the directory for the subject if it does not exist. + os.mkdir(self.dir_subject) + + def vertices_to_anatomy(self): + """ + Loads anatomy labels for each vertex. + """ + anatomy_filename = os.path.join( + self.dir_anatomy, self.subject_id, "vertslabels_scan.npy" + ) + vertices_to_anatomy = np.load(anatomy_filename).squeeze() + return vertices_to_anatomy + + def filepath_lesion_faces_uvs(self): + print("***Warning: Function `filepath_lesion_faces_uvs(...)` is depreciated.") + return os.path.join( + self.dir_subject, "lesion_faces_uvs_" + self.extension + ".npy" + ) + + def save_lesion_faces_uvs(self, uvs_lesion): + print("***Warning: Function `save_lesion_faces_uvs(...)` is depreciated.") + np.save(self.filepath_lesion_faces_uvs(), uvs_lesion) + + def load_lesion_faces_uvs(self): + print("***Warning: Function `load_lesion_faces_uvs(...)` is depreciated.") + filepath = self.filepath_lesion_faces_uvs() + uvs_lesion = np.load(filepath) + return uvs_lesion + + def filepath_lesion_texture_mask(self): + return os.path.join(self.dir_subject, "lesion_mask_" + self.extension + ".png") + + def save_lesion_texture_mask(self, lesion_texture_mask, print_filename=False, filename=None): + """Saves the lesion mask array as a PNG image. + + Image saved with a default filename and path. + + Args: + lesion_texture_mask (np.ndarray): H x W numpy array + representing the masked lesion of the image. + print_filename (bool, optional): If True, prints the filepath. + """ + filepath = self.filepath_lesion_texture_mask() + Image.fromarray(lesion_texture_mask).save(filepath) + if print_filename: + print(filepath) + if filename is not None: + Image.fromarray(lesion_texture_mask).save(filename) + + def load_lesion_texture_mask(self): + print("Depreciated: use `lesion_texture_mask()`") + return self.lesion_texture_mask() + + def lesion_texture_mask(self, filepath=None, mode="L", astensor=False): + if filepath is None: + filepath = self.filepath_lesion_texture_mask() + + img = load_image(filepath, mode=mode) + if astensor: + img = pil_to_tensor(img).to(self.device) + + return img + + def texture_image(self, filepath=None, astensor=False): + """Returns the original unmodified texture image.""" + if filepath is None: + filepath = self.filepath_texture_image() + img = load_image(filepath) + if astensor: + img = pil_to_tensor(img).to(self.device) + + return img + + def filepath_texture_image(self): + fname = os.path.join(self.dir_original_mesh, "model_highres_0_normalized.png") + return fname + + def filepath_blended_texture_image(self): + return os.path.join( + self.dir_subject, self.texture_name + "_" + self.extension + ".png" + ) + + def filepath_pasted_texture_image(self): + return os.path.join( + self.dir_subject, self.texture_name + "_pasted_" + self.extension + ".png" + ) + + def filepath_dilated_texture_image(self): + return os.path.join( + self.dir_subject, self.texture_name + "_dilated_" + self.extension + ".png" + ) + + def filepath_dilated_texture_mask(self): + return os.path.join( + self.dir_subject, "lesion_mask_dilated_" + self.extension + ".png" + ) + + def filepath_nonskin_texture_image(self): + return os.path.join( + self.dir_subject, + "model_highres_0_normalized_mask.png", + ) + + def save_dilated_texture_mask(self, dilated_texture_mask, print_filepath=False, filename=None): + filepath = self.filepath_dilated_texture_mask() + Image.fromarray(dilated_texture_mask).save(filepath) + + if print_filepath: + print(filepath) + if filename is not None: + Image.fromarray(dilated_texture_mask).save(filename) + + def save_dilated_texture_image(self, dilated_texture_image, print_filepath=False, filename=None): + filepath = self.filepath_dilated_texture_image() + Image.fromarray(dilated_texture_image).save(filepath) + + if print_filepath: + print(filepath) + if filename is not None: + Image.fromarray(dilated_texture_image).save(filename) + + + def save_pasted_texture_image(self, pasted_texture_image, print_filepath=False, filename=None): + filepath = self.filepath_pasted_texture_image() + Image.fromarray(pasted_texture_image).save(filepath) + + if print_filepath: + print(filepath) + if filename is not None: + Image.fromarray(pasted_texture_image).save(filename) + + def pasted_texture_image(self, astensor=False): + img = load_image(self.filepath_pasted_texture_image()) + if astensor: + img = pil_to_tensor(img).to(self.device) + + return img + + def save_blended_texture_image(self, blended_texture_image, print_filename=False, filename=None): + """Saves the texture image with a default filename and path. + + Args: + blended_texture_image (np.ndarray): H x W x 3 numpy array + representing the colored texture image. + print_filename (bool, optional): If True, print the filepath + to the saved image. Defaults to False. + """ + filepath = self.filepath_blended_texture_image() + Image.fromarray(blended_texture_image).save(filepath) + + if print_filename: + print(filepath) + if filename is not None: + Image.fromarray(blended_texture_image).save(filename) + + def blended_texture_image(self, astensor=False): + img = load_image(self.filepath_blended_texture_image()) + if astensor: + img = pil_to_tensor(img).to(self.device) + + return img + + def dilated_texture_image(self, astensor=False): + img = load_image(self.filepath_dilated_texture_image()) + if astensor: + img = pil_to_tensor(img).to(self.device) + + return img + + def nonskin_texture_mask(self, astensor=False): + img = load_image(self.filepath_nonskin_texture_image()) + if astensor: + img = pil_to_tensor(img).to(self.device) + + return img + + def filepath_lesion_params(self): + return os.path.join( + self.dir_subject, "lesion_params_" + self.extension + ".csv" + ) + + def save_lesion_params(self, df, print_filepath=False, filename=None): + filepath = self.filepath_lesion_params() + df.to_csv(filepath, index=False) + if print_filepath: + print(filepath) + if filename is not None: + df.to_csv(filename, index=False) + + def lesion_params(self): + df = pd.read_csv(self.filepath_lesion_params()) + if "look_at" in df: + df["look_at"] = df["look_at"].apply(literal_eval) + + if "camera_pos" in df: + df["camera_pos"] = df["camera_pos"].apply(literal_eval) + + if "normal" in df: + df["normal"] = df["normal"].apply(literal_eval) + + return df + + def filepath_nonskin_face_indexes(self): + print( + "***Warning: Function `filepath_nonskin_face_indexes(...)` is depreciated." + ) + return os.path.join( + self.dir_nonskin_faces, self.subject_id + "_nonskin-face-indexes" + ) + + def nonskin_face_indexes( + self, + filepath: Optional[str] = None, + ext=".npz", + ) -> Set[int]: + """Returns a set of mesh faces indexes that are of not skin (cloths, hair). + + These faces are manually labelled using Blender + and the file `face_indexes.txt` must exist for the specific mesh. + + If no file exists, returns None. + + """ + if filepath is None: + filepath = self.filepath_nonskin_face_indexes() + ext + + if ext == ".npz": + loaded = np.load(filepath, allow_pickle=True) + nonskin_face_indexes = loaded["nonskin_face_indexes"].item() + else: + # Text file. + with open(filepath, "r") as wfile: + nonskin_face_indexes = json.load(wfile) + + return set(nonskin_face_indexes) diff --git a/DermSynth3D/dermsynth3d/deepblend/utils.py b/DermSynth3D/dermsynth3d/deepblend/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..c0a54a438314085c9131dd2defa46ef20c21eee0 --- /dev/null +++ b/DermSynth3D/dermsynth3d/deepblend/utils.py @@ -0,0 +1,259 @@ +import numpy as np +import torch + +""" +Some parts of the code borrowed from: https://github.com/owenzlz/DeepImageBlending +""" + + +def single_channel_to_rgb_tensor(x, gpu_id=0): + """ + Convert an MxN array into 1 x 3 x M x N tensor. + """ + x_tensor = numpy2tensor(x, gpu_id=gpu_id) + x_rgb = ( + x_tensor.squeeze(0).repeat(3, 1).view(3, x.shape[0], x.shape[1]).unsqueeze(0) + ) + + return x_rgb + + +def make_canvas_mask(x_start, y_start, target_size, mask): + """ + Args: + x_start ([type]): [description] + y_start ([type]): [description] + target_size ([type]): [description] + mask ([type]): [description] + + Returns: + [type]: [description] + """ + canvas_mask = np.zeros(target_size) + canvas_mask[ + int(x_start - mask.shape[0] * 0.5) : int(x_start + mask.shape[0] * 0.5), + int(y_start - mask.shape[1] * 0.5) : int(y_start + mask.shape[1] * 0.5), + ] = mask + return canvas_mask + + +def numpy2tensor(np_array, gpu_id=0, is_contiguous=False): + """ + Converts numpy array to torch tensor + """ + if len(np_array.shape) == 2: + if is_contiguous: + raise NotImplementedError("Not tested for 2D inputs.") + else: + tensor = torch.from_numpy(np_array).unsqueeze(0).float().to(gpu_id) + else: + if is_contiguous: + tensor = ( + torch.from_numpy(np_array) + .unsqueeze(0) + .transpose(1, 3) + .transpose(2, 3) + .float() + .contiguous() + .to(gpu_id) + ) + else: + tensor = ( + torch.from_numpy(np_array) + .unsqueeze(0) + .transpose(1, 3) + .transpose(2, 3) + .float() + .to(gpu_id) + ) + return tensor + + +def laplacian_filter_tensor(img_tensor, gpu_id): + """ + Applies Laplalican Operator per image channel + """ + laplacian_filter = np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]]) + laplacian_conv = torch.nn.Conv2d( + 1, 1, kernel_size=3, stride=1, padding=1, bias=False + ) + laplacian_conv.weight = torch.nn.Parameter( + torch.from_numpy(laplacian_filter).float().unsqueeze(0).unsqueeze(0).to(gpu_id) + ) + + for param in laplacian_conv.parameters(): + param.requires_grad = False + + red_img_tensor = img_tensor[:, 0, :, :].unsqueeze(1) + green_img_tensor = img_tensor[:, 1, :, :].unsqueeze(1) + blue_img_tensor = img_tensor[:, 2, :, :].unsqueeze(1) + + red_gradient_tensor = laplacian_conv(red_img_tensor).squeeze(1) + green_gradient_tensor = laplacian_conv(green_img_tensor).squeeze(1) + blue_gradient_tensor = laplacian_conv(blue_img_tensor).squeeze(1) + return red_gradient_tensor, green_gradient_tensor, blue_gradient_tensor + + +def compute_gt_gradient(x_start, y_start, source_img, target_img, mask, gpu_id): + # compute source image gradient + source_img_tensor = ( + torch.from_numpy(source_img) + .unsqueeze(0) + .transpose(1, 3) + .transpose(2, 3) + .float() + .to(gpu_id) + ) + ( + red_source_gradient_tensor, + green_source_gradient_tensor, + blue_source_gradient_tenosr, + ) = laplacian_filter_tensor(source_img_tensor, gpu_id) + red_source_gradient = red_source_gradient_tensor.cpu().data.numpy()[0] + green_source_gradient = green_source_gradient_tensor.cpu().data.numpy()[0] + blue_source_gradient = blue_source_gradient_tenosr.cpu().data.numpy()[0] + + # compute target image gradient + target_img_tensor = ( + torch.from_numpy(target_img) + .unsqueeze(0) + .transpose(1, 3) + .transpose(2, 3) + .float() + .to(gpu_id) + ) + ( + red_target_gradient_tensor, + green_target_gradient_tensor, + blue_target_gradient_tenosr, + ) = laplacian_filter_tensor(target_img_tensor, gpu_id) + red_target_gradient = red_target_gradient_tensor.cpu().data.numpy()[0] + green_target_gradient = green_target_gradient_tensor.cpu().data.numpy()[0] + blue_target_gradient = blue_target_gradient_tenosr.cpu().data.numpy()[0] + + # mask and canvas mask + canvas_mask = np.zeros((target_img.shape[0], target_img.shape[1])) + canvas_mask[ + int(x_start - source_img.shape[0] * 0.5) : int( + x_start + source_img.shape[0] * 0.5 + ), + int(y_start - source_img.shape[1] * 0.5) : int( + y_start + source_img.shape[1] * 0.5 + ), + ] = mask + + # foreground gradient + red_source_gradient = red_source_gradient * mask + green_source_gradient = green_source_gradient * mask + blue_source_gradient = blue_source_gradient * mask + red_foreground_gradient = np.zeros((canvas_mask.shape)) + red_foreground_gradient[ + int(x_start - source_img.shape[0] * 0.5) : int( + x_start + source_img.shape[0] * 0.5 + ), + int(y_start - source_img.shape[1] * 0.5) : int( + y_start + source_img.shape[1] * 0.5 + ), + ] = red_source_gradient + green_foreground_gradient = np.zeros((canvas_mask.shape)) + green_foreground_gradient[ + int(x_start - source_img.shape[0] * 0.5) : int( + x_start + source_img.shape[0] * 0.5 + ), + int(y_start - source_img.shape[1] * 0.5) : int( + y_start + source_img.shape[1] * 0.5 + ), + ] = green_source_gradient + blue_foreground_gradient = np.zeros((canvas_mask.shape)) + blue_foreground_gradient[ + int(x_start - source_img.shape[0] * 0.5) : int( + x_start + source_img.shape[0] * 0.5 + ), + int(y_start - source_img.shape[1] * 0.5) : int( + y_start + source_img.shape[1] * 0.5 + ), + ] = blue_source_gradient + + # background gradient + red_background_gradient = red_target_gradient * (canvas_mask - 1) * (-1) + green_background_gradient = green_target_gradient * (canvas_mask - 1) * (-1) + blue_background_gradient = blue_target_gradient * (canvas_mask - 1) * (-1) + + # add up foreground and background gradient + gt_red_gradient = red_foreground_gradient + red_background_gradient + gt_green_gradient = green_foreground_gradient + green_background_gradient + gt_blue_gradient = blue_foreground_gradient + blue_background_gradient + + gt_red_gradient = numpy2tensor(gt_red_gradient, gpu_id) + gt_green_gradient = numpy2tensor(gt_green_gradient, gpu_id) + gt_blue_gradient = numpy2tensor(gt_blue_gradient, gpu_id) + + gt_gradient = [gt_red_gradient, gt_green_gradient, gt_blue_gradient] + return gt_gradient + + +def gram_matrix(y): + # Compute Gram matrix + (b, ch, h, w) = y.size() + features = y.view(b, ch, w * h) + features_t = features.transpose(1, 2) + gram = features.bmm(features_t) / (ch * h * w) + return gram + + +def get_matched_features_pytorch(blended_features, target_features): + matched_features = blended_features.new_full( + size=blended_features.size(), fill_value=0, requires_grad=False + ).to(blended_features.device) + for filter in range(0, blended_features.size(1)): + matched_filter = hist_match_pytorch( + blended_features[0, filter, :, :], target_features[0, filter, :, :] + ) + matched_features[0, filter, :, :] = matched_filter + return matched_features + + +def hist_match_pytorch(source, template): + oldshape = source.size() + source = source.view(-1) + template = template.view(-1) + + max_val = max(source.max().item(), template.max().item()) + min_val = min(source.min().item(), template.min().item()) + + num_bins = 400 + hist_step = (max_val - min_val) / num_bins + + if hist_step == 0: + return source.reshape(oldshape) + + hist_bin_centers = torch.arange(start=min_val, end=max_val, step=hist_step).to( + source.device + ) + hist_bin_centers = hist_bin_centers + hist_step / 2.0 + + source_hist = torch.histc(input=source, min=min_val, max=max_val, bins=num_bins) + template_hist = torch.histc(input=template, min=min_val, max=max_val, bins=num_bins) + + source_quantiles = torch.cumsum(input=source_hist, dim=0) + source_quantiles = source_quantiles / source_quantiles[-1] + + template_quantiles = torch.cumsum(input=template_hist, dim=0) + template_quantiles = template_quantiles / template_quantiles[-1] + + nearest_indices = torch.argmin( + torch.abs( + template_quantiles.repeat(len(source_quantiles), 1) + - source_quantiles.view(-1, 1).repeat(1, len(template_quantiles)) + ), + dim=1, + ) + + source_bin_index = torch.clamp( + input=torch.round(source / hist_step), min=0, max=num_bins - 1 + ).long() + + mapped_indices = torch.gather(input=nearest_indices, dim=0, index=source_bin_index) + matched_source = torch.gather(input=hist_bin_centers, dim=0, index=mapped_indices) + + return matched_source.reshape(oldshape) diff --git a/DermSynth3D/dermsynth3d/losses/__pycache__/deepblend_loss.cpython-310.pyc b/DermSynth3D/dermsynth3d/losses/__pycache__/deepblend_loss.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2e27c316755e856f9851c6220c8fa9b345bde4e4 Binary files /dev/null and b/DermSynth3D/dermsynth3d/losses/__pycache__/deepblend_loss.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/losses/deepblend_loss.py b/DermSynth3D/dermsynth3d/losses/deepblend_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..e9ecaeb073268f620ffb551138081348bef8de12 --- /dev/null +++ b/DermSynth3D/dermsynth3d/losses/deepblend_loss.py @@ -0,0 +1,48 @@ +import torch +from dermsynth3d.deepblend.utils import laplacian_filter_tensor, gram_matrix + +""" +Some parts of the code borrowed from: https://github.com/owenzlz/DeepImageBlending +""" + + +def style_gram_loss(target_features_style, blend_features_style, loss_func): + """ + Computes Gram loss for style + """ + target_gram_style = [gram_matrix(y) for y in target_features_style] + blend_gram_style = [gram_matrix(y) for y in blend_features_style] + + style_loss = 0 + for layer in range(len(blend_gram_style)): + style_loss += loss_func(blend_gram_style[layer], target_gram_style[layer]) + + style_loss /= len(blend_gram_style) + return style_loss + + +def total_variation_loss(blend_img_tensor): + """ + Compute TV Reg Loss + """ + tv_loss = torch.sum( + torch.abs(blend_img_tensor[:, :, :, :-1] - blend_img_tensor[:, :, :, 1:]) + ) + torch.sum( + torch.abs(blend_img_tensor[:, :, :-1, :] - blend_img_tensor[:, :, 1:, :]) + ) + return tv_loss + + +def gradient_loss(blend_img_tensor, gt_gradient, loss_func, gpu_id): + """ + Compute Laplacian Gradient of Blended Image + """ + pred_gradient = laplacian_filter_tensor(blend_img_tensor, gpu_id) + + # Compute Gradient Loss + grad_loss = 0 + for c in range(len(pred_gradient)): + grad_loss += loss_func(pred_gradient[c], gt_gradient[c]) + + grad_loss /= len(pred_gradient) + return grad_loss diff --git a/DermSynth3D/dermsynth3d/losses/metrics.py b/DermSynth3D/dermsynth3d/losses/metrics.py new file mode 100644 index 0000000000000000000000000000000000000000..7aba7a3d467b66f1e01b525f2b3d0ac97e9ea474 --- /dev/null +++ b/DermSynth3D/dermsynth3d/losses/metrics.py @@ -0,0 +1,174 @@ +import os +import torch +import numpy as np +from sklearn.metrics import jaccard_score + +from dermsynth3d.utils.channels import Target +from dermsynth3d.utils.image import load_image + + +def dice(pred, gt): + intersection = np.sum(pred & gt) + union = np.sum(pred | gt) + if gt.sum() == 0: + if pred.sum() == 0: + return 1 + else: + return 0 + return 2 * intersection / (union + intersection) + + +def dice_score(target, input): + # Dice on tensors + smooth = 1e-8 + + iflat = input.flatten() + tflat = target.flatten() + intersection = (iflat * tflat).sum() + + if (tflat.sum() == 0) and (iflat.sum() == 0): + return 1 + + return (2.0 * intersection + smooth) / (iflat.sum() + tflat.sum() + smooth) + + +def precision(pred, gt): + intersection = np.sum(pred & gt) + + if gt.sum() == 0: + if pred.sum() == 0: + return 1 + else: + return 0 + return intersection / pred.sum() + + +def jaccard_index(pred, gt): + intersection = np.sum(pred & gt) + union = np.sum(pred | gt) + + if gt.sum() == 0: + if pred.sum() == 0: + return 1 + else: + return 0 + return intersection / union + + +def recall(pred, gt): + intersection = np.sum(pred & gt) + + if gt.sum() == 0: + if pred.sum() == 0: + return 1 + else: + return 0 + return intersection / gt.sum() + + +def argmax_predictions(pred, asint=False): + pred = np.asarray(pred) + + if len(pred.shape) != 3: + raise ValueError("Must be HxWxC input") + + if pred.shape[-1] < 2: + raise ValueError("Cannot handle a single channel. C must be >= 2 ") + + argmax_preds = np.argmax(pred, axis=-1) + binary_preds = np.zeros( + shape=(pred.shape[0], pred.shape[1], pred.shape[2]), dtype=np.bool8 + ) + for idx in np.arange(binary_preds.shape[-1]): + binary_preds[:, :, idx] = argmax_preds == idx + + if asint: + binary_preds = (binary_preds * 255).astype(np.uint8) + + return binary_preds + + +def compute_results(ds, dir_predictions, pred_ext): + results = [] + for image_id in ds.file_ids: + gt_seg = np.asarray(ds.target(image_id)) + pred_filename = os.path.join(dir_predictions, image_id + pred_ext) + pred_seg = np.asarray(load_image(pred_filename)) + # pred_seg = np.asarray(ds.prediction(image_id)) + pred_seg = argmax_predictions(pred_seg) + + image_res = {} + image_res["file_id"] = image_id + + for c_idx in range(gt_seg.shape[-1]): + pred_channel = pred_seg[:, :, c_idx] + gt_channel = gt_seg[:, :, c_idx] > 0 + + ji = jaccard_index(gt_channel, pred_channel) + if c_idx == Target.LESION: + image_res["lesion_ji"] = ji + + if c_idx == Target.SKIN: + image_res["skin_ji"] = ji + + if c_idx == Target.NONSKIN: + image_res["nonskin_ji"] = ji + + results.append(image_res) + + return results + + +def compute_results_segmentation(ds, dir_predictions, pred_ext): + results = [] + for image_id in ds.file_ids: + gt_seg = np.asarray(ds.target(image_id)) + pred_filename = os.path.join(dir_predictions, image_id + pred_ext) + pred_seg = np.asarray(load_image(pred_filename)) + + image_res = {} + image_res["file_id"] = image_id + + pred_channel = (np.asarray(pred_seg)[:, :, 0] / 255) > 0.5 + gt_channel = (np.asarray(gt_seg)[:, :, 0] / 255) > 0 + + iou = jaccard_index(gt_channel, pred_channel) + dice_score = dice(gt_channel, pred_channel) + + image_res["iou"] = iou + image_res["dice"] = dice_score + + results.append(image_res) + + return results + + +def conf_mat_cells(ds, dir_predictions, pred_ext): + tps = [] + fps = [] + tns = [] + fns = [] + for img_id in ds.file_ids: + gt = np.asarray(ds.target(img_id)) + gt = gt[:, :, 0] > 0 + pred_filename = os.path.join(dir_predictions, img_id + pred_ext) + pred = np.asarray(load_image(pred_filename)) + skin_pred = argmax_predictions(pred)[:, :, Target.SKIN] + + tp = np.sum((skin_pred == True) & (gt == True)) + fp = np.sum((skin_pred == True) & (gt == False)) + tn = np.sum((skin_pred == False) & (gt == False)) + fn = np.sum((skin_pred == False) & (gt == True)) + assert tp + fp + tn + fn == (gt.shape[0] * gt.shape[1]) + + tps.append(tp) + fps.append(fp) + tns.append(tn) + fns.append(fn) + + return { + "tps": tps, + "fps": fps, + "tns": tns, + "fns": fns, + } diff --git a/DermSynth3D/dermsynth3d/losses/seg_loss.py b/DermSynth3D/dermsynth3d/losses/seg_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..75d953aa8aa79a7fbdaac7db188d4a09b736972c --- /dev/null +++ b/DermSynth3D/dermsynth3d/losses/seg_loss.py @@ -0,0 +1,64 @@ +import numpy as np +import torch + + +def dice_loss(target, input): + """ + Args: + + target: [BxCxHxW] + input: [BxCxHxW] + + Returns: + + loss: [float] + """ + smooth = 0.0 + + iflat = input.view(-1) + tflat = target.view(-1) + intersection = (iflat * tflat).sum() + + if (tflat.sum() == 0) and (iflat.sum() < 1): + return 0 + + loss = 1 - ((2.0 * intersection + smooth) / (iflat.sum() + tflat.sum() + smooth)) + + return loss + + +def loss_batch_channel(segs, preds, loss_func): + """Compute the loss for each sample and channel in the batch.""" + loss = 0 + count_batch_channels = 0 + for batch_idx in np.arange(segs.shape[0]): + pred = preds[batch_idx] + seg = segs[batch_idx] + + for channel_idx in np.arange(seg.shape[0]): + loss_channel = loss_func(seg[channel_idx], pred[channel_idx]) + if loss_channel is not None: + loss += loss_channel + count_batch_channels += 1 + + if count_batch_channels > 0: + loss /= count_batch_channels + + return loss + + +def jaccard_loss(targets, preds, empty_union=None, ignore_empty_target=True): + """ + Computes Jaccard Loss + """ + if ignore_empty_target: + if targets.sum() == 0: + return None + + if (targets.sum() == 0) and (preds.sum() == 0): + return empty_union + + intersect = torch.minimum(preds, targets) + union = torch.maximum(preds, targets) + + return 1 - intersect.sum() / union.sum() diff --git a/DermSynth3D/dermsynth3d/models/__pycache__/model.cpython-310.pyc b/DermSynth3D/dermsynth3d/models/__pycache__/model.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..58f832dd09f832000bce1a63c5ff2270fb53aca6 Binary files /dev/null and b/DermSynth3D/dermsynth3d/models/__pycache__/model.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/models/inference.py b/DermSynth3D/dermsynth3d/models/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..e0f6c6d5d0a769f0272a512acc4bcd09a390ce35 --- /dev/null +++ b/DermSynth3D/dermsynth3d/models/inference.py @@ -0,0 +1,113 @@ +import os +import numpy as np +from PIL import Image +from tqdm.autonotebook import tqdm +import torch +from dermsynth3d.utils.image import float_img_to_uint8 +from dermsynth3d.utils.evaluate import argmax_predictions + + +def inference_multitask( + max_imgs, + model, + dataloader, + device, + save_to_disk=False, + return_values=True, + dir_anatomy_preds=None, + dir_save_images=None, + dir_save_targets=None, + dir_save_skin_preds=None, + dir_save_skin_probs=None, +): + softmax2d = torch.nn.Softmax2d() + + if dataloader.batch_size > 1: + raise ValueError("Batch size must be set to 1.") + + track_file_ids = [] + seg_preds = [] + anatomy_preds = [] + + cnt = 0 + + with torch.no_grad(): + for _, file_ids, images, _ in tqdm(dataloader): + if cnt >= max_imgs: + break + + images = images.to(device) + out = model(images) + seg_pred = out["segmenter"] + seg_pred = softmax2d(seg_pred).cpu().detach().numpy().squeeze() + seg_pred = np.moveaxis(seg_pred, 0, -1) + + anatomy_pred = out["anatomy"] + anatomy_pred = softmax2d(anatomy_pred).cpu().detach().numpy().squeeze() + + if return_values: + track_file_ids.append(file_ids) + seg_preds.append(seg_pred) + anatomy_preds.append(anatomy_pred) + + if save_to_disk: + # Batch size of 1 so take the first one. + file_id = file_ids[0] + seg_pred = float_img_to_uint8(seg_pred) + prob_seg = Image.fromarray(seg_pred) + orig_img = dataloader.dataset.image(file_id) + prob_seg = prob_seg.resize(orig_img.size) + + pred_seg = argmax_predictions(seg_pred, asint=True) + pred_seg = Image.fromarray(pred_seg) + pred_seg = pred_seg.resize(orig_img.size) + + if dir_save_skin_probs is not None: + prob_seg.save( + os.path.join( + dir_save_skin_probs, + file_id + dataloader.dataset.target_extension, + ) + ) + + if dir_save_skin_preds is not None: + pred_seg.save( + os.path.join( + dir_save_skin_preds, + file_id + dataloader.dataset.target_extension, + ) + ) + + if dir_anatomy_preds is not None: + np.savez_compressed( + os.path.join(dir_anatomy_preds, file_id + ".npz"), + anatomy=anatomy_pred, + ) + + if dir_save_images is not None: + orig_img.save( + os.path.join( + dir_save_images, + file_id + dataloader.dataset.image_extension, + ) + ) + + if dir_save_targets is not None: + target = dataloader.dataset.target(file_id) + if type(target) == np.ndarray: + target = float_img_to_uint8(target) + target = Image.fromarray(target) + target.save( + os.path.join( + dir_save_targets, + file_id + dataloader.dataset.target_extension, + ) + ) + + cnt += 1 + + return { + "file_ids": track_file_ids, + "segs": seg_preds, + "anatomy": anatomy_preds, + } diff --git a/DermSynth3D/dermsynth3d/models/model.py b/DermSynth3D/dermsynth3d/models/model.py new file mode 100644 index 0000000000000000000000000000000000000000..aeffa8da6a23ef7237031410c42d0e4b09c7e59e --- /dev/null +++ b/DermSynth3D/dermsynth3d/models/model.py @@ -0,0 +1,305 @@ +from collections import OrderedDict, namedtuple + +import torch +import torch.nn as nn +import torchvision.transforms.functional as F + +from torchvision.models.vgg import vgg16 +from torchvision.models.segmentation import deeplabv3_resnet50 +from torchvision.models.segmentation.deeplabv3 import DeepLabHead +from torchvision.models.detection.rpn import AnchorGenerator, RPNHead +from torchvision.models.detection.faster_rcnn import FastRCNNPredictor +from torchvision.models.detection import fasterrcnn_resnet50_fpn + +from dermsynth3d.utils.anatomy import SimpleAnatomy + + +class SkinDeepLabV3(nn.Module): + def __init__( + self, multi_head: bool, freeze_backbone: bool, include_anatomy: bool = True + ): + super(SkinDeepLabV3, self).__init__() + + self.model = deeplabv3_resnet50(pretrained=True) + self.model.classifier = None + self.model.aux_classifier = None + self.model.segmenter = None + self.model.anatomy = None + self.model.depth = None + self.multi_head = multi_head + self.freeze_backbone = freeze_backbone + self.include_anatomy = include_anatomy + if freeze_backbone: + for param in self.model.parameters(): + param.requires_grad = False + + # Three channels for skin, lesion, background segmentation. + self.n_seg_channels = 3 + + # The number of anatomy channels. + self.n_anatomy_channels = 0 + if self.include_anatomy: + self.n_anatomy_channels = SimpleAnatomy.n_labels + + # One channel for depth. + self.n_depth_channels = 0 + # Total number of channels. + self.n_channels = ( + self.n_seg_channels + self.n_anatomy_channels + self.n_depth_channels + ) + + if self.multi_head: + self.model.segmenter = DeepLabHead(2048, self.n_seg_channels) + self.model.anatomy = DeepLabHead(2048, self.n_anatomy_channels) + self.model.depth = DeepLabHead(2048, self.n_depth_channels) + else: + self.model.classifier = DeepLabHead(2048, self.n_channels) + + def forward(self, x): + input_shape = x.shape[-2:] + features = self.model.backbone(x) + result = OrderedDict() + f = features["out"] + # result["f"] = f + + if self.multi_head is False: + x = self.model.classifier(f) + x = torch.nn.functional.interpolate( + x, size=input_shape, mode="bilinear", align_corners=False + ) + result["segmenter"] = x[:, : self.n_seg_channels, :, :] + if self.include_anatomy: + result["anatomy"] = x[ + :, + self.n_seg_channels : ( + self.n_seg_channels + self.n_anatomy_channels + ), + :, + :, + ] + # result["depth"] = x[:, -1, :, :] + + if self.model.segmenter is not None: + x = self.model.segmenter(f) + x = torch.nn.functional.interpolate( + x, size=input_shape, mode="bilinear", align_corners=False + ) + result["segmenter"] = x + + if self.model.anatomy is not None: + x = self.model.anatomy(f) + x = torch.nn.functional.interpolate( + x, size=input_shape, mode="bilinear", align_corners=False + ) + result["anatomy"] = x + + if self.model.depth is not None: + x = self.model.depth(f) + x = torch.nn.functional.interpolate( + x, size=input_shape, mode="bilinear", align_corners=False + ) + result["depth"] = x + + return result + + +class Vgg16Seg(nn.Module): + def __init__(self, n_classes: int, img_size: tuple): + super(Vgg16Seg, self).__init__() + self.features = vgg16(pretrained=True).features + kernel_size = (1, 1) + self.img_size = img_size + + self.conv2d_layer3 = nn.Conv2d(256, 64, kernel_size) + self.conv2d_layer4 = nn.Conv2d( + 512, + 64, + kernel_size, + ) + self.conv2d_layer5 = nn.Conv2d( + 512, + 64, + kernel_size, + ) + self.conv2d_layer6 = nn.Conv2d( + 512, + 64, + kernel_size, + ) + + self.conv2d_output = nn.Conv2d( + 512 + 64 + 64, + n_classes, + kernel_size, + ) + + self.conv2d_spatial7 = nn.Conv2d( + 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) + ) + + self.conv2d_spatial8 = nn.Conv2d( + 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1) + ) + + self.maxpool = nn.MaxPool2d((2, 2)) + self.relu = nn.ReLU() # nn.LeakyReLU(negative_slope=0.1) + self.sigmoid = nn.Sigmoid() + self.softmax2d = torch.nn.Softmax2d() + + def forward(self, x): + input_shape = x.shape[-2:] + + for layer_id, layer in enumerate(self.features): + x = layer(x) + if layer_id == 0: + layer0_responses = x + if layer_id == 2: + layer1_responses = x + elif layer_id == 7: + layer2_responses = x + elif layer_id == 14: + layer3_responses = x + elif layer_id == 21: + layer4_responses = x + elif layer_id == 28: + layer5_responses = x + elif layer_id == 30: + layer6_responses = x + + layer0_responses = self.relu(layer0_responses) + + layer1_responses = self.relu(layer1_responses) + + layer2_responses = F.resize(layer2_responses, size=input_shape) + layer2_responses = self.relu(layer2_responses) + + conv_response_3 = self.conv2d_layer3(layer3_responses) + conv_response_3 = F.resize(conv_response_3, size=input_shape) + conv_response_3 = self.relu(conv_response_3) + + conv_response_4 = self.conv2d_layer4(layer4_responses) + conv_response_4 = F.resize(conv_response_4, size=input_shape) + conv_response_4 = self.relu(conv_response_4) + + conv_response_5 = self.conv2d_layer5(layer5_responses) + conv_response_5 = F.resize(conv_response_5, size=input_shape) + conv_response_5 = self.relu(conv_response_5) + + conv_response_6_orig = self.conv2d_layer6(layer6_responses) + conv_response_6 = F.resize(conv_response_6_orig, size=input_shape) + conv_response_6 = self.relu(conv_response_6) + conv_response_6_act = self.relu(conv_response_6_orig) + conv_response_6_max = self.maxpool(conv_response_6_act) + + conv_response_7_orig = self.conv2d_spatial7(conv_response_6_max) + conv_response_7 = F.resize(conv_response_7_orig, size=input_shape) + conv_response_7 = self.relu(conv_response_7) + conv_response_7_act = self.relu(conv_response_7_orig) + conv_response_7_max = self.maxpool(conv_response_7_act) + + conv_response_8_orig = self.conv2d_spatial8(conv_response_7_max) + conv_response_8 = F.resize(conv_response_8_orig, size=input_shape) + conv_response_8 = self.relu(conv_response_8) + + x = torch.cat( + ( + layer0_responses, + layer1_responses, + layer2_responses, + conv_response_3, + conv_response_4, + conv_response_5, + conv_response_6, + conv_response_7, + conv_response_8, + ), + 1, + ) + x = self.conv2d_output(x) + + result = OrderedDict() + result["out"] = x + + return result + + +class MeanShift(torch.nn.Conv2d): + def __init__(self, gpu_id): + super(MeanShift, self).__init__(3, 3, kernel_size=1) + rgb_range = 1 + rgb_mean = (0.4488, 0.4371, 0.4040) + # rgb_std=(1.0, 1.0, 1.0) + rgb_std = (0.2, 0.2, 0.2) + sign = -1 + std = torch.Tensor(rgb_std).to(gpu_id) + self.weight.data = torch.eye(3).view(3, 3, 1, 1).to(gpu_id) / std.view( + 3, 1, 1, 1 + ) + self.bias.data = sign * rgb_range * torch.Tensor(rgb_mean).to(gpu_id) / std + for p in self.parameters(): + p.requires_grad = False + + +class Vgg16(torch.nn.Module): + def __init__(self, requires_grad=False): + super(Vgg16, self).__init__() + vgg_pretrained_features = vgg16(pretrained=True).features + self.slice1 = torch.nn.Sequential() + self.slice2 = torch.nn.Sequential() + self.slice3 = torch.nn.Sequential() + self.slice4 = torch.nn.Sequential() + for x in range(4): + self.slice1.add_module(str(x), vgg_pretrained_features[x]) + for x in range(4, 9): + self.slice2.add_module(str(x), vgg_pretrained_features[x]) + for x in range(9, 16): + self.slice3.add_module(str(x), vgg_pretrained_features[x]) + for x in range(16, 23): + self.slice4.add_module(str(x), vgg_pretrained_features[x]) + if not requires_grad: + for param in self.parameters(): + param.requires_grad = False + + def forward(self, X): + h = self.slice1(X) + h_relu1_2 = h + h = self.slice2(h) + h_relu2_2 = h + h = self.slice3(h) + h_relu3_3 = h + h = self.slice4(h) + h_relu4_3 = h + vgg_outputs = namedtuple( + "VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3"] + ) + out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3) + return out + + +def faster_rcnn_texture_model( + device, + num_classes=2, + max_input_size=4096, + anchor_generator=None, + pretrained_backbone=False, +): + if anchor_generator is None: + sizes = ((32,), (24,), (22,), (16,), (8,)) + anchor_generator = AnchorGenerator( + sizes=sizes, + aspect_ratios=((0.75, 1, 1.25),) * len(sizes), + ) + + model = fasterrcnn_resnet50_fpn( + pretrained_backbone=pretrained_backbone, max_size=max_input_size + ) + + model.rpn.anchor_generator = anchor_generator + model.rpn.head = RPNHead(256, anchor_generator.num_anchors_per_location()[0]) + # get the number of input features for the classifier + in_features = model.roi_heads.box_predictor.cls_score.in_features + # replace the pre-trained head with a new one + model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes) + model.to(device) + + return model diff --git a/DermSynth3D/dermsynth3d/tools/__init__.py b/DermSynth3D/dermsynth3d/tools/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..169a82ae8ca48741035d0b70a480f8a5c4da3d3d --- /dev/null +++ b/DermSynth3D/dermsynth3d/tools/__init__.py @@ -0,0 +1,5 @@ +from .blend_lesions import Blended3d, BlendLesions +from .generate2d import Generate2DViews +from .select_location import SelectAndPaste +from .synthesize import Synthesize2D +from .renderer import MeshRendererPyTorch3D diff --git a/DermSynth3D/dermsynth3d/tools/__pycache__/__init__.cpython-310.pyc b/DermSynth3D/dermsynth3d/tools/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2962ef12f71d5c409538b1d4b3c94a6553f179ad Binary files /dev/null and b/DermSynth3D/dermsynth3d/tools/__pycache__/__init__.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/tools/__pycache__/blend_lesions.cpython-310.pyc b/DermSynth3D/dermsynth3d/tools/__pycache__/blend_lesions.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a893fd8376bf5d84bc0f2e7faf6cfc950301defc Binary files /dev/null and b/DermSynth3D/dermsynth3d/tools/__pycache__/blend_lesions.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/tools/__pycache__/generate2d.cpython-310.pyc b/DermSynth3D/dermsynth3d/tools/__pycache__/generate2d.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..147f368d4190673f38a28c2f362e1579ab299d06 Binary files /dev/null and b/DermSynth3D/dermsynth3d/tools/__pycache__/generate2d.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/tools/__pycache__/renderer.cpython-310.pyc b/DermSynth3D/dermsynth3d/tools/__pycache__/renderer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..47099cba8a3455b43bf00c6a2c90649d1bd80591 Binary files /dev/null and b/DermSynth3D/dermsynth3d/tools/__pycache__/renderer.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/tools/__pycache__/select_location.cpython-310.pyc b/DermSynth3D/dermsynth3d/tools/__pycache__/select_location.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f408d16ad4e389aa98814ab27e6ac34c3efa209a Binary files /dev/null and b/DermSynth3D/dermsynth3d/tools/__pycache__/select_location.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/tools/__pycache__/synthesize.cpython-310.pyc b/DermSynth3D/dermsynth3d/tools/__pycache__/synthesize.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2e26cd4dd3c2d46282f0dec56291ee421fcce6a4 Binary files /dev/null and b/DermSynth3D/dermsynth3d/tools/__pycache__/synthesize.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/tools/blend_lesions.py b/DermSynth3D/dermsynth3d/tools/blend_lesions.py new file mode 100644 index 0000000000000000000000000000000000000000..330982464f9743f0f1a80314fa981a1e51258d32 --- /dev/null +++ b/DermSynth3D/dermsynth3d/tools/blend_lesions.py @@ -0,0 +1,126 @@ +from calendar import c +import os +import sys +import cv2 +import yaml +import argparse + +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +from pathlib import Path +from tqdm import tqdm, trange +from time import sleep + +import torch +from scipy import ndimage +from pytorch3d.io import load_objs_as_meshes + +from dermsynth3d.tools.renderer import MeshRendererPyTorch3D +from dermsynth3d.datasets.datasets import Fitz17KAnnotations +from dermsynth3d.deepblend.blend3d import Blended3d +from dermsynth3d.deepblend.blend import DeepTextureBlend3d, DeepImageBlend + + +class BlendLesions: + """ + Handles the logic for blending the pasted lesions from stage 1. + """ + + def __init__( + self, + device, + config, + ): + self.bodytex_dir = config["blending"]["bodytex_dir"] + self.tex_dir = config["blending"]["tex_dir"] + self.mesh_name = config["generate"]["mesh_name"] + self.ext = config["blending"]["ext"] + self.view_size = eval(config["generate"]["view_size"]) + self.num_iter = config["blending"]["num_iter"] + self.lr = config["blending"]["lr"] + self.device = device + self.config = config + self.SAVE_DIR = Path(config["generate"]["save_dir"].split("/")[0]) /"processed_textures" + self.SAVE_DIR.mkdir(exist_ok=True, parents=True) + self.SAVE_DIR = self.SAVE_DIR / self.mesh_name + self.SAVE_DIR.mkdir(exist_ok=True, parents=True) + print (f"Saving blended textures to {self.SAVE_DIR}") + + self.mesh_filename = os.path.join( + self.bodytex_dir, self.mesh_name, "model_highres_0_normalized.obj" + ) + + def load_mesh(self): + self.mesh = load_objs_as_meshes([self.mesh_filename], device=self.device) + self.mesh_renderer = MeshRendererPyTorch3D( + mesh=self.mesh, + device=self.device, + config=self.config, + ) + + def init_blenders(self): + self.load_mesh() + + self.blend3d = Blended3d( + mesh_filename=self.mesh_filename, + device=self.device, + dir_blended_textures=self.tex_dir, + dir_nonskin_faces=None, + extension=self.ext, + ) + + # Computes the deep blending loss + self.deepblend = DeepImageBlend(gpu_id= self.device) + + # Wrapper for the blending process + self.deepblend3d = DeepTextureBlend3d( + self.blend3d, + self.mesh_renderer, + self.deepblend, + self.device, + self.view_size, + ) + + def optimize(self): + print_every = 50 + + self.optimizer.zero_grad() + + loss = self.deepblend3d.compute_loss_of_random_offset_view() + loss.backward() + + step_idx = len(self.deepblend3d.deepblend.losses) - 1 + self.run[0] += 1 + return loss + + def blend_lesions(self): + # Initialize the blenders + self.init_blenders() + + self.optimizer = torch.optim.Adam( + [self.deepblend3d.texture_image.requires_grad_()], lr=self.lr + ) + + # For each lesion, run a seperate optimization + pbar1 = tqdm(total=self.deepblend3d.blended3d.lesion_params().shape[0], leave=True, desc="Blending Lesions") + for _, params in self.deepblend3d.blended3d.lesion_params().iterrows(): + self.deepblend3d.set_params(params) + self.run = [0] + + pbar = tqdm(total=self.num_iter, desc=f"Optimizing at face_idx ({int(self.deepblend3d.params.face_idx)})", leave=False, nrows=40) + while self.run[0] <= self.num_iter: + self.optimizer.step(self.optimize) + # desc = f"L: {self.deepblend3d.deepblend.losses[-1]['loss']:.2f}, G: {self.deepblend3d.deepblend.losses[-1]['grad']:.2f}, S: {self.deepblend3d.deepblend.losses[-1]['style']:.2f}, C: {self.deepblend3d.deepblend.losses[-1]['content']:.2f}, TV: {self.deepblend3d.deepblend.losses[-1]['tv']:.2f}" + desc = f"Loss: {self.deepblend3d.deepblend.losses[-1]['loss']:.3f}" + pbar.set_postfix_str(desc, refresh=True) + pbar.update(self.run[0] - pbar.n) + pbar1.update(1) + + # Postprocess the blended textures + merged_texture_np = self.deepblend3d.postprocess_blended_texture_image() + + # Save the final blended textures to disk. + blended_filename = Path(self.SAVE_DIR) / f"model_highres_0_normalized_blended_{self.ext}.png" + self.blend3d.save_blended_texture_image(merged_texture_np, print_filename=False, filename=blended_filename) + diff --git a/DermSynth3D/dermsynth3d/tools/generate2d.py b/DermSynth3D/dermsynth3d/tools/generate2d.py new file mode 100644 index 0000000000000000000000000000000000000000..98ff2f79d2b2fca6e3a3d4fd5e16bc8855d17634 --- /dev/null +++ b/DermSynth3D/dermsynth3d/tools/generate2d.py @@ -0,0 +1,680 @@ +import os +import yaml +import random +import trimesh +import numpy as np +import pandas as pd +from typing import Optional +from pathlib import Path +from tqdm import tqdm, trange + +import torch +import pytorch3d + +from scipy.stats import skewnorm +from sklearn.preprocessing import normalize + +from pytorch3d.io import load_objs_as_meshes + +from dermsynth3d.utils.utils import random_bound, make_masks +from dermsynth3d.tools.synthesize import Synthesize2D +from dermsynth3d.datasets.synth_dataset import SynthesizeDataset +from dermsynth3d.tools.renderer import ( + MeshRendererPyTorch3D, + camera_pos_from_normal, +) +from dermsynth3d.deepblend.blend3d import Blended3d +from dermsynth3d.utils.channels import Target +from dermsynth3d.utils.colorconstancy import shade_of_gray_cc +from dermsynth3d.datasets.datasets import Fitz17KAnnotations, Background2d +from skin3d.skin3d.bodytex import BodyTexDataset + + +class Generate2DHelper: + """ + Generates the 2D views from the 3D mesh. + Handles the logic to determine appropriate camera and light positions. + Handles the logic to paste the lesion. + """ + + def __init__( + self, + mesh_filename: str, + dir_blended_textures: str, + dir_anatomy: str, + fitz_ds, + background_ds, + device, + blended_file_ext, + config, + debug=True, + bodytex=None, + percent_skin=0.30, + is_blended: bool = True, # If True, use blended textures. Else use pasted textures. + ): + # If True, prints internal messages + # if image does not meet criteria. + self.debug = debug + self.bodytex = bodytex + self.texture_nevi_mask = None + self.percent_skin = percent_skin + self.config = config + self.device = device + + # Load the mesh in pytorch3d. + mesh = load_objs_as_meshes([mesh_filename], device=self.device) + self.mesh_renderer = MeshRendererPyTorch3D( + mesh, + self.device, + config=self.config, + ) + + # Load the mesh using trimesh. + self.mesh_tri = trimesh.load(mesh_filename, process=False, maintain_order=True) + + self.blended3d = Blended3d( + mesh_filename=mesh_filename, + device=self.device, + dir_blended_textures=dir_blended_textures, + dir_anatomy=dir_anatomy, + extension=blended_file_ext, + ) + + # Load the texture image and corresponding mask of the blended lesion. + if is_blended: + self.blended_texture_image = self.blended3d.blended_texture_image( + astensor=True + ).to(self.device) + else: + self.blended_texture_image = self.blended3d.pasted_texture_image( + astensor=True + ).to(self.device) + + self.texture_lesion_mask = self.blended3d.lesion_texture_mask(astensor=True).to(self.device) + self.nonskin_texture_mask_tensor = self.blended3d.nonskin_texture_mask( + astensor=True + ).to(self.device) + + self.vertices_to_anatomy = self.blended3d.vertices_to_anatomy() + + self.fitz_ds = fitz_ds + self.background_ds = background_ds + + if self.bodytex is not None: + scan_id = self.blended3d.subject_id[:3] + # if a bodytex annotation from skin3d does not exist + # then cannot continue to get the nevi annotations in skin3d + self.nevi_exists = os.path.exists(self.bodytex.annotation_filepath(scan_id)) + if not self.nevi_exists: + raise ValueError("Missing Bodytex annotations for creating GT Nevi") + + self.texture_nevi_mask = np.zeros( + shape=self.texture_lesion_mask.shape, dtype=np.float32 + ) + ann_df = self.bodytex.annotation(scan_id, annotator=None) + for _, row in ann_df.iterrows(): + self.texture_nevi_mask[ + row.y : row.y2, + row.x : row.x2, + ] = 255 + + self.texture_nevi_mask = torch.tensor( + self.texture_nevi_mask / 255, dtype=torch.float32 + ).to(device) + + self.ray = trimesh.ray.ray_triangle.RayMeshIntersector(self.mesh_tri) + + self.perspective_correct = False + + self.face_idx = None + self.normal_weight = None + self.view_size = [] + self.look_at = [] + self.camera_pos = [] + self.light_pos = [] + self.ambient = [] + self.specular = [] + self.diffuse = [] + self.znear = None + self.paste_lesion_id = None + self.background_id = None + self.shininess = None + + def get_params(self): + params = { + "bodytex_id": self.blended3d.subject_id, + "face_idx": self.face_idx, + "normal_weight": self.normal_weight, + "view_size": self.view_size, + "look_at": list(self.look_at), + "ambient": list(self.ambient), + "specular": list(self.specular), + "diffuse": list(self.diffuse), + "camera_pos": list(self.camera_pos), + "light_pos": list(self.light_pos), + "shininess": list(self.shininess), + "znear": self.znear, + "paste_lesion_id": self.paste_lesion_id, + "background_id": self.background_id, + "background_blur_radius": self.background_blur_radius, + } + return params + + def render_image_and_target( + self, + paste_lesion: bool = True, + min_fraction_lesion: float = 0.0, + ): + """Returns the rendered image and targets. + + Returns (None, None) if the rendered image does not pass certain criteria. + + Args: + paste_lesion (bool, optional): If true, paste the lesion onto the skin. + min_fraction_lesion (float, optional): Fraction between 0 and 1 of the image + that the lesion must occupy for the image/target to be returned. + Defaults to 0, which means the lesion is not required to be in the image. + + Returns: + _type_: _description_ + """ + + paste_img, paste_mask = self.composite_image( + paste_lesion=paste_lesion, + min_fraction_lesion=min_fraction_lesion, + ) + + if paste_img is None: + return None, None + + anatomy_image = self.render_anatomy_image() + depth_view = self.mesh_renderer.depth_view() + nevi_view = np.zeros_like(depth_view) + if self.bodytex is not None and self.nevi_exists: + nevi_view = self.render_nevi_square_mask() + + n_target_channels = 5 + if self.bodytex is not None and self.nevi_exists: + n_target_channels = 6 + + target = np.zeros( + shape=(paste_img.shape[0], paste_img.shape[1], n_target_channels), + dtype=np.float32, + ) + target[:, :, :3] = paste_mask + target[:, :, Target.ANATOMY] = anatomy_image + target[:, :, Target.DEPTH] = depth_view + + if self.bodytex is not None: + target[:, :, Target.NEVI] = nevi_view + + return paste_img, target + + def render_anatomy_image(self): + anatomy_image = self.mesh_renderer.anatomy_image(self.vertices_to_anatomy) + return anatomy_image + + def composite_image(self, paste_lesion=True, soft_mask=True, min_fraction_lesion=0): + if (min_fraction_lesion < 0) or (min_fraction_lesion > 1): + raise ValueError("`min_fraction_lesion` must be between 0 and 1.") + + back_img, background_id = self.background_image(view_size = self.view_size) + self.background_id = background_id + + skin_mask = self.render_skin_mask() + n_pixels = skin_mask.shape[0] * skin_mask.shape[1] + + # Fraction of the image that must contain skin. + if skin_mask.sum() < (n_pixels * self.percent_skin): + if self.debug: + print("***Not enough skin.") + return None, None + + lesion_mask = self.render_lesion_mask() + + if paste_lesion: + # Select a random lesion. + lesion_id = np.random.permutation(self.fitz_ds.annotation_ids)[0] + lesion_crop_orig, seg_crop_orig = self.fitz_ds.box_crop_lesion( + lesion_id, + force_even_dims=True, + asfloat=False, + ) + + synth2d = Synthesize2D( + view2d=self.render_view(), + body_mask=self.render_body_mask(), + skin_mask=skin_mask, + lesion_mask=lesion_mask, + background_img=back_img, + paste_lesion_img=lesion_crop_orig, + paste_lesion_mask=seg_crop_orig, + soft_blend=soft_mask, + ) + min_scale, max_scale = synth2d.min_max_scale_foreground() + paste_img, paste_mask = synth2d.random_paste_foreground_with_retry( + min_scale, max_scale + ) + self.paste_lesion_id = lesion_id + + else: + synth2d = Synthesize2D( + view2d=self.render_view(), + body_mask=self.render_body_mask(), + skin_mask=skin_mask, + lesion_mask=lesion_mask, + background_img=back_img, + paste_lesion_img=None, + paste_lesion_mask=None, + soft_blend=soft_mask, + ) + paste_img = synth2d.pasted_back_image + paste_mask = make_masks(lesion_mask, skin_mask) + self.paste_lesion_id = None + + if paste_mask[:, :, Target.LESION].sum() < (n_pixels * min_fraction_lesion): + if self.debug: + print("***Not enough lesion.") + return None, None + + return paste_img, paste_mask + + def background_image(self, view_size=(512, 512)): + background_id = self.background_ds.random_image_filename() + + blur_radius = None + if self.background_blur_radius > 0: + blur_radius = self.background_blur_radius + + back_img = self.background_ds.image( + img_filename=background_id, + asfloat=True, + img_size=view_size, + blur_radius=blur_radius, + ) + return back_img, background_id + + def random_face_idx(self): + return np.random.randint(0, self.mesh_renderer.center_face_vertices.shape[0]) + + def random_light_pos(self, camera_pos, look_at): + signed_pos = np.sign(camera_pos - look_at) * 2 + light_offset = np.asarray([random_bound(0, s) for s in signed_pos]) + light_pos = light_offset + camera_pos + return light_pos + + def random_light_color(self, lower, upper): + return [np.round(random_bound(lower, upper), 2)] * 3 + + def random_shininess(self, lower, uppper): + return [np.round(random_bound(lower, uppper), 2)] + + def randomize_parameters( + self, + config, + face_idx=None, + sample_mode="sample_surface", + look_at=None, + look_at_normal=None, + view_size=(512, 512), + surface_offset_bounds=(0.1, 1.3), + ambient_bounds=(0.3, 0.99), + specular_bounds=(0, 0.1), + diffuse_bounds=(0.3, 0.99), + mat_diffuse_bounds=(0.3, 0.99), + mat_specular_bounds=(0.0, 0.05), + znear=0.01, + light_pos=None, + shininess=(30, 60), + sphere_pos=False, + elev_bounds=(0, 180), + azim_bounds=(-90, 90), + background_blur_radius_bounds=(0, 3), + ): + if config is not None: + view_size = eval(config["generate"]["view_size"]) + surface_offset_bounds = eval( + config["generate"]["random"]["surface_offset_bounds"] + ) + ambient_bounds = eval(config["generate"]["random"]["ambient_bounds"]) + specular_bounds = eval(config["generate"]["random"]["specular_bounds"]) + diffuse_bounds = eval(config["generate"]["random"]["diffuse_bounds"]) + mat_diffuse_bounds = eval( + config["generate"]["random"]["mat_diffuse_bounds"] + ) + mat_specular_bounds = eval( + config["generate"]["random"]["mat_specular_bounds"] + ) + znear = config["generate"]["random"]["znear"] + light_pos = eval(config["generate"]["random"]["light_pos"]) + shininess = eval(config["generate"]["random"]["shininess"]) + sphere_pos = config["generate"]["random"]["sphere_pos"] + elev_bounds = eval(config["generate"]["random"]["elev_bounds"]) + azim_bounds = eval(config["generate"]["random"]["azim_bounds"]) + background_blur_radius_bounds = eval( + config["generate"]["random"]["background_blur_radius_bounds"] + ) + + # surface_offset_skew = None, + + self.elev = random_bound(*elev_bounds) + self.azim = random_bound(*azim_bounds) + + self.background_blur_radius = random.randint( + background_blur_radius_bounds[0], background_blur_radius_bounds[1] + ) + + self.view_size = view_size + self.znear = znear + # Determine how far to place the camera from the face. + self.normal_weight = random_bound(*surface_offset_bounds) + + self.face_idx = face_idx + self.look_at = look_at + self.look_at_normal = look_at_normal + + if sample_mode == "sample_face": + if self.face_idx is None: + self.face_idx = self.random_face_idx() + + # Get 3D coordinates for the camera = `camera_pos` + # Get 3D coordinates for where the camera is looking at = `look_at` + ( + self.camera_pos, + self.look_at, + ) = self.mesh_renderer.camera_parameters_offset_face( + self.face_idx, normal_weight=self.normal_weight + ) + elif sample_mode == "sample_surface": + coords, normals = pytorch3d.ops.sample_points_from_meshes( + meshes=self.mesh_renderer.mesh, + num_samples=1, + return_normals=True, + return_textures=False, + ) + + if self.look_at is None: + self.look_at = coords.cpu().detach().numpy().squeeze() + if look_at_normal is None: + self.look_at_normal = normals.cpu().detach().numpy().squeeze() + + self.camera_pos = camera_pos_from_normal( + look_at=self.look_at, + normal=self.look_at_normal, + normal_weight=self.normal_weight, + ) + else: + raise NotImplementedError( + "Error: `{}` is not a valid option for `sample_mode`.".format( + sample_mode + ) + ) + + # Check if the camera is placed inside a mesh. + camera_signed_d = trimesh.proximity.signed_distance( + self.mesh_tri, [self.camera_pos] + ) + if camera_signed_d >= 0: + if self.debug: + print("Camera inside mesh. Skip.") + return False + + self.light_pos = light_pos + if self.light_pos is None or self.light_pos == "None": + self.light_pos = self.random_light_pos(self.camera_pos, self.look_at) + + normal = normalize([self.camera_pos - self.look_at])[0] + if self.mesh_intersects(self.camera_pos + normal * 0.01, self.light_pos): + # if self.mesh_intersects(self.look_at + self.normal_weight*0.01, self.light_pos): + if self.debug: + print("Lighting blocked by mesh. Setting lighting to camera pos.") + self.light_pos = self.camera_pos + + self.ambient = self.random_light_color(*ambient_bounds) + self.specular = self.random_light_color(*specular_bounds) + self.diffuse = self.random_light_color(*diffuse_bounds) + self.mat_diffuse = self.random_light_color(*mat_diffuse_bounds) + self.mat_specular = self.random_light_color(*mat_specular_bounds) + self.shininess = self.random_shininess(*shininess) + + self.initialize_from_params(sphere_pos) + + return True + + def initialize_from_params(self, sphere_pos): + camera_pos = self.camera_pos + dist = None + elev = None + azim = None + up = None + if sphere_pos: + camera_pos = None + dist = self.normal_weight + elev = self.elev + azim = self.azim + up = np.asarray( + [ + normalize([self.camera_pos - self.look_at])[0], + ] + ) + + self.mesh_renderer.precompute_view_parameters( + view_size=self.view_size, + at=self.look_at, + dist=dist, + elev=elev, + azim=azim, + camera_pos=camera_pos, + znear=float(self.znear), + perspective_correct=self.perspective_correct, + up=up, + ) + + self.set_image_parameters() + + self.mesh_renderer.initialize_renderer() + self.mesh_renderer.compute_fragments() + + def mesh_intersects(self, source_point, target_point): + is_intersect = self.ray.intersects_any( + [source_point], [np.asarray(target_point) - np.asarray(source_point)] + ) + return is_intersect + + def render_view(self): + # self.initialize_from_params() + self.mesh_renderer.set_texture_image(self.blended_texture_image) + view2d = self.mesh_renderer.render_view(asnumpy=True, asRGB=True) + return view2d + + def render_lesion_mask(self): + self.mesh_renderer.set_texture_image(self.texture_lesion_mask[:, :, np.newaxis]) + self.set_mask_parameters() + mask2d = self.mesh_renderer.render_view(asnumpy=True, asRGB=True) + lesion_mask = self.mesh_renderer.lesion_mask( + mask2d[:, :, 0], lesion_mask_id=None + ) + + # Set the illumination back to the earlier settings. + self.set_image_parameters() + self.mesh_renderer.initialize_renderer() + return lesion_mask + + def render_nevi_square_mask(self): + if self.bodytex is None: + raise ValueError("Error: cannot render nevi masks without `self.bodytex`.") + + self.mesh_renderer.set_texture_image(self.texture_nevi_mask[:, :, np.newaxis]) + self.set_mask_parameters() + mask2d = self.mesh_renderer.render_view(asnumpy=True, asRGB=True) + nevi_square_mask = self.mesh_renderer.lesion_mask( + mask2d[:, :, 0], lesion_mask_id=None + ) + # Set the illumination back to the earlier settings. + self.set_image_parameters() + return nevi_square_mask + + def render_body_mask(self): + body_mask = self.mesh_renderer.body_mask() + return body_mask + + def set_mask_parameters(self): + self.mesh_renderer.precompute_light_parameters( + ambient_color=[1, 1, 1], + specular_color=[0, 0, 0], + diffuse_color=[0, 0, 0], + light_location=self.camera_pos, + ) + + self.mesh_renderer.precompute_material_parameters( + ambient_color=[1, 1, 1], + specular_color=[0, 0, 0], + diffuse_color=[0, 0, 0], + shininess=0, + ) + self.mesh_renderer.initialize_renderer() + + def set_image_parameters(self): + self.mesh_renderer.precompute_light_parameters( + ambient_color=self.ambient, + specular_color=self.specular, + diffuse_color=self.diffuse, + light_location=self.light_pos, + ) + + self.mesh_renderer.precompute_material_parameters( + self.ambient, + self.mat_specular, + self.mat_diffuse, + self.shininess, + ) + self.mesh_renderer.initialize_renderer() + + def render_skin_mask(self): + self.mesh_renderer.set_texture_image(self.nonskin_texture_mask_tensor) + self.set_mask_parameters() + + nonskin_mask = self.mesh_renderer.render_view(asnumpy=True, asRGB=True) + skin_mask = self.mesh_renderer.skin_mask(nonskin_mask[:, :, 0] > 0.5) + + # Set the illumination back to the earlier settings. + self.set_image_parameters() + + return skin_mask + + +class Generate2DViews: + """ + Wrapper for rendering the mesh with blended lesions + from various view points. + """ + + def __init__( + self, + config, + device, + ): + self.bodytex_dir = config["blending"]["bodytex_dir"] + self.fitz_dir = config["blending"]["fitz_dir"] + self.annot_dir = config["blending"]["annot_dir"] + self.num_img = config["generate"]["num_views"] + self.paste = config["generate"]["paste"] + self.save_dir = config["generate"]["save_dir"] + self.mesh_name = config["generate"]["mesh_name"] + self.tex_dir = config["blending"]["tex_dir"] + self.anatomy_dir = config["generate"]["anatomy_dir"] + self.ext = config["blending"]["ext"] + self.view_size = eval(config["generate"]["view_size"]) + self.background_dir = config["generate"]["background_dir"] + self.percent_skin = config["generate"]["percent_skin"] + self.device = device + self.config = config + self.skin3d = config["generate"]["skin3d"] + self.skin3d_annot = config["generate"]["skin3d_annot"] + + self.bodytex_df = pd.read_csv( + self.skin3d, converters={"scan_id": lambda x: str(x)} + ) + self.bodytex_ds = BodyTexDataset( + df=self.bodytex_df, + dir_textures=self.bodytex_dir, + dir_annotate=self.skin3d_annot, + ) + + self.background_ds = Background2d(dir_images=self.background_dir) + self.mesh_filename = os.path.join( + self.bodytex_dir, self.mesh_name, "model_highres_0_normalized.obj" + ) + + self.fitz_ds = Fitz17KAnnotations( + dir_images=self.fitz_dir, + dir_targets=self.annot_dir, + target_extension=config["extension"]["target_extension"], + image_extension=config["extension"]["image_extension"], + color_constancy=shade_of_gray_cc, + ) + + os.makedirs(self.save_dir, exist_ok=True) + dir_synth_data = os.path.join( + self.save_dir, "gen_" + self.mesh_name.split("-")[0] + ) + self.synth_ds = SynthesizeDataset(dir_synth_data) + + self.gen2d = Generate2DHelper( + mesh_filename=self.mesh_filename, + dir_blended_textures=self.tex_dir, + dir_anatomy=self.anatomy_dir, + fitz_ds=self.fitz_ds, + background_ds=self.background_ds, + device=self.device, + config=self.config, + debug=False, + bodytex=self.bodytex_ds, + blended_file_ext=self.ext, + percent_skin=self.percent_skin, + ) + + def synthesize_views(self): + new_params = [] + count_skip = 0 + img_count = 0 # Counts the number of images saved to disk + pbar = tqdm(total=self.num_img+1, desc="Rendering 2D views") + while img_count <= self.num_img: + # keep rendering until num_img are rendered + success = self.gen2d.randomize_parameters(config=self.config) + if not success: + # Checks if the camera/lighting placement works for the random params. + print("***Camera and lighting placement not successful. Skipping") + continue + # Option to paste the lesion. + paste_img, target = self.gen2d.render_image_and_target( + paste_lesion=self.paste + ) + if paste_img is None: + # Checks if enough skin is visible. + print("***Not enough skin or unable to paste lesion. Skipping.") + continue + target_name = self.synth_ds.generate_target_name() + + # Save image and masks to disk. + self.synth_ds.save_image(target_name, (paste_img * 255).astype(np.uint8)) + self.synth_ds.save_target(target_name, target) + + # not saving depth for now + # uncomment if necessary + # depth_view = target[:,:,4] + # depth_view = np.clip(depth_view, 0, depth_view.max()) + # depth_view = (depth_view*255/ np.max(depth_view)) + # self.synth_ds.save_depth(target_name, (depth_view).astype(np.uint8)) + + # Keep track of the parameters used to generate the image. + params = { + "file_id": target_name, + } + params.update(self.gen2d.get_params()) + self.synth_ds.update_params(params) + img_count += 1 # Increament counter. + pbar.update(1) + + # Save the params to disk. + self.synth_ds.save_params() diff --git a/DermSynth3D/dermsynth3d/tools/renderer.py b/DermSynth3D/dermsynth3d/tools/renderer.py new file mode 100644 index 0000000000000000000000000000000000000000..c70fda3a8e6e86dc41ad2288c4ee70fce5cc12e4 --- /dev/null +++ b/DermSynth3D/dermsynth3d/tools/renderer.py @@ -0,0 +1,654 @@ +from __future__ import annotations + +import math +import numpy as np +import random +import torch + +from typing import Optional +from sklearn.preprocessing import normalize + +from pytorch3d.renderer import ( + look_at_view_transform, + FoVPerspectiveCameras, + PointLights, + Materials, + RasterizationSettings, + MeshRenderer, + MeshRasterizer, + SoftPhongShader, + TexturesUV, +) + +from dermsynth3d.utils.utils import pix_face_in_set, random_offset +from dermsynth3d.utils.tensor import window_overlap_mask, max_value_in_window + + +class MeshRendererPyTorch3D: + """ + Base class for renderer. + """ + + def __init__( + self, + mesh, + device, + config=None, + nonskin_face_indexes: Optional[set] = None, + ): + self.mesh = mesh + self.device = device + self.nonskin_face_indexes = nonskin_face_indexes + self.up = (1, 0, 0) + self.fov = 30.0 + self.faces_per_pixel = 1 + self.config = config + + # Set to True to print debug info. + self.DEBUG = False + + # Compute the 3D coordinates for the center of the face. + face_vertices = self.mesh.verts_packed()[self.mesh.faces_packed()] + self.center_face_vertices = face_vertices.mean(axis=1) + + self.dist = None + self.elev = None + self.azim = None + self.at = None + self.view_size = None + self.camera_pos = None + + self.cameras = None + self.raster_settings = None + + self.lights = None + + self.materials = None + + self.renderer = None + + self.rasterizer = None + self.fragments = None + + def precompute_view_parameters( + self, + view_size: tuple[int, int], + at: tuple[float, float, float], + dist, + elev, + azim, + camera_pos: Optional[tuple[float, float, float]] = None, + znear: float = 0.01, + perspective_correct=False, + up=None, + ): + self.view_size = view_size + self.at = at + + self.dist = dist + self.elev = elev + self.azim = azim + self.camera_pos = camera_pos + if self.camera_pos is None: + eye = None + else: + eye = np.asarray( + [ + np.asarray(self.camera_pos), + ] + ) + + if up is None: + up = np.asarray( + [ + np.asarray(self.up), + ] + ) + + R, T = look_at_view_transform( + up=up, + at=np.asarray( + [ + np.asarray(self.at), + ] + ), + eye=eye, + dist=dist, + elev=elev, + azim=azim, + ) + self.R = R + self.T = T + + if self.DEBUG: + print(self.at) + print(self.camera_pos) + print(self.up) + print(R) + print(T) + + self.cameras = FoVPerspectiveCameras( + device=self.device, R=R, T=T, znear=znear, fov=self.fov + ) + + self.raster_settings = RasterizationSettings( + image_size=self.view_size, + blur_radius=0.0, + faces_per_pixel=self.faces_per_pixel, + perspective_correct=perspective_correct, + ) + + def precompute_light_parameters( + self, + ambient_color=(0.5, 0.5, 0.5), + specular_color: tuple[float, float, float] = (0.025, 0.025, 0.025), + diffuse_color: tuple[float, float, float] = (0.5, 0.5, 0.5), + light_location: Optional[tuple[float, float, float]] = None, + ): + if light_location is None: + if self.camera_pos is None: + raise ValueError( + "Error: Call `self.precompute_view_parameters(...)` first." + ) + light_location = self.camera_pos + + self.light_location = np.asarray(light_location) + self.ambient_color = np.asarray(ambient_color) + self.specular_color = np.asarray(specular_color) + self.diffuse_color = np.asarray(diffuse_color) + + self.lights = PointLights( + device=self.device, + location=np.asarray([self.light_location]), + ambient_color=np.asarray( + [ + self.ambient_color, + ] + ), + diffuse_color=np.asarray( + [ + self.diffuse_color, + ] + ), + specular_color=np.asarray( + [ + self.specular_color, + ] + ), + ) + + def precompute_material_parameters( + self, + ambient_color=(0.5, 0.5, 0.5), + specular_color: tuple[float, float, float] = (0.025, 0.025, 0.025), + diffuse_color: tuple[float, float, float] = (0.5, 0.5, 0.5), + shininess: float = 50.0, + ): + self.shininess = shininess + self.ambient_color = np.asarray(ambient_color) + self.specular_color = np.asarray(specular_color) + self.diffuse_color = np.asarray(diffuse_color) + + self.materials = Materials( + device=self.device, + specular_color=np.asarray( + [ + self.specular_color, + ] + ), + shininess=self.shininess, + ) + + def camera_parameters_offset_face(self, face_idx, normal_weight=0.1): + # A small value to offset the camera_pos. + # If the face_normal contains 0's (e.g., [1, 0, 0]) + # then get an error when computing the rotation matrix. + # To prevent this, add a small offset to the camera position. + eps = 0.0001 + face_coords = self.center_face_vertices[face_idx, :] + face_coords = face_coords.cpu().detach().numpy() + + face_normal = self.mesh.faces_normals_packed()[face_idx, :] + face_normal = face_normal.cpu().detach().numpy() + # Occasional faces do not seem to be normalized. + face_normal = normalize([face_normal])[0] + camera_pos = face_coords + (face_normal * normal_weight) + eps + at = face_coords + + return camera_pos, at + + def randomize_view_parameters( + self, + dists=(0.3, 3), + elevs=(90, 270), + azims=(0, 270), + ats=(0.25, 1.75), + ambients=(0.2, 0.99), + speculars=(0, 0.1), + diffuses=(0.2, 0.99), + shininess=(30.0, 60.0), + view_size=(512, 512), # View size is not randomized. + surface_offset_weight=(0.1, 0.2), + face_idx=None, + camera_pos=None, + look_at=None, + znear=1, + ): + normal_weight = None + dist = None + elev = None + azim = None + + if look_at is not None: + at = look_at + elif surface_offset_weight is not None: + # Choose a random face. + if face_idx is None: + face_idx = np.random.randint(0, self.center_face_vertices.shape[0]) + + b = surface_offset_weight[1] + a = surface_offset_weight[0] + normal_weight = (b - a) * np.random.random_sample() + a + camera_pos, at = self.camera_parameters_offset_face( + face_idx, normal_weight=normal_weight + ) + + else: + # Randomize views. + dist = np.round(random.uniform(dists[0], dists[1]), 2) + elev = np.round(random.uniform(elevs[0], elevs[1]), 2) + azim = np.round(random.uniform(azims[0], azims[1]), 2) + at = (np.round(random.uniform(ats[0], ats[1]), 2), 0, 0) + camera_pos = None + + self.precompute_view_parameters( + view_size=view_size, + at=at, + dist=dist, + elev=elev, + azim=azim, + camera_pos=camera_pos, + znear=znear, + ) + + # Randomize lighting. + ambient = [np.round(random.uniform(ambients[0], ambients[1]), 2)] * 3 + specular = [np.round(random.uniform(speculars[0], speculars[1]), 2)] * 3 + diffuse = [np.round(random.uniform(diffuses[0], diffuses[1]), 2)] * 3 + shininess = np.round(random.uniform(shininess[0], shininess[1]), 2) + + light_location = self.camera_pos + + self.precompute_light_parameters( + ambient, specular, diffuse, light_location=light_location + ) + + self.precompute_material_parameters(ambient, specular, diffuse, shininess) + + self.params = { + "dist": dist, + "elev": elev, + "azim": azim, + "look_at": list(at), + "ambient": ambient, + "specular": specular, + "diffuse": diffuse, + "shininess": shininess, + "camera_pos": list(camera_pos), + "normal_weight": normal_weight, + "light_pos": light_location, + } + + self.initialize_renderer() + self.compute_fragments() + + def initialize_renderer(self): + if self.cameras is None: + raise ValueError( + "Error: call `self.precompute_view_parameters(...)` first." + ) + + if self.lights is None: + raise ValueError( + "Error: call `self.precompute_light_parameters(...)` first." + ) + + self.renderer = MeshRenderer( + rasterizer=MeshRasterizer( + cameras=self.cameras, raster_settings=self.raster_settings + ), + shader=SoftPhongShader( + device=self.device, + cameras=self.cameras, + lights=self.lights, + materials=self.materials, + ), + ) + + def render_view(self, asnumpy=False, asRGB=False, isclip=True): + """Returns the rendered 2D view. + + Args: + asnumpy (bool, optional): If True, returns a detached numpy array. + If False, returns an attached tensor. Defaults to False. + asRGB (bool, optional): If True, returns only the RGB component. + If False, returns the full tensor. + isclip (bool, optional): If True, clips values between 0 and 1. + + Raises: + ValueError: Raised if initialization is not yet called. + + Returns: + array or tensor: Rendered 2D view. + Datatype depends on `asnumpy` flag. + """ + if self.renderer is None: + raise ValueError("Error: call `self.initialize_renderer() first.") + + images = self.renderer(self.mesh) + if isclip: + images = torch.clip(images, 0, 1) + + if asnumpy: + images = images.cpu().detach().numpy() + + if asRGB: + images = images[:, :, :, :3].squeeze() + + return images + + def compute_fragments(self): + if self.cameras is None: + raise ValueError("Error: call `self.precompute_view_parameters(...) first.") + + self.rasterizer = MeshRasterizer( + cameras=self.cameras, raster_settings=self.raster_settings + ) + self.fragments = self.rasterizer(self.mesh) + + def pixel_faces_in_set(self, face_indexes): + self.check_raise_fragments() + + pix2face = self.fragments.pix_to_face.squeeze().cpu().detach().numpy() + mask = pix_face_in_set(pix2face, face_indexes) + + return mask + + def set_texture_image(self, texture_image): + """Sets the texture image using the existing UV mapping. + + This can be used render the same view with different textures. + + Args: + texture_image (torch.float32): H x W x C texture image. + """ + texturesuv = TexturesUV( + maps=[texture_image], + faces_uvs=self.mesh.textures.faces_uvs_padded(), + verts_uvs=self.mesh.textures.verts_uvs_padded(), + ) + self.mesh.textures = texturesuv + + def render_lesion_mask(self, asnumpy=False, asRGB=False): + self.precompute_light_parameters( + ambient_color=[1, 1, 1], + specular_color=[0, 0, 0], + diffuse_color=[0, 0, 0], + light_location=None, + ) + self.precompute_material_parameters( + ambient_color=[1, 1, 1], + specular_color=[0, 0, 0], + diffuse_color=[0, 0, 0], + shininess=10.0, + ) + self.initialize_renderer() + images = self.render_view(asnumpy, asRGB) + return images + + def body_mask(self): + mask = np.asarray(self.fragments.zbuf.squeeze().cpu() > 0) + return mask + + def lesion_mask(self, lesion_view2d, lesion_mask_id=None, tol=0.1): + if lesion_mask_id is None: + lower = (1 - tol) / 255 + upper = (255) / 255 + else: + lower = (lesion_mask_id - tol) / 255 + upper = (lesion_mask_id + tol) / 255 + + mask = np.logical_and(lesion_view2d >= lower, lesion_view2d <= upper) + return mask * self.body_mask() + + def skin_mask(self, nonskin_mask): + return self.body_mask() * ~nonskin_mask + + def pixels_to_face(self, asnumpy=True): + """Returns the face indexes for each pixel. + + Positive values indicate the indexes of the face. + Negative values indicate background. + + Args: + asnumpy (bool, optional): If True, returns a detached numpy array. + Defaults to True. + + Returns: + _type_: _description_ + """ + self.check_raise_fragments() + pix2face = self.fragments.pix_to_face + if asnumpy: + pix2face = pix2face.squeeze().cpu().detach().numpy() + + return pix2face + + def face_indexes_of_mask(self, mask, asnumpy=True): + pix2face = self.pixels_to_face(asnumpy=asnumpy) + face_indexes_of_mask = pix2face[mask > 0] + return face_indexes_of_mask + + def uvs_of_mask(self, mask, asnumpy=True): + """ + Returns the normalized UVs within the binary mask for the view. + """ + face_indexes_of_mask = self.face_indexes_of_mask(mask, asnumpy=asnumpy) + + # UV coordinates per-vertex + verts_uvs = self.mesh.textures.verts_uvs_padded().squeeze() + + # Index into verts_uvs for each face. + faces_uvs = self.mesh.textures.faces_uvs_padded().squeeze() + + # UV coordinates for each face of the lesion. + uvs_per_lesion_face = verts_uvs[faces_uvs[face_indexes_of_mask]] + + # uv*2-1 converts to pixel space. + uvs_per_lesion_face = (uvs_per_lesion_face * 2 - 1).unsqueeze(0) + return uvs_per_lesion_face + + def view_uvs(self, asnumpy=True): + verts_uvs = self.mesh.textures.verts_uvs_padded().squeeze() + + # Index into verts_uvs for each face. + faces_uvs = self.mesh.textures.faces_uvs_padded().squeeze() + + uvs_per_face = verts_uvs[faces_uvs] + + pix2faces = self.pixels_to_face(asnumpy=False) + # If multiple faces per pixels are used, then this part will fail. + pix2face = pix2faces.squeeze() # [0,:,:,face_idx] + uvs_per_face_flat = uvs_per_face[pix2face.view(-1)] + + bary_coords = self.fragments.bary_coords.squeeze() + + uvs_per_face_view = uvs_per_face_flat.reshape( + (pix2face.shape[0], pix2face.shape[1], 3, 2) + ) + + # Weigh uvs by barycentric weights. + out = torch.matmul(bary_coords.unsqueeze(2), uvs_per_face_view) + + if asnumpy: + out = out.squeeze().cpu().numpy() + + return out + + def skin_face_indexes(self): + """ + Return the indexes of the faces that contain skin. + """ + if self.nonskin_face_indexes is None: + raise ValueError("Error: `self.nonskin_face_indexes must be set first.") + all_face_indexes = set(np.arange(0, self.mesh.faces_packed().shape[0])) + skin_face_indexes = all_face_indexes - self.nonskin_face_indexes + + return skin_face_indexes + + def skin_overlap_with_window(self, window_size: tuple[int, int]): + """ + Pixels where the window overlaps with all skin. + """ + skin_mask = self.skin_mask() + overlap_with_skin = window_overlap_mask( + skin_mask, window_size=window_size, pad_value=0, output_type="all_ones" + ) + + return overlap_with_skin + + def depth_view(self, asnumpy=True): + """ + Returns the depth of the view. + + Args: + asnumpy (bool, optional): If True, return a detached numpy array. + Defaults to True. + + Returns: + array or tensor: Depth from the camera for each pixel. + A negative value indicates background. + """ + self.check_raise_fragments() + depth_view = self.fragments.zbuf + if asnumpy: + return depth_view.squeeze().cpu().detach().numpy() + else: + return depth_view + + def view_center_face_coordiantes(self): + """ + Returns the face's center coordinates within the view. + """ + pix2face = self.pixels_to_face(asnumpy=True) + pix2face_flat = pix2face[pix2face > 0] + vertices = self.center_face_vertices[pix2face_flat] + return vertices + + def max_difference_in_window_from_dist( + self, target_dist: float, window_size: tuple[int, int] + ): + depth_view = self.depth_view() + max_window_img = max_value_in_window( + np.abs(depth_view - target_dist), + window_size, + pad_value=-1, + ) + return max_window_img.squeeze() + + def depth_skin_view(self, skin_mask): + return self.depth_view() * skin_mask + (skin_mask - 1) + + def max_depth_difference_to_target( + self, + lesion_mask, + skin_mask, + target_value: Optional[float] = None, + ): + depth_skin_view = self.depth_skin_view(skin_mask) + if target_value is None: + target_value = self.params["normal_weight"] + + return (np.abs(depth_skin_view - target_value) * lesion_mask).max() + + def check_raise_fragments(self): + """ + Raises an error if fragments are not computed. + """ + if self.fragments is None: + raise ValueError("Error: Call `self.compute_fragments(...) first.") + + def faces_is_skin(self, nonskin_texture_mask_tensor): + uvs_of_faces = self.mesh.textures.verts_uvs_padded().squeeze()[ + self.mesh.textures.faces_uvs_padded().squeeze() + ] + texture_coords_of_faces = uvs_of_faces * nonskin_texture_mask_tensor.shape[0] + texture_coords_of_faces = ( + texture_coords_of_faces.cpu().numpy().round().astype(np.int32) + ) + + img_size = nonskin_texture_mask_tensor.shape[:2] + mask_texture_recon = np.zeros(shape=img_size) + nonskin_mask = nonskin_texture_mask_tensor.cpu().detach().numpy() + is_face_skin = np.ones(shape=len(texture_coords_of_faces), dtype=np.int32) + for idx, coords in enumerate(texture_coords_of_faces): + skin_coord = 1 + for coord in coords: + if nonskin_mask[img_size[0] - coord[1], coord[0], 0] == 1: + mask_texture_recon[img_size[0] - coord[1], coord[0]] = 1 + skin_coord = 0 + break + + is_face_skin[idx] = skin_coord + + return is_face_skin + + def anatomy_image(self, anatomy_vert_labels): + """ + Returns the anatomy labels in the image. + """ + breakpoint() + pix2face = self.pixels_to_face() + pix2vert = torch.stack( + [a[i] for a, i in zip(self.mesh.faces_padded().squeeze(), pix2face)] + ) + # pix2vert = self.mesh.faces_padded().squeeze()[pix2face] + # pix2vert = pix2vert.detach().cpu().numpy() + # This uses the single vertex of a face to assign a label. + # Not ideal. Could be changed to the most frequent label? + anatomy_image = [ + anatomy_vert_labels[pix2vert[i, :, :, 0]] * self.body_mask() + for i in pix2face.shape[0] + ] + anatomy_image = anatomy_vert_labels[pix2vert[:, :, 0]] + anatomy_image = anatomy_image * self.body_mask() + return anatomy_image + + +def camera_world_position(dist, elev, azim, at, degrees=True): + """ + Returns a rotation and translational matrix in world view. + """ + if degrees: + elev = math.pi / 180.0 * elev + azim = math.pi / 180.0 * azim + x = dist * np.cos(elev) * np.sin(azim) + y = dist * np.sin(elev) + z = dist * np.cos(elev) * np.cos(azim) + + return np.asarray([x, y, z]) + at + + +def camera_pos_from_normal(look_at, normal, normal_weight, eps=0.0001): + # Ensure normal. + normal = normalize([normal])[0] + + # Randomly choose a weight to apply to the normal. + # normal_weight = random.uniform(normal_weight_range[0], normal_weight_range[1]) + + # Camera position is a weighted offset from the `look_at` position. + # We add a small value `eps` as otherwise can get errors computing + # the rotation matrix when a normal contains a 0 e.g. [1, 0, 0]. + camera_pos = look_at + (normal * normal_weight) + eps + + return camera_pos diff --git a/DermSynth3D/dermsynth3d/tools/select_location.py b/DermSynth3D/dermsynth3d/tools/select_location.py new file mode 100644 index 0000000000000000000000000000000000000000..0f1a142a400f71394e9ac5bdad399e36f1cf629d --- /dev/null +++ b/DermSynth3D/dermsynth3d/tools/select_location.py @@ -0,0 +1,202 @@ +import os +import sys +import cv2 +import yaml +import argparse + +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +from pathlib import Path +from tqdm import tqdm, trange + +import torch +from scipy import ndimage +from pytorch3d.io import load_objs_as_meshes + +from dermsynth3d.tools.renderer import MeshRendererPyTorch3D +from dermsynth3d.datasets.datasets import Fitz17KAnnotations +from dermsynth3d.deepblend.blend import PasteTextureImage +from dermsynth3d.deepblend.blend3d import Blended3d +from dermsynth3d.utils.textures import UVViewMapper +from dermsynth3d.utils.colorconstancy import shade_of_gray_cc + + +class SelectAndPaste: + """ + Handles the logic of selecting the ideal location + for pasting/blending the lesion. + """ + + def __init__( + self, + device, + config, + ): + self.bodytex_dir = config["blending"]["bodytex_dir"] + self.dir_fitzk_images = config["blending"]["fitz_dir"] + self.annot_dir = config["blending"]["annot_dir"] + self.tex_dir = config["blending"]["tex_dir"] + self.mesh_name = config["generate"]["mesh_name"] + self.view_size = eval(config["generate"]["view_size"]) + self.ext = config["blending"]["ext"] + self.num_paste = config["blending"]["num_paste"] + self.device = device + self.config = config + self.SAVE_DIR = Path(config["generate"]["save_dir"].split("/")[0]) /"processed_textures" + self.SAVE_DIR.mkdir(exist_ok=True, parents=True) + self.SAVE_DIR = self.SAVE_DIR / self.mesh_name + self.SAVE_DIR.mkdir(exist_ok=True, parents=True) + + self.fitz_ds = Fitz17KAnnotations( + dir_images=self.dir_fitzk_images, + dir_targets=self.annot_dir, + target_extension=config["extension"]["target_extension"], + image_extension=config["extension"]["image_extension"], + color_constancy=shade_of_gray_cc, + ) + os.makedirs(self.tex_dir, exist_ok=True) + + # Assumes 3DBodyTex v1. file naming convension + self.mesh_filename = os.path.join( + self.bodytex_dir, self.mesh_name, "model_highres_0_normalized.obj" + ) + + self.blended3d = Blended3d( + mesh_filename=self.mesh_filename, + device=self.device, + dir_blended_textures=self.tex_dir, + dir_nonskin_faces=None, + extension=self.ext, + ) + + # Load the non-skin and original texture map + self.nonskin_texture_mask_tensor = self.blended3d.nonskin_texture_mask( + astensor=True + ).to(self.device) + self.original_texture_image_tensor = self.blended3d.texture_image(astensor=True).to(self.device) + + def load_mesh(self): + # Load the mesh + self.mesh = load_objs_as_meshes([self.mesh_filename], device=self.device) + print (f"Successfully loaded {self.mesh_filename}") + self.mesh_renderer = MeshRendererPyTorch3D( + mesh=self.mesh, + device=self.device, + config=self.config, + ) + self.faces_is_skin = self.mesh_renderer.faces_is_skin( + self.nonskin_texture_mask_tensor + ) + + def load_paster(self): + self.paster = PasteTextureImage( + self.original_texture_image_tensor, + self.nonskin_texture_mask_tensor, + self.mesh_renderer, + self.view_size, + ) + + # Initialize the textures and masks to paste the lesions + self.paster.initialize_pasted_masks_and_textures() + + def paste_on_locations(self): + # Initialize mesh and paster + self.load_mesh() + self.load_paster() + + # Constrain the random faces to be ones of skin (not cloths). + self.rand_skin_face_indexes = np.random.permutation( + np.where(self.faces_is_skin)[0] + ) + + # Stores the parameters of the pasted texture image. + self.selected_params = [] + + # Id to start the lesion masks. + lesion_mask_id = 1 + # Start from the first randomly permuted face. + face_iter = 0 + + pbar = tqdm(total=self.num_paste, desc="Pasting lesions",ncols=40, dynamic_ncols=True, leave=True) + # Repeat until paste `n_paste` number of lesions. + while lesion_mask_id <= self.num_paste: + # Select a random face. + face_idx = self.rand_skin_face_indexes[face_iter] + face_iter += 1 + + # Set the renderer to view the face. + self.paster.set_renderer_view(face_idx) + + # Select a random lesion. + fitz_id = np.random.permutation(self.fitz_ds.annotation_ids)[0] + lesion_img, lesion_seg = self.fitz_ds.box_crop_lesion( + fitz_id, + force_even_dims=True, + asfloat=True, + ) + + # Set the lesion and mask. + self.paster.init_target_lesion(lesion_img, lesion_seg) + # Compute the max change in depth for the lesion location. + max_depth_diff = self.paster.lesion_max_depth_diff() + + if max_depth_diff > 0.02: + # If max change exceeds a threshold, skip it. + # print("Skipping {} due to high depth change".format(face_idx)) + pbar.set_description(f"Skipping {face_idx} due to high depth change.", refresh=True) + continue + + accepted = self.paster.paste_masks_and_texture_images(lesion_mask_id) + if not accepted: + # print("Skipping {} as overlaps with existing lesion.".format(face_idx)) + pbar.set_description(f"Skipping {face_idx} as overlaps with existing lesion.", refresh=True) + # pbar.postfix= f"Skipping {face_idx} as overlaps with existing lesion." + continue + + self.selected_params.append( + { + "face_idx": face_idx, + "normal_weight": self.paster.mesh_renderer.params["normal_weight"], + "max_depth_diff": max_depth_diff, + "lesion_mask_id": lesion_mask_id, + "fitz_id": fitz_id, + } + ) + + pbar.set_description(f"Accepted {lesion_mask_id} lesion", refresh=True) + pbar.update(1) + lesion_mask_id += 1 + + pbar.close() + self.save_textures() + + def save_textures(self): + # Save the pasted texture image. + print(f"Also Saving pasted lesion textures to {self.SAVE_DIR}") + + pasted_filename = self.SAVE_DIR / f"model_highres_0_normalized_pasted_{self.ext}.png" + dilated_filename = self.SAVE_DIR / f"model_highres_0_normalized_dilated_{self.ext}.png" + lesion_mask_filename = self.SAVE_DIR / f"lesion_mask_{self.ext}.png" + lesion_dilated_mask_filename = self.SAVE_DIR / f"lesion_dilated_mask_{self.ext}.png" + params_filename = self.SAVE_DIR / f"lesion_params_{self.ext}.csv" + + self.blended3d.save_pasted_texture_image( + self.paster.pasted_texture, print_filepath=False, filename=pasted_filename + ) + self.blended3d.save_dilated_texture_image( + self.paster.pasted_dilated_texture, print_filepath=False, filename=dilated_filename + ) + + # Save the lesion mask for the texture image. + self.blended3d.save_lesion_texture_mask( + self.paster.lesion_mask.squeeze(), print_filename=False, filename=lesion_mask_filename + ) + self.blended3d.save_dilated_texture_mask( + self.paster.lesion_dilated_mask.squeeze(), print_filepath=False, filename=lesion_dilated_mask_filename + ) + + # Save the location parameters of the selected views. + final_params_df = pd.DataFrame(self.selected_params) + self.blended3d.save_lesion_params(final_params_df, print_filepath=True, filename=params_filename) + diff --git a/DermSynth3D/dermsynth3d/tools/synthesize.py b/DermSynth3D/dermsynth3d/tools/synthesize.py new file mode 100644 index 0000000000000000000000000000000000000000..ac0356383d3cd6387a493d9699acf9f384ae0fa1 --- /dev/null +++ b/DermSynth3D/dermsynth3d/tools/synthesize.py @@ -0,0 +1,168 @@ +import os +import uuid +import numpy as np +import pandas as pd + +from PIL import Image + +from dermsynth3d.datasets.datasets import ImageDataset + +from dermsynth3d.utils.utils import ( + make_masks, + blend_background, + random_resize_crop_seg_lesion, +) +from dermsynth3d.utils.tensor import window_overlap_mask +from dermsynth3d.deepblend.utils import make_canvas_mask +from dermsynth3d.deepblend.blend import paste_blend + + +class Synthesize2D: + """ + Base class to generate lesion-blended renderings with random backgrounds. + """ + + def __init__( + self, + view2d, + body_mask, + skin_mask, + lesion_mask, + background_img, + paste_lesion_img, + paste_lesion_mask, + soft_blend=False, + ): + self.view2d = view2d + self.body_mask = body_mask + self.skin_mask = skin_mask + self.lesion_mask = lesion_mask + self.skin_or_lesion_mask = skin_mask | lesion_mask + self.background_img = background_img + self.paste_lesion_img = paste_lesion_img + self.paste_lesion_mask = paste_lesion_mask + + self.pasted_back_image = blend_background( + self.view2d, + self.background_img, + self.body_mask, + soft_blend=soft_blend, # If True, soft blends the foreground with background. + ) + + def min_max_scale_foreground(self): + img_shape = self.paste_lesion_img.shape + count_fit = window_overlap_mask( + self.skin_or_lesion_mask, + window_size=(img_shape[0] + 2, img_shape[1] + 2), + pad_value=0, + output_type="count", + ) + + n_pixels = img_shape[0] * img_shape[1] + + min_scale = min_scale_size(img_shape[:2]) + if count_fit.max() == 0: + max_scale = 1 + else: + max_scale = np.sqrt(n_pixels / count_fit.max()) + + return min_scale, max_scale + + def random_resize_foreground(self, min_scale, max_scale): + lesion_crop, mask_crop = random_resize_crop_seg_lesion( + self.paste_lesion_mask, + self.paste_lesion_img, + min_scale=min_scale, + max_scale=max_scale, + maintain_aspect=True, + ) + + return lesion_crop, mask_crop + + def paste_locations(self, window_size): + overlap_with_skin = window_overlap_mask( + self.skin_or_lesion_mask, + window_size=(window_size[0] + 2, window_size[1] + 2), + pad_value=0, + output_type="all_ones", + ) + paste_locs = np.where(overlap_with_skin) + return paste_locs + + def paste_foreground(self, x, y, foreground_img, foreground_mask): + pasted_foreground_img = paste_blend( + x, + y, + foreground_img, + foreground_mask[:, :, np.newaxis], + self.pasted_back_image, + ) + lesion_mask_paste = make_canvas_mask( + x, y, pasted_foreground_img.shape[:2], foreground_mask + ) + lesion_mask_paste = np.asarray(lesion_mask_paste > 0) + lesion_mask_with_paste = lesion_mask_paste | self.lesion_mask + masks = make_masks(lesion_mask_with_paste, self.skin_mask) + return pasted_foreground_img, masks + + def random_paste_foreground(self, min_scale, max_scale): + pasted_img = None + masks = None + foreground_resized_img, foreground_resized_mask = self.random_resize_foreground( + min_scale, max_scale + ) + + if foreground_resized_img is not None: + paste_locs = self.paste_locations(foreground_resized_img.shape) + if len(paste_locs[0]) > 0: + # Randomly choose a place to paste. + loc_idx = np.random.randint(0, len(paste_locs[0])) + x = paste_locs[0][loc_idx] + y = paste_locs[1][loc_idx] + pasted_img, masks = self.paste_foreground( + x, y, foreground_resized_img, foreground_resized_mask + ) + + return pasted_img, masks + + def random_paste_foreground_with_retry( + self, min_scale, max_scale, print_debug=True + ): + pasted_img, masks = self.random_paste_foreground(min_scale, max_scale) + + if pasted_img is None: + # The min max scale created an image less + # than the min accepted image size. + # Or there are no valid regions to paste. + # Retry the resize, so try again with scaling + # the max by a factor of 2. + if print_debug: + print( + "Unable to find location to paste lesion. " + "Trying again with a different scale" + ) + pasted_img, masks = self.random_paste_foreground(min_scale, max_scale * 2) + + if print_debug: + if pasted_img is None: + print("Failed: Could not paste. Skip this image.") + else: + print("Success: Pasted with double max scale.") + + return pasted_img, masks + + +def min_scale_size(img_size): + "Hardcoded min sizes based on the image size." + if min(img_size[:2]) < 30: + min_scale = 2 + elif min(img_size[:2]) < 50: + min_scale = 5 + elif min(img_size[:2]) < 100: + min_scale = 10 + elif min(img_size[:2]) < 150: + min_scale = 15 + else: + min_scale = 20 + + return min_scale diff --git a/DermSynth3D/dermsynth3d/utils/__pycache__/anatomy.cpython-310.pyc b/DermSynth3D/dermsynth3d/utils/__pycache__/anatomy.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f0677df67efa9853bfc06b314d4956f60435dec6 Binary files /dev/null and b/DermSynth3D/dermsynth3d/utils/__pycache__/anatomy.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/utils/__pycache__/annotate.cpython-310.pyc b/DermSynth3D/dermsynth3d/utils/__pycache__/annotate.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8eb5928b2dd9379c43778041a8629b6d90336e93 Binary files /dev/null and b/DermSynth3D/dermsynth3d/utils/__pycache__/annotate.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/utils/__pycache__/channels.cpython-310.pyc b/DermSynth3D/dermsynth3d/utils/__pycache__/channels.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ad581417844bc062c56977088ccd14de3a9d9860 Binary files /dev/null and b/DermSynth3D/dermsynth3d/utils/__pycache__/channels.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/utils/__pycache__/colorconstancy.cpython-310.pyc b/DermSynth3D/dermsynth3d/utils/__pycache__/colorconstancy.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..29709c1a70474a0f198516bbc37a11bf135bcc9f Binary files /dev/null and b/DermSynth3D/dermsynth3d/utils/__pycache__/colorconstancy.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/utils/__pycache__/image.cpython-310.pyc b/DermSynth3D/dermsynth3d/utils/__pycache__/image.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4f8a398012d62c6e4779deffa78bdcdcab4da8f2 Binary files /dev/null and b/DermSynth3D/dermsynth3d/utils/__pycache__/image.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/utils/__pycache__/mask.cpython-310.pyc b/DermSynth3D/dermsynth3d/utils/__pycache__/mask.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5560b36014dfc2baa6e6508f613e9c3523e6eba2 Binary files /dev/null and b/DermSynth3D/dermsynth3d/utils/__pycache__/mask.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/utils/__pycache__/tensor.cpython-310.pyc b/DermSynth3D/dermsynth3d/utils/__pycache__/tensor.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e26ec9b20a62cd5cd05a3a2380cd490aef0b904 Binary files /dev/null and b/DermSynth3D/dermsynth3d/utils/__pycache__/tensor.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/utils/__pycache__/textures.cpython-310.pyc b/DermSynth3D/dermsynth3d/utils/__pycache__/textures.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..09e6382aa1dda8e442e81b0aace5bc812b026b41 Binary files /dev/null and b/DermSynth3D/dermsynth3d/utils/__pycache__/textures.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/utils/__pycache__/utils.cpython-310.pyc b/DermSynth3D/dermsynth3d/utils/__pycache__/utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f6f9523e94bc03bf76a88e8deb83b04e0030e59c Binary files /dev/null and b/DermSynth3D/dermsynth3d/utils/__pycache__/utils.cpython-310.pyc differ diff --git a/DermSynth3D/dermsynth3d/utils/anatomy.py b/DermSynth3D/dermsynth3d/utils/anatomy.py new file mode 100644 index 0000000000000000000000000000000000000000..96db4145d81dc53e0655ba9a4186e94205051e56 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/anatomy.py @@ -0,0 +1,70 @@ +class Anatomy: + background = 0 + head = 1 + upper_torso = 2 + lower_torso = 3 + hips = 4 + upper_leg_left = 5 + upper_leg_right = 6 + lower_leg_left = 7 + lower_leg_right = 8 + feet_left = 9 + feet_right = 10 + upper_arm_left = 11 + upper_arm_right = 12 + lower_arm_left = 13 + lower_arm_right = 14 + hand_left = 15 + hand_right = 16 + + +class SimpleAnatomy: + background = 0 + head = 1 + torso = 2 + hips = 3 + legs = 4 + feet = 5 + arms = 6 + hands = 7 + + n_labels = 8 + + @staticmethod + def to_string(idx): + if idx == SimpleAnatomy.background: + return "BG" + if idx == SimpleAnatomy.head: + return "head" + if idx == SimpleAnatomy.torso: + return "torso" + if idx == SimpleAnatomy.hips: + return "hips" + if idx == SimpleAnatomy.legs: + return "legs" + if idx == SimpleAnatomy.feet: + return "feet" + if idx == SimpleAnatomy.arms: + return "arms" + if idx == SimpleAnatomy.hands: + return "hands" + + @staticmethod + def to_simple_anatomy(x): + x[x == Anatomy.background] = SimpleAnatomy.background + x[x == Anatomy.head] = SimpleAnatomy.head + x[x == Anatomy.upper_torso] = SimpleAnatomy.torso + x[x == Anatomy.lower_torso] = SimpleAnatomy.torso + x[x == Anatomy.hips] = SimpleAnatomy.hips + x[x == Anatomy.upper_leg_left] = SimpleAnatomy.legs + x[x == Anatomy.upper_leg_right] = SimpleAnatomy.legs + x[x == Anatomy.lower_leg_left] = SimpleAnatomy.legs + x[x == Anatomy.lower_leg_right] = SimpleAnatomy.legs + x[x == Anatomy.feet_left] = SimpleAnatomy.feet + x[x == Anatomy.feet_right] = SimpleAnatomy.feet + x[x == Anatomy.upper_arm_left] = SimpleAnatomy.arms + x[x == Anatomy.upper_arm_right] = SimpleAnatomy.arms + x[x == Anatomy.lower_arm_left] = SimpleAnatomy.arms + x[x == Anatomy.lower_arm_right] = SimpleAnatomy.arms + x[x == Anatomy.hand_left] = SimpleAnatomy.hands + x[x == Anatomy.hand_right] = SimpleAnatomy.hands diff --git a/DermSynth3D/dermsynth3d/utils/annotate.py b/DermSynth3D/dermsynth3d/utils/annotate.py new file mode 100644 index 0000000000000000000000000000000000000000..156fe4d032a3e98aa3c5366762cd188cb2e8b3d8 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/annotate.py @@ -0,0 +1,6 @@ +def poly_from_xy(x_points, y_points): + poly = [] + for x, y in zip(x_points, y_points): + poly.append((x, y)) + + return poly diff --git a/DermSynth3D/dermsynth3d/utils/augment.py b/DermSynth3D/dermsynth3d/utils/augment.py new file mode 100644 index 0000000000000000000000000000000000000000..47b427e61cfa54a0498a81d884427332c690b9e7 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/augment.py @@ -0,0 +1,86 @@ +import random +import cv2 +import albumentations as A +from dermsynth3d.utils.colorconstancy import shade_of_gray_cc + + +class ColorConstancyGray(A.core.transforms_interface.ImageOnlyTransform): + def __init__( + self, + always_apply=False, + p=0.5, + ): + super(ColorConstancyGray, self).__init__(always_apply=always_apply, p=p) + + def apply(self, img, **params): + return shade_of_gray_cc(img) + + def get_transform_init_args_names(self): + return () + + +class ResizeInterpolate(A.core.transforms_interface.DualTransform): + """ + Resize the input to the given height and width. + + Args: + height (int): desired height of the output. + width (int): desired width of the output. + interpolation (OpenCV flag): flag that is used to specify + the interpolation algorithm. Should be one of: + cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, + cv2.INTER_AREA, cv2.INTER_LANCZOS4. + Default: cv2.INTER_LINEAR. + p (float): probability of applying the transform. Default: 1. + + Targets: + image, mask, bboxes, keypoints + + Image types: + uint8, float32 + """ + + def __init__( + self, + height, + width, + interpolation=cv2.INTER_LINEAR, + always_apply=False, + p=1, + ): + super(ResizeInterpolate, self).__init__(always_apply, p) + self.height = height + self.width = width + self.interpolation = interpolation + + def apply(self, img, interpolation=None, **params): + interpolation = self.interpolation + + interpolations = [ + cv2.INTER_NEAREST, + cv2.INTER_LINEAR, + cv2.INTER_AREA, + ] + # cv2.INTER_CUBIC, cv2.INTER_LANCZOS4] + if self.interpolation is None: + interpolation = random.choice(interpolations) + + return A.augmentations.geometric.functional.resize( + img, height=self.height, width=self.width, interpolation=interpolation + ) + + def apply_to_bbox(self, bbox, **params): + # Bounding box coordinates are scale invariant + return bbox + + def apply_to_keypoint(self, keypoint, **params): + height = params["rows"] + width = params["cols"] + scale_x = self.width / width + scale_y = self.height / height + return A.augmentations.geometric.functional.keypoint_scale( + keypoint, scale_x, scale_y + ) + + def get_transform_init_args_names(self): + return ("height", "width", "interpolation") diff --git a/DermSynth3D/dermsynth3d/utils/channels.py b/DermSynth3D/dermsynth3d/utils/channels.py new file mode 100644 index 0000000000000000000000000000000000000000..7b36792ac305c63fda65a3e40407064af70079fa --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/channels.py @@ -0,0 +1,12 @@ +""" +Output channels from Stage 2 of DermSynth3D pipeline +""" + + +class Target: + LESION = 0 + SKIN = 1 + NONSKIN = 2 + ANATOMY = 3 + DEPTH = 4 + NEVI = 5 diff --git a/DermSynth3D/dermsynth3d/utils/colorconstancy.py b/DermSynth3D/dermsynth3d/utils/colorconstancy.py new file mode 100644 index 0000000000000000000000000000000000000000..d39d27d42403a537f5beaf3d8c5c97db32430735 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/colorconstancy.py @@ -0,0 +1,34 @@ +import cv2 +import numpy as np + + +def shade_of_gray_cc(img, power=6, gamma=None): + """ + Code from: + https://www.kaggle.com/code/apacheco/shades-of-gray-color-constancy/notebook + + img (numpy array): the original image with format of (h, w, c) + power (int): the degree of norm, 6 is used in reference paper + gamma (float): the value of gamma correction, 2.2 is used in reference paper + """ + + img_dtype = img.dtype + + if gamma is not None: + img = img.astype("uint8") + look_up_table = np.ones((256, 1), dtype="uint8") * 0 + for i in range(256): + look_up_table[i][0] = 255 * pow(i / 255, 1 / gamma) + img = cv2.LUT(img, look_up_table) + + img = img.astype("float32") + img_power = np.power(img, power) + rgb_vec = np.power(np.mean(img_power, (0, 1)), 1 / power) + rgb_norm = np.sqrt(np.sum(np.power(rgb_vec, 2.0))) + rgb_vec = rgb_vec / rgb_norm + rgb_vec = 1 / (rgb_vec * np.sqrt(3)) + img = np.multiply(img, rgb_vec) + + img = np.clip(img, a_min=0, a_max=255) + + return img.astype(img_dtype) diff --git a/DermSynth3D/dermsynth3d/utils/evaluate.py b/DermSynth3D/dermsynth3d/utils/evaluate.py new file mode 100644 index 0000000000000000000000000000000000000000..eecf970b55bac9743a5e76183ee78963c88761f4 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/evaluate.py @@ -0,0 +1,208 @@ +import os +import numpy as np +from dermsynth3d.utils.channels import Target +from dermsynth3d.utils.image import load_image +from typing import Tuple + + +def jaccard_index( + gt, + pred, +): + intersection = np.sum(pred & gt) + union = np.sum(pred | gt) + + if gt.sum() == 0: + if pred.sum() == 0: + return 1 + else: + return 0 + + return intersection / union + + +def dice( + target, + input, +): + """ + https://github.com/pytorch/pytorch/issues/1249 + """ + smooth = 0.0 + + iflat = input.flatten() + tflat = target.flatten() + intersection = (iflat * tflat).sum() + + if (tflat.sum() == 0) and (iflat.sum() == 0): + return 1 + + return (2.0 * intersection + smooth) / (iflat.sum() + tflat.sum() + smooth) + + +def argmax_predictions(pred, asint=False): + pred = np.asarray(pred) + + if len(pred.shape) != 3: + raise ValueError("Must be HxWxC input") + + if pred.shape[-1] < 2: + raise ValueError("Cannot handle a single channel. C must be >= 2 ") + + argmax_preds = np.argmax(pred, axis=-1) + binary_preds = np.zeros( + shape=(pred.shape[0], pred.shape[1], pred.shape[2]), dtype=np.bool8 + ) + for idx in np.arange(binary_preds.shape[-1]): + binary_preds[:, :, idx] = argmax_preds == idx + + if asint: + binary_preds = (binary_preds * 255).astype(np.uint8) + + return binary_preds + + +def compute_results(ds, dir_predictions, pred_ext): + results = [] + for image_id in ds.file_ids: + gt_seg = np.asarray(ds.target(image_id)) + pred_filename = os.path.join(dir_predictions, image_id + pred_ext) + pred_seg = np.asarray(load_image(pred_filename)) + # pred_seg = np.asarray(ds.prediction(image_id)) + pred_seg = argmax_predictions(pred_seg) + + image_res = {} + image_res["file_id"] = image_id + + for c_idx in range(gt_seg.shape[-1]): + pred_channel = pred_seg[:, :, c_idx] + gt_channel = gt_seg[:, :, c_idx] > 0 + + tp, fp, tn, fn = binary_conf_mat(pred_channel, gt_channel) + + ji = jaccard_index(gt_channel, pred_channel) + if c_idx == Target.LESION: + key = "lesion" + elif c_idx == Target.SKIN: + key = "skin" + elif c_idx == Target.NONSKIN: + key = "nonskin" + else: + raise ValueError("Error: outside expected range") + + image_res[key + "_ji"] = ji + image_res[key + "_tp"] = tp + image_res[key + "_fp"] = fp + image_res[key + "_tn"] = tn + image_res[key + "_fn"] = fn + + results.append(image_res) + + return results + + +def print_results(df, keys=("lesion", "skin", "nonskin")): + ji_all = {} + f1_all = {} + for key in keys: + tp = df[key + "_tp"].sum() + fp = df[key + "_fp"].sum() + tn = df[key + "_tn"].sum() + fn = df[key + "_fn"].sum() + ji_all[key] = tp / (tp + fp + fn) + f1_all[key] = (2 * tp) / ((2 * tp) + fp + fn) + + for key in keys: + print( + "{} JI={:.2f} F1={:.2f}".format( + key, + ji_all[key], + f1_all[key], + ) + ) + + for key in keys: + print( + "{} JI={:.2f} ({:.2f})".format( + key, + df[key + "_ji"].mean(), + df[key + "_ji"].std(), + ) + ) + + +def conf_mat_cells(ds, dir_predictions, pred_ext): + tps = [] + fps = [] + tns = [] + fns = [] + for img_id in ds.file_ids: + gt = np.asarray(ds.target(img_id)) + gt = gt[:, :, 0] > 0 + pred_filename = os.path.join(dir_predictions, img_id + pred_ext) + pred = np.asarray(load_image(pred_filename)) + skin_pred = argmax_predictions(pred)[:, :, Target.SKIN] + + tp = np.sum((skin_pred == True) & (gt == True)) + fp = np.sum((skin_pred == True) & (gt == False)) + tn = np.sum((skin_pred == False) & (gt == False)) + fn = np.sum((skin_pred == False) & (gt == True)) + assert tp + fp + tn + fn == (gt.shape[0] * gt.shape[1]) + + tps.append(tp) + fps.append(fp) + tns.append(tn) + fns.append(fn) + + return { + "tps": tps, + "fps": fps, + "tns": tns, + "fns": fns, + } + + +def binary_conf_mat(pred: np.array, gt: np.array) -> Tuple[int, int, int, int]: + if pred.dtype != "bool": + raise TypeError("Expects `pred` to be a boolean array.") + + if gt.dtype != "bool": + raise TypeError("Expects `gt` is a boolean array.") + tp = np.sum((pred == True) & (gt == True)) + fp = np.sum((pred == True) & (gt == False)) + tn = np.sum((pred == False) & (gt == False)) + fn = np.sum((pred == False) & (gt == True)) + + return tp, fp, tn, fn + + +def _binary_conf_mat(): + """Tests `binary_conf_mat()`""" + out = binary_conf_mat(pred=np.asarray([True, False]), gt=np.asarray([True, False])) + assert out == (1, 0, 1, 0), "Error in conf mat" + + out = binary_conf_mat(pred=np.asarray([False, True]), gt=np.asarray([True, False])) + assert out == (0, 1, 0, 1), "Error in conf mat" + + out = binary_conf_mat(pred=np.asarray([True, True]), gt=np.asarray([True, True])) + assert out == (2, 0, 0, 0), "Error in conf mat, out=" + str(out) + + +_binary_conf_mat() + + +def make_evaluation_dirs(dir_root: str, dataset_name: str, model_name: str): + dir_out = os.path.join(dir_root, dataset_name, model_name) + + paths = {} + paths["prob_segs"] = os.path.join(dir_out, "prob_segs") + paths["pred_segs"] = os.path.join(dir_out, "pred_segs") + paths["pred_anatomy"] = os.path.join(dir_out, "pred_anatomy") + paths["images"] = os.path.join(dir_out, "images") + paths["targets"] = os.path.join(dir_out, "targets") + + for key in paths: + if not os.path.isdir(paths[key]): + os.makedirs(paths[key]) + + return paths diff --git a/DermSynth3D/dermsynth3d/utils/evaluate_detection.py b/DermSynth3D/dermsynth3d/utils/evaluate_detection.py new file mode 100644 index 0000000000000000000000000000000000000000..70bc96323fe8129952068bd10cadf9e1d5edcb21 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/evaluate_detection.py @@ -0,0 +1,221 @@ +import torch +from dermsynth3d.utils.object_detection_metrics.BoundingBox import BoundingBox +from dermsynth3d.utils.object_detection_metrics.BoundingBoxes import BoundingBoxes +from dermsynth3d.utils.object_detection_metrics.utils import ( + BBFormat, + BBType, + CoordinatesType, +) +from dermsynth3d.utils.object_detection_metrics.Evaluator import Evaluator + + +@torch.no_grad() +def evaluate_detection(model, val_dataloader, device): + model.eval() + cpu_device = torch.device("cpu") + centroid_results = [] + iou_results = [] + + for _, ids, images, masks, targets in val_dataloader: + for id, img, mask, target in zip(ids, images, masks, targets): + gt_boxes = target["boxes"].to(cpu_device) + if len(gt_boxes) == 0: + continue + + image = img.to(device) + + output = model([image])[0] + + predicted_boxes = output["boxes"].to(cpu_device) + predicted_scores = output["scores"].to(cpu_device) + + centroid_result, iou_result = get_results( + id, predicted_boxes, predicted_scores, gt_boxes + ) + + centroid_results.append(centroid_result) + iou_results.append(iou_result) + + return centroid_results, iou_results + + +def get_results(scan_id, predicted_boxes, predicted_scores, gt_boxes): + centroid_result = sample_results( + predicted_boxes, + predicted_scores, + gt_boxes, + scan_id, + decision_func=both_contain_centroids, # Centroid matching. + iou_thresh=None, # None since does not use IoU. + ) + + # We repeat to compute results using the IoU metric. + # We compute since IoU is traditionally used to determine a "match". + # These are the same predictions just a different way of determining what + # a correct "match" is between the predicted and GT. + iou_result = sample_results( + predicted_boxes, + predicted_scores, + gt_boxes, + scan_id, + decision_func=None, # Defaults to IoU. + iou_thresh=0.5, # IoU threshold 0.5 to indicate a match. + ) + + return centroid_result, iou_result + + +def sample_results( + predicted_boxes, predicted_scores, gt_boxes, scan_id, decision_func, iou_thresh +): + # Bounding boxes with a confidence threshold >= 0.5 + bounding_boxes_thresh = convert_to_bounding_boxes( + scan_id, + gt_boxes, + predicted_boxes, + predicted_scores, + score_thresh=0.5, + ) + + # All bounding boxes (no threshold on confidence) + bounding_boxes_nothresh = convert_to_bounding_boxes( + scan_id, + gt_boxes, + predicted_boxes, + predicted_scores, + score_thresh=0, + ) + + # Class to compute metrics. + # Mainly used since average precision + # of bounding boxes is non-trivial to compute. + evaluator = Evaluator() + + # Results with predicted bounding boxes' scores >= 0.5 + # The score is needed to make a decision of a detection, + # so we can compute metrics like recall, precision. + results_thresh_all = evaluator.GetDetection( + bounding_boxes_thresh, + IOUThreshold=iou_thresh, + decision_func=decision_func, # Matching centroids. + ) + + thresh_results = summarize_results( + results_thresh_all, + scan_id=scan_id, + ) + + # Here we compute the results using + # all the predicted boxes (i.e., not threshold based on score). + # We do this to compute average precision since + # AP is computed over a range of thresholds. + results_nothresh_all = evaluator.GetDetection( + bounding_boxes_nothresh, + IOUThreshold=iou_thresh, + decision_func=decision_func, + ) + + results_nothresh = summarize_results( + results_nothresh_all, + scan_id=scan_id, + ) + + # We form our final results by using the thresholded score results + # except for AP, which we use from the non-thresholded results. + results = thresh_results.copy() + results["ap"] = results_nothresh["ap"] + + return results + + +def summarize_results(sample_results, scan_id=None): + TP = sample_results[0]["total TP"] + FP = sample_results[0]["total FP"] + FN = sample_results[0]["total positives"] - sample_results[0]["total TP"] + recall_score = TP / (TP + FN) + precision_score = TP / (TP + FP) + + result = { + "scan_id": scan_id, + "tp": TP, + "fp": FP, + "fn": FN, + "recall": recall_score, + "precision": precision_score, + "ap": sample_results[0]["AP"], + "iou": sample_results[0]["iou"], + } + return result + + +def centroid(box): + """Assumes `box` is in the format [x,y,x1,y1]""" + x_center = (box[0] + box[2]) / 2 + y_center = (box[1] + box[3]) / 2 + return x_center, y_center + + +def source_contains_target_centroid(source_box, target_box): + target_x, target_y = centroid(target_box) + contains_center = ( + (target_x > source_box[0]) + & (target_x < source_box[2]) + & (target_y > source_box[1]) + & (target_y < source_box[3]) + ) + return contains_center + + +def both_contain_centroids(box_a, box_b): + """Returns `True` if the centroid of `box_a` is within `box_b` and vice versa.""" + return source_contains_target_centroid( + box_a, box_b + ) and source_contains_target_centroid(box_b, box_a) + + +def bounding_box(scan_id, box, score=None, is_gt=True): + if is_gt: + bbType = BBType.GroundTruth + else: + bbType = BBType.Detected + + bb = BoundingBox( + imageName=scan_id, + classId="lesion", + classConfidence=score, + x=box[0], + y=box[1], + w=box[2], + h=box[3], + typeCoordinates=CoordinatesType.Absolute, + bbType=bbType, + format=BBFormat.XYX2Y2, + ) + + return bb + + +def convert_to_bounding_boxes( + scan_id, + gt_boxes, + predicted_boxes, + predicted_scores, + score_thresh, +): + bounding_boxes = BoundingBoxes() + + for gt_box in gt_boxes: + bb = bounding_box(scan_id=scan_id, box=gt_box, score=None, is_gt=True) + bounding_boxes.addBoundingBox(bb) + + for pred_score, pred_box in zip(predicted_scores, predicted_boxes): + if pred_score >= score_thresh: + bb = bounding_box( + scan_id=scan_id, + box=pred_box, + score=pred_score, + is_gt=False, + ) + bounding_boxes.addBoundingBox(bb) + + return bounding_boxes diff --git a/DermSynth3D/dermsynth3d/utils/evalutils.py b/DermSynth3D/dermsynth3d/utils/evalutils.py new file mode 100644 index 0000000000000000000000000000000000000000..cd1eccd580916d202280fccafb2d01d69318ef92 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/evalutils.py @@ -0,0 +1,16 @@ +import os + + +def make_evaluation_dirs(dir_root: str, model_name: str): + paths = {} + paths["prob_segs"] = os.path.join(dir_root, model_name, "prob_segs") + paths["pred_segs"] = os.path.join(dir_root, model_name, "pred_segs") + paths["pred_anatomy"] = os.path.join(dir_root, model_name, "pred_anatomy") + paths["images"] = os.path.join(dir_root, model_name, "images") + paths["targets"] = os.path.join(dir_root, model_name, "targets") + + for key in paths: + if not os.path.isdir(paths[key]): + os.makedirs(paths[key]) + + return paths diff --git a/DermSynth3D/dermsynth3d/utils/filestruct.py b/DermSynth3D/dermsynth3d/utils/filestruct.py new file mode 100644 index 0000000000000000000000000000000000000000..d80008eac9867402ad679b0af975b455e30e4672 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/filestruct.py @@ -0,0 +1,158 @@ +import abc + + +def custom_directories(user: str): + if user == "jer": + return JerFolders() + elif user == "arezou": + return ArezouFolders() + elif user == "ashish": + return AshishFolders() + else: + raise ValueError("Unknown user = {}".format(user)) + + +class FolderStructure(abc.ABC): + @abc.abstractmethod + def backgrounds(self): + """Directory to the background images. + + Currently we use the "Bedroom" dataset from here. + https://www.kaggle.com/robinreni/house-rooms-image-dataset + + You'll have to download and update this path. + """ + pass + + @abc.abstractmethod + def bodytex_highres(self): + """Directory of the 3dBodyTex high-res meshes.""" + pass + + @abc.abstractmethod + def new_textures(self): + """Directory where the modified textures are saved. + + Assumes the nonskin texture masks are also stored at this location. + + This is used in `blend_locations.ipynb`, + which saves the pasted lesions in the texture image + and the corresponding texture masks. + + As well, in `blend3d.ipynb` to store the blended texture images. + """ + pass + + @abc.abstractmethod + def anatomy(self): + """Directory storing the vertices to anatomy labels. + + Ashish used the approach from uni.lu to determine anatomical labels + for each 3dbodytex high resolution mesh. + Download from: + https://drive.google.com/drive/folders/1KuQ1Ttax2DXbe1vsB5quVLAZ1wyhho5B?usp=sharing + """ + pass + + @abc.abstractmethod + def fitzpatrick17k(self): + """Directory storing the fitz17k images.""" + pass + + @abc.abstractmethod + def fitzpatrick17k_annotations(self): + """Directory storing the manual annotations for select fitz17k images. + + If you don't have access, request access from Jer. + + Download the `annotations` directory and subdirectories from: + https://drive.google.com/drive/folders/1d7Nv3w7ewCfutY4rdqOJDZhjiDmyPDxZ?usp=sharing + """ + pass + + def __str__(self): + """Returns the folder names""" + return "\n".join( + [ + self.backgrounds(), + self.bodytex_highres(), + self.new_textures(), + self.anatomy(), + self.fitzpatrick17k(), + self.fitzpatrick17k_annotations(), + ] + ) + + +class JerFolders(FolderStructure): + def __init__(self): + pass + + def backgrounds(self): + return "/mnt/d/data/archive/House_Room_Dataset/Bedroom/" + + def bodytex_highres(self): + return "/mnt/d/data/3dbodytex-1.1-highres/3dbodytex-1.1-highres/" + + def new_textures(self): + return "/mnt/d/data/3dbodytex-1.1-highres/3DBodyTex_nonskinfaces/3DBodyTex_nonskinfaces" + # return '/mnt/d/data/3dbodytex-1.1-highres/lesions' + + def anatomy(self): + return "/mnt/d/data/bodytex/bodytex_anatomy/bodytex_anatomy_labels" + + def fitzpatrick17k(self): + return "/mnt/d/data/fitzpatrick17k/data/finalfitz17k" + + def fitzpatrick17k_annotations(self): + return "/mnt/d/data/fitzpatrick17k/annotations/annotations-20220429T234131Z-001/annotations" + + +class ArezouFolders(FolderStructure): + def __init__(self): + pass + + def backgrounds(self): + return ( + "../../../3DBlended/SyntheticData/Backgrounds/House_Room_Dataset/Bedroom/" + ) + + def bodytex_highres(self): + return "../../../3DBodyTex/3dbodytex-1.1-highres/" + + def new_textures(self): + return "../../../3DBlended/SyntheticData/Meshes/selected" + + def anatomy(self): + return "../../../3DBlended/bodytex_anatomy/bodytex_anatomy_labels" + + def fitzpatrick17k(self): + return "../../../../skin_fairness/data/fitz17k/images/all" + + def fitzpatrick17k_annotations(self): + print("Warning! Update this with your path") + return None + + +class AshishFolders(FolderStructure): + def __init__(self): + pass + + def backgrounds(self): + return "../data/background/House_Room_Dataset/Bedroom" + + def bodytex_highres(self): + return "../data/3dbodytex-1.1-highres/" + + def new_textures(self): + return "../data/lesions/" + + def anatomy(self): + return "../data/bodytex/bodytex_anatomy/bodytex_anatomy_labels/" + + def fitzpatrick17k(self): + return "./data/annotations/fitz17k/finalfitz17k" + + def fitzpatrick17k_annotations(self): + print("Warning! Update this with your path") + return None diff --git a/DermSynth3D/dermsynth3d/utils/image.py b/DermSynth3D/dermsynth3d/utils/image.py new file mode 100644 index 0000000000000000000000000000000000000000..481104e7e8d45bc7e8377b2de8c15457ccda9c72 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/image.py @@ -0,0 +1,72 @@ +from PIL import Image +import numpy as np + + +def load_image(img_path, img_size=None, mode="RGB", resample=Image.NEAREST): + """Common function to load, convert to a mode, and resize an image. + + Args: + img_path (string): Name and path to the image. + img_size (tuple, optional): W x H of the image. + If `img_size=None` then use original size. + Else, resize to the target size. + Defaults to None. + mode (string, optional): Conversion mode of the image. + See: + https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.convert + + + Returns: + [PIL image]: The image from `img_path`. + """ + img = Image.open(img_path).convert(mode) + if img_size is not None: + img = img.resize(img_size, resample) + + return img + + +def crop_amount(img_size, min_pad=8, increment=128): + largest_img_size = np.max(img_size) + crop_amount = np.maximum(min_pad, min_pad / increment * largest_img_size) + crop_amount = np.ceil(crop_amount).astype(int) + return crop_amount + + +def simple_augment(lesion_img, lesion_seg): + if np.random.random_sample() > 0.5: + lesion_img = np.fliplr(lesion_img) + lesion_seg = np.fliplr(lesion_seg) + + if np.random.random_sample() > 0.5: + lesion_img = np.flipud(lesion_img) + lesion_seg = np.flipud(lesion_seg) + + if np.random.random_sample() > 0.5: + lesion_img = np.rot90(lesion_img) + lesion_seg = np.rot90(lesion_seg) + + return lesion_img, lesion_seg + + +def uint8_to_float32(x): + if x.dtype != np.uint8: + raise ValueError("Expects dtype=uint8") + + if x.max() <= 1: + raise ValueError("Error: x.max() <= 1, are you sure you want to convert?") + + return (x / 255).astype(np.float32) + + +def float_img_to_uint8(img): + if (img.dtype != np.float32) and (img.dtype != np.float64): + raise ValueError("Expects dtype=float32") + + if img.max() > 1: + raise ValueError("Expects img.max() <= 1") + + if img.min() < 0: + raise ValueError("Expects img.min() >= 0") + + return (img * 255).astype(np.uint8) diff --git a/DermSynth3D/dermsynth3d/utils/mask.py b/DermSynth3D/dermsynth3d/utils/mask.py new file mode 100644 index 0000000000000000000000000000000000000000..413eabba87fe27130c1af071ef1eff7b996f5b46 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/mask.py @@ -0,0 +1,82 @@ +import numpy as np +from dermsynth3d.utils.image import ( + crop_amount, + uint8_to_float32, +) + + +def can_blend_mask(mask, min_pad=8): + """Return True if the masked lesion meets blending requirements. + + Args: + mask (_type_): _description_ + min_pad (int, optional): _description_. Defaults to 8. + + Returns: + _type_: _description_ + """ + # Don't blend if all zeros. + # ie., there is no lesion. + if np.max(mask) == 0: + return False + + x, y = np.where(mask) + crop_mask = mask[x.min() : x.max(), y.min() : y.max()] + pad = crop_amount(crop_mask.shape, min_pad=min_pad) + start_x = x.min() - pad + end_x = x.max() + pad + start_y = y.min() - pad + end_y = y.max() + pad + + if start_x < 0: + return False + + if end_x > mask.shape[0]: + return False + + if start_y < 0: + return False + + if end_y > mask.shape[1]: + return False + + return True + + +def box_crop_lesion( + img, + mask, + force_even_dims: bool = True, + asfloat: bool = True, +): + if mask.sum() == 0: + # No lesion in mask. + raise ValueError("Selected lesion mask is empty") + + x, y = np.where(mask) + + crop_mask = mask[x.min() : x.max(), y.min() : y.max()] + + # A certain amount of padding is needed to compute the gradients + # around the border. This will pad at least 8 pixels, but + # can be more if the cropped lesion is large. + pad = crop_amount(crop_mask.shape) + # Doesn't check for out of bounds with padding. + start_x = x.min() - pad + end_x = x.max() + pad + start_y = y.min() - pad + end_y = y.max() + pad + + if force_even_dims: + if (end_x - start_x) % 2: + start_x = start_x - 1 + if (end_y - start_y) % 2: + start_y = start_y - 1 + + img_crop = img[start_x:end_x, start_y:end_y, :] + mask_crop = mask[start_x:end_x, start_y:end_y] + + if asfloat: + img_crop = uint8_to_float32(img_crop) + + return img_crop, mask_crop diff --git a/DermSynth3D/dermsynth3d/utils/object_detection_metrics/BoundingBox.py b/DermSynth3D/dermsynth3d/utils/object_detection_metrics/BoundingBox.py new file mode 100644 index 0000000000000000000000000000000000000000..39ab5250c3cbfa8aaa42c58e0c40773c4ba7d68a --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/object_detection_metrics/BoundingBox.py @@ -0,0 +1,176 @@ +from dermsynth3d.utils.object_detection_metrics.utils import * + + +class BoundingBox: + def __init__( + self, + imageName, + classId, + x, + y, + w, + h, + typeCoordinates=CoordinatesType.Absolute, + imgSize=None, + bbType=BBType.GroundTruth, + classConfidence=None, + format=BBFormat.XYWH, + ): + """Constructor. + Args: + imageName: String representing the image name. + classId: String value representing class id. + x: Float value representing the X upper-left coordinate of the bounding box. + y: Float value representing the Y upper-left coordinate of the bounding box. + w: Float value representing the width bounding box. + h: Float value representing the height bounding box. + typeCoordinates: (optional) Enum (Relative or Absolute) represents if the bounding box + coordinates (x,y,w,h) are absolute or relative to size of the image. Default:'Absolute'. + imgSize: (optional) 2D vector (width, height)=>(int, int) represents the size of the + image of the bounding box. If typeCoordinates is 'Relative', imgSize is required. + bbType: (optional) Enum (Groundtruth or Detection) identifies if the bounding box + represents a ground truth or a detection. If it is a detection, the classConfidence has + to be informed. + classConfidence: (optional) Float value representing the confidence of the detected + class. If detectionType is Detection, classConfidence needs to be informed. + format: (optional) Enum (BBFormat.XYWH or BBFormat.XYX2Y2) indicating the format of the + coordinates of the bounding boxes. BBFormat.XYWH: + BBFormat.XYX2Y2: . + """ + self._imageName = imageName + self._typeCoordinates = typeCoordinates + if typeCoordinates == CoordinatesType.Relative and imgSize is None: + raise IOError( + "Parameter 'imgSize' is required. It is necessary to inform the image size." + ) + if bbType == BBType.Detected and classConfidence is None: + raise IOError( + "For bbType='Detection', it is necessary to inform the classConfidence value." + ) + # if classConfidence != None and (classConfidence < 0 or classConfidence > 1): + # raise IOError('classConfidence value must be a real value between 0 and 1. Value: %f' % + # classConfidence) + + self._classConfidence = classConfidence + self._bbType = bbType + self._classId = classId + self._format = format + + # If relative coordinates, convert to absolute values + # For relative coords: (x,y,w,h)=(X_center/img_width , Y_center/img_height) + if typeCoordinates == CoordinatesType.Relative: + (self._x, self._y, self._w, self._h) = convertToAbsoluteValues( + imgSize, (x, y, w, h) + ) + self._width_img = imgSize[0] + self._height_img = imgSize[1] + if format == BBFormat.XYWH: + self._x2 = self._w + self._y2 = self._h + self._w = self._x2 - self._x + self._h = self._y2 - self._y + else: + raise IOError( + "For relative coordinates, the format must be XYWH (x,y,width,height)" + ) + # For absolute coords: (x,y,w,h)=real bb coords + else: + self._x = x + self._y = y + if format == BBFormat.XYWH: + self._w = w + self._h = h + self._x2 = self._x + self._w + self._y2 = self._y + self._h + else: # format == BBFormat.XYX2Y2: . + self._x2 = w + self._y2 = h + self._w = self._x2 - self._x + self._h = self._y2 - self._y + if imgSize is None: + self._width_img = None + self._height_img = None + else: + self._width_img = imgSize[0] + self._height_img = imgSize[1] + + def getAbsoluteBoundingBox(self, format=BBFormat.XYWH): + if format == BBFormat.XYWH: + return (self._x, self._y, self._w, self._h) + elif format == BBFormat.XYX2Y2: + return (self._x, self._y, self._x2, self._y2) + + def getRelativeBoundingBox(self, imgSize=None): + if imgSize is None and self._width_img is None and self._height_img is None: + raise IOError( + "Parameter 'imgSize' is required. It is necessary to inform the image size." + ) + if imgSize is not None: + return convertToRelativeValues( + (imgSize[0], imgSize[1]), (self._x, self._x2, self._y, self._y2) + ) + else: + return convertToRelativeValues( + (self._width_img, self._height_img), + (self._x, self._x2, self._y, self._y2), + ) + + def getImageName(self): + return self._imageName + + def getConfidence(self): + return self._classConfidence + + def getFormat(self): + return self._format + + def getClassId(self): + return self._classId + + def getImageSize(self): + return (self._width_img, self._height_img) + + def getCoordinatesType(self): + return self._typeCoordinates + + def getBBType(self): + return self._bbType + + @staticmethod + def compare(det1, det2): + det1BB = det1.getAbsoluteBoundingBox() + det1ImgSize = det1.getImageSize() + det2BB = det2.getAbsoluteBoundingBox() + det2ImgSize = det2.getImageSize() + + if ( + det1.getClassId() == det2.getClassId() + and det1.classConfidence == det2.classConfidenc() + and det1BB[0] == det2BB[0] + and det1BB[1] == det2BB[1] + and det1BB[2] == det2BB[2] + and det1BB[3] == det2BB[3] + and det1ImgSize[0] == det1ImgSize[0] + and det2ImgSize[1] == det2ImgSize[1] + ): + return True + return False + + @staticmethod + def clone(boundingBox): + absBB = boundingBox.getAbsoluteBoundingBox(format=BBFormat.XYWH) + # return (self._x,self._y,self._x2,self._y2) + newBoundingBox = BoundingBox( + boundingBox.getImageName(), + boundingBox.getClassId(), + absBB[0], + absBB[1], + absBB[2], + absBB[3], + typeCoordinates=boundingBox.getCoordinatesType(), + imgSize=boundingBox.getImageSize(), + bbType=boundingBox.getBBType(), + classConfidence=boundingBox.getConfidence(), + format=BBFormat.XYWH, + ) + return newBoundingBox diff --git a/DermSynth3D/dermsynth3d/utils/object_detection_metrics/BoundingBoxes.py b/DermSynth3D/dermsynth3d/utils/object_detection_metrics/BoundingBoxes.py new file mode 100644 index 0000000000000000000000000000000000000000..96151dde8724bf1477af91c5354566c4fa14c32d --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/object_detection_metrics/BoundingBoxes.py @@ -0,0 +1,77 @@ +from dermsynth3d.utils.object_detection_metrics.BoundingBox import * +from dermsynth3d.utils.object_detection_metrics.utils import * + + +class BoundingBoxes: + def __init__(self): + self._boundingBoxes = [] + + def addBoundingBox(self, bb): + self._boundingBoxes.append(bb) + + def removeBoundingBox(self, _boundingBox): + for d in self._boundingBoxes: + if BoundingBox.compare(d, _boundingBox): + del self._boundingBoxes[d] + return + + def removeAllBoundingBoxes(self): + self._boundingBoxes = [] + + def getBoundingBoxes(self): + return self._boundingBoxes + + def getBoundingBoxByClass(self, classId): + boundingBoxes = [] + for d in self._boundingBoxes: + if d.getClassId() == classId: # get only specified bounding box type + boundingBoxes.append(d) + return boundingBoxes + + def getClasses(self): + classes = [] + for d in self._boundingBoxes: + c = d.getClassId() + if c not in classes: + classes.append(c) + return classes + + def getBoundingBoxesByType(self, bbType): + # get only specified bb type + return [d for d in self._boundingBoxes if d.getBBType() == bbType] + + def getBoundingBoxesByImageName(self, imageName): + # get only specified bb type + return [d for d in self._boundingBoxes if d.getImageName() == imageName] + + def count(self, bbType=None): + if bbType is None: # Return all bounding boxes + return len(self._boundingBoxes) + count = 0 + for d in self._boundingBoxes: + if d.getBBType() == bbType: # get only specified bb type + count += 1 + return count + + def clone(self): + newBoundingBoxes = BoundingBoxes() + for d in self._boundingBoxes: + det = BoundingBox.clone(d) + newBoundingBoxes.addBoundingBox(det) + return newBoundingBoxes + + def drawAllBoundingBoxes(self, image, imageName): + bbxes = self.getBoundingBoxesByImageName(imageName) + for bb in bbxes: + if bb.getBBType() == BBType.GroundTruth: # if ground truth + image = add_bb_into_image(image, bb, color=(0, 255, 0)) # green + else: # if detection + image = add_bb_into_image(image, bb, color=(255, 0, 0)) # red + return image + + # def drawAllBoundingBoxes(self, image): + # for gt in self.getBoundingBoxesByType(BBType.GroundTruth): + # image = add_bb_into_image(image, gt ,color=(0,255,0)) + # for det in self.getBoundingBoxesByType(BBType.Detected): + # image = add_bb_into_image(image, det ,color=(255,0,0)) + # return image diff --git a/DermSynth3D/dermsynth3d/utils/object_detection_metrics/Evaluator.py b/DermSynth3D/dermsynth3d/utils/object_detection_metrics/Evaluator.py new file mode 100644 index 0000000000000000000000000000000000000000..28faeed2daf1637b198ca8484c74e53476440892 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/object_detection_metrics/Evaluator.py @@ -0,0 +1,461 @@ +########################################################################################### +# # +# Evaluator class: Implements the most popular metrics for object detection # +# # +# Developed by: Rafael Padilla (rafael.padilla@smt.ufrj.br) # +# SMT - Signal Multimedia and Telecommunications Lab # +# COPPE - Universidade Federal do Rio de Janeiro # +# Last modification: Oct 9th 2018 # +########################################################################################### + +import os +import sys +from collections import Counter + +import matplotlib.pyplot as plt +import numpy as np + +from dermsynth3d.utils.object_detection_metrics.BoundingBox import * +from dermsynth3d.utils.object_detection_metrics.BoundingBoxes import * +from dermsynth3d.utils.object_detection_metrics.utils import * + + +class Evaluator: + def GetDetection( + self, + boundingboxes, + IOUThreshold=0.5, + method=MethodAveragePrecision.EveryPointInterpolation, + decision_func=None, + ): + """Get the metrics used by the VOC Pascal 2012 challenge. + Get + Args: + boundingboxes: Object of the class BoundingBoxes representing ground truth and detected + bounding boxes; + IOUThreshold: IOU threshold indicating which detections will be considered TP or FP + (default value = 0.5); + method (default = EveryPointInterpolation): It can be calculated as the implementation + in the official PASCAL VOC toolkit (EveryPointInterpolation), or applying the 11-point + interpolatio as described in the paper "The PASCAL Visual Object Classes(VOC) Challenge" + or EveryPointInterpolation" (ElevenPointInterpolation); + Returns: + A list of dictionaries. Each dictionary contains information and metrics of each class. + The keys of each dictionary are: + dict['class']: class representing the current dictionary; + dict['precision']: array with the precision values; + dict['recall']: array with the recall values; + dict['AP']: average precision; + dict['interpolated precision']: interpolated precision values; + dict['interpolated recall']: interpolated recall values; + dict['total positives']: total number of ground truth positives; + dict['total TP']: total number of True Positive detections; + dict['total FP']: total number of False Positive detections; + """ + if decision_func is None: + decision_func = lambda x, y: Evaluator.iou(x, y) > IOUThreshold + + ret = ( + [] + ) # list containing metrics (precision, recall, average precision) of each class + # List with all ground truths (Ex: [imageName,class,confidence=1, (bb coordinates XYX2Y2)]) + groundTruths = [] + # List with all detections (Ex: [imageName,class,confidence,(bb coordinates XYX2Y2)]) + detections = [] + # Get all classes + classes = [] + # Loop through all bounding boxes and separate them into GTs and detections + for bb in boundingboxes.getBoundingBoxes(): + # [imageName, class, confidence, (bb coordinates XYX2Y2)] + if bb.getBBType() == BBType.GroundTruth: + groundTruths.append( + [ + bb.getImageName(), + bb.getClassId(), + 1, + bb.getAbsoluteBoundingBox(BBFormat.XYX2Y2), + ] + ) + else: + detections.append( + [ + bb.getImageName(), + bb.getClassId(), + bb.getConfidence(), + bb.getAbsoluteBoundingBox(BBFormat.XYX2Y2), + ] + ) + # get class + if bb.getClassId() not in classes: + classes.append(bb.getClassId()) + classes = sorted(classes) + # Precision x Recall is obtained individually by each class + # Loop through by classes + for c in classes: + # Get only detection of class c + dects = [] + [dects.append(d) for d in detections if d[1] == c] + # Get only ground truths of class c + gts = [] + [gts.append(g) for g in groundTruths if g[1] == c] + npos = len(gts) + # sort detections by decreasing confidence + dects = sorted(dects, key=lambda conf: conf[2], reverse=True) + TP = np.zeros(len(dects)) + FP = np.zeros(len(dects)) + IoU = np.zeros(len(dects)) + # create dictionary with amount of gts for each image + det = Counter([cc[0] for cc in gts]) + det2 = Counter([cc[0] for cc in gts]) + for key, val in det.items(): + det[key] = np.zeros(val) + for key, val in det2.items(): + det2[key] = np.zeros(val) + # print("Evaluating class: %s (%d detections)" % (str(c), len(dects))) + # Loop through detections + for d in range(len(dects)): + # print('dect %s => %s' % (dects[d][0], dects[d][3],)) + # Find ground truth image + gt = [gt for gt in gts if gt[0] == dects[d][0]] + iouMax = sys.float_info.min + jmax = None + for j in range(len(gt)): + # print('Ground truth gt => %s' % (gt[j][3],)) + iou = Evaluator.iou(dects[d][3], gt[j][3]) + if iou > iouMax: + iouMax = iou + jmax = j + + if jmax is not None and det2[dects[d][0]][jmax] == 0: + IoU[d] = iouMax + det2[dects[d][0]][jmax] = 1 # flag as already 'seen' + # Assign detection as true positive/don't care/false positive + # if `decision_func` is not specified, defaults to: (iouMax >= IOUThreshold) + if jmax is not None and (decision_func(dects[d][3], gt[jmax][3])): + if det[dects[d][0]][jmax] == 0: + TP[d] = 1 # count as true positive + det[dects[d][0]][jmax] = 1 # flag as already 'seen' + # print("TP") + else: + FP[d] = 1 # count as false positive + # print("FP") + # - A detected "cat" is overlaped with a GT "cat" with IOU >= IOUThreshold. + else: + FP[d] = 1 # count as false positive + # print("FP") + # compute precision, recall and average precision + acc_IoU = np.sum(IoU) + acc_FP = np.cumsum(FP) + acc_TP = np.cumsum(TP) + rec = acc_TP / npos + prec = np.divide(acc_TP, (acc_FP + acc_TP)) + iou = acc_IoU / npos + # Depending on the method, call the right implementation + if method == MethodAveragePrecision.EveryPointInterpolation: + [ap, mpre, mrec, ii] = Evaluator.CalculateAveragePrecision(rec, prec) + else: + [ap, mpre, mrec, _] = Evaluator.ElevenPointInterpolatedAP(rec, prec) + # add class result in the dictionary to be returned + r = { + "class": c, + "precision": prec, + "recall": rec, + "AP": ap, + "interpolated precision": mpre, + "interpolated recall": mrec, + "total positives": npos, + "total TP": np.sum(TP), + "total FP": np.sum(FP), + "iou": iou, + } + ret.append(r) + return ret + + def PlotPrecisionRecallCurve( + self, + boundingBoxes, + IOUThreshold=0.5, + method=MethodAveragePrecision.EveryPointInterpolation, + showAP=False, + showInterpolatedPrecision=False, + savePath=None, + showGraphic=True, + ): + """PlotPrecisionRecallCurve + Plot the Precision x Recall curve for a given class. + Args: + boundingBoxes: Object of the class BoundingBoxes representing ground truth and detected + bounding boxes; + IOUThreshold (optional): IOU threshold indicating which detections will be considered + TP or FP (default value = 0.5); + method (default = EveryPointInterpolation): It can be calculated as the implementation + in the official PASCAL VOC toolkit (EveryPointInterpolation), or applying the 11-point + interpolatio as described in the paper "The PASCAL Visual Object Classes(VOC) Challenge" + or EveryPointInterpolation" (ElevenPointInterpolation). + showAP (optional): if True, the average precision value will be shown in the title of + the graph (default = False); + showInterpolatedPrecision (optional): if True, it will show in the plot the interpolated + precision (default = False); + savePath (optional): if informed, the plot will be saved as an image in this path + (ex: /home/mywork/ap.png) (default = None); + showGraphic (optional): if True, the plot will be shown (default = True) + Returns: + A list of dictionaries. Each dictionary contains information and metrics of each class. + The keys of each dictionary are: + dict['class']: class representing the current dictionary; + dict['precision']: array with the precision values; + dict['recall']: array with the recall values; + dict['AP']: average precision; + dict['interpolated precision']: interpolated precision values; + dict['interpolated recall']: interpolated recall values; + dict['total positives']: total number of ground truth positives; + dict['total TP']: total number of True Positive detections; + dict['total FP']: total number of False Negative detections; + """ + results = self.GetPascalVOCMetrics(boundingBoxes, IOUThreshold, method) + result = None + # Each resut represents a class + for result in results: + if result is None: + raise IOError("Error: Class %d could not be found." % classId) + + classId = result["class"] + precision = result["precision"] + recall = result["recall"] + average_precision = result["AP"] + mpre = result["interpolated precision"] + mrec = result["interpolated recall"] + npos = result["total positives"] + total_tp = result["total TP"] + total_fp = result["total FP"] + + plt.close() + if showInterpolatedPrecision: + if method == MethodAveragePrecision.EveryPointInterpolation: + plt.plot( + mrec, mpre, "--r", label="Interpolated precision (every point)" + ) + elif method == MethodAveragePrecision.ElevenPointInterpolation: + # Uncomment the line below if you want to plot the area + # plt.plot(mrec, mpre, 'or', label='11-point interpolated precision') + # Remove duplicates, getting only the highest precision of each recall value + nrec = [] + nprec = [] + for idx in range(len(mrec)): + r = mrec[idx] + if r not in nrec: + idxEq = np.argwhere(mrec == r) + nrec.append(r) + nprec.append(max([mpre[int(id)] for id in idxEq])) + plt.plot(nrec, nprec, "or", label="11-point interpolated precision") + plt.plot(recall, precision, label="Precision") + plt.xlabel("recall") + plt.ylabel("precision") + if showAP: + ap_str = "{0:.2f}%".format(average_precision * 100) + # ap_str = "{0:.4f}%".format(average_precision * 100) + plt.title( + "Precision x Recall curve \nClass: %s, AP: %s" + % (str(classId), ap_str) + ) + else: + plt.title("Precision x Recall curve \nClass: %s" % str(classId)) + plt.legend(shadow=True) + plt.grid() + ############################################################ + # Uncomment the following block to create plot with points # + ############################################################ + # plt.plot(recall, precision, 'bo') + # labels = ['R', 'Y', 'J', 'A', 'U', 'C', 'M', 'F', 'D', 'B', 'H', 'P', 'E', 'X', 'N', 'T', + # 'K', 'Q', 'V', 'I', 'L', 'S', 'G', 'O'] + # dicPosition = {} + # dicPosition['left_zero'] = (-30,0) + # dicPosition['left_zero_slight'] = (-30,-10) + # dicPosition['right_zero'] = (30,0) + # dicPosition['left_up'] = (-30,20) + # dicPosition['left_down'] = (-30,-25) + # dicPosition['right_up'] = (20,20) + # dicPosition['right_down'] = (20,-20) + # dicPosition['up_zero'] = (0,30) + # dicPosition['up_right'] = (0,30) + # dicPosition['left_zero_long'] = (-60,-2) + # dicPosition['down_zero'] = (-2,-30) + # vecPositions = [ + # dicPosition['left_down'], + # dicPosition['left_zero'], + # dicPosition['right_zero'], + # dicPosition['right_zero'], #'R', 'Y', 'J', 'A', + # dicPosition['left_up'], + # dicPosition['left_up'], + # dicPosition['right_up'], + # dicPosition['left_up'], # 'U', 'C', 'M', 'F', + # dicPosition['left_zero'], + # dicPosition['right_up'], + # dicPosition['right_down'], + # dicPosition['down_zero'], #'D', 'B', 'H', 'P' + # dicPosition['left_up'], + # dicPosition['up_zero'], + # dicPosition['right_up'], + # dicPosition['left_up'], # 'E', 'X', 'N', 'T', + # dicPosition['left_zero'], + # dicPosition['right_zero'], + # dicPosition['left_zero_long'], + # dicPosition['left_zero_slight'], # 'K', 'Q', 'V', 'I', + # dicPosition['right_down'], + # dicPosition['left_down'], + # dicPosition['right_up'], + # dicPosition['down_zero'] + # ] # 'L', 'S', 'G', 'O' + # for idx in range(len(labels)): + # box = dict(boxstyle='round,pad=.5',facecolor='yellow',alpha=0.5) + # plt.annotate(labels[idx], + # xy=(recall[idx],precision[idx]), xycoords='data', + # xytext=vecPositions[idx], textcoords='offset points', + # arrowprops=dict(arrowstyle="->", connectionstyle="arc3"), + # bbox=box) + if savePath is not None: + plt.savefig(os.path.join(savePath, classId + ".png")) + if showGraphic is True: + plt.show() + # plt.waitforbuttonpress() + plt.pause(0.05) + return results + + @staticmethod + def CalculateAveragePrecision(rec, prec): + mrec = [] + mrec.append(0) + [mrec.append(e) for e in rec] + mrec.append(1) + mpre = [] + mpre.append(0) + [mpre.append(e) for e in prec] + mpre.append(0) + for i in range(len(mpre) - 1, 0, -1): + mpre[i - 1] = max(mpre[i - 1], mpre[i]) + ii = [] + for i in range(len(mrec) - 1): + if mrec[1:][i] != mrec[0:-1][i]: + ii.append(i + 1) + ap = 0 + for i in ii: + ap = ap + np.sum((mrec[i] - mrec[i - 1]) * mpre[i]) + # return [ap, mpre[1:len(mpre)-1], mrec[1:len(mpre)-1], ii] + return [ap, mpre[0 : len(mpre) - 1], mrec[0 : len(mpre) - 1], ii] + + @staticmethod + # 11-point interpolated average precision + def ElevenPointInterpolatedAP(rec, prec): + # def CalculateAveragePrecision2(rec, prec): + mrec = [] + # mrec.append(0) + [mrec.append(e) for e in rec] + # mrec.append(1) + mpre = [] + # mpre.append(0) + [mpre.append(e) for e in prec] + # mpre.append(0) + recallValues = np.linspace(0, 1, 11) + recallValues = list(recallValues[::-1]) + rhoInterp = [] + recallValid = [] + # For each recallValues (0, 0.1, 0.2, ... , 1) + for r in recallValues: + # Obtain all recall values higher or equal than r + argGreaterRecalls = np.argwhere(mrec[:] >= r) + pmax = 0 + # If there are recalls above r + if argGreaterRecalls.size != 0: + pmax = max(mpre[argGreaterRecalls.min() :]) + recallValid.append(r) + rhoInterp.append(pmax) + # By definition AP = sum(max(precision whose recall is above r))/11 + ap = sum(rhoInterp) / 11 + # Generating values for the plot + rvals = [] + rvals.append(recallValid[0]) + [rvals.append(e) for e in recallValid] + rvals.append(0) + pvals = [] + pvals.append(0) + [pvals.append(e) for e in rhoInterp] + pvals.append(0) + # rhoInterp = rhoInterp[::-1] + cc = [] + for i in range(len(rvals)): + p = (rvals[i], pvals[i - 1]) + if p not in cc: + cc.append(p) + p = (rvals[i], pvals[i]) + if p not in cc: + cc.append(p) + recallValues = [i[0] for i in cc] + rhoInterp = [i[1] for i in cc] + return [ap, rhoInterp, recallValues, None] + + # For each detections, calculate IOU with reference + @staticmethod + def _getAllIOUs(reference, detections): + ret = [] + bbReference = reference.getAbsoluteBoundingBox(BBFormat.XYX2Y2) + # img = np.zeros((200,200,3), np.uint8) + for d in detections: + bb = d.getAbsoluteBoundingBox(BBFormat.XYX2Y2) + iou = Evaluator.iou(bbReference, bb) + # Show blank image with the bounding boxes + # img = add_bb_into_image(img, d, color=(255,0,0), thickness=2, label=None) + # img = add_bb_into_image(img, reference, color=(0,255,0), thickness=2, label=None) + ret.append((iou, reference, d)) # iou, reference, detection + # cv2.imshow("comparing",img) + # cv2.waitKey(0) + # cv2.destroyWindow("comparing") + return sorted( + ret, key=lambda i: i[0], reverse=True + ) # sort by iou (from highest to lowest) + + @staticmethod + def iou(boxA, boxB): + # if boxes dont intersect + if Evaluator._boxesIntersect(boxA, boxB) is False: + return 0 + interArea = Evaluator._getIntersectionArea(boxA, boxB) + union = Evaluator._getUnionAreas(boxA, boxB, interArea=interArea) + # intersection over union + iou = interArea / union + assert iou >= 0 + return iou + + # boxA = (Ax1,Ay1,Ax2,Ay2) + # boxB = (Bx1,By1,Bx2,By2) + @staticmethod + def _boxesIntersect(boxA, boxB): + if boxA[0] > boxB[2]: + return False # boxA is right of boxB + if boxB[0] > boxA[2]: + return False # boxA is left of boxB + if boxA[3] < boxB[1]: + return False # boxA is above boxB + if boxA[1] > boxB[3]: + return False # boxA is below boxB + return True + + @staticmethod + def _getIntersectionArea(boxA, boxB): + xA = max(boxA[0], boxB[0]) + yA = max(boxA[1], boxB[1]) + xB = min(boxA[2], boxB[2]) + yB = min(boxA[3], boxB[3]) + # intersection area + return (xB - xA + 1) * (yB - yA + 1) + + @staticmethod + def _getUnionAreas(boxA, boxB, interArea=None): + area_A = Evaluator._getArea(boxA) + area_B = Evaluator._getArea(boxB) + if interArea is None: + interArea = Evaluator._getIntersectionArea(boxA, boxB) + return float(area_A + area_B - interArea) + + @staticmethod + def _getArea(box): + return (box[2] - box[0] + 1) * (box[3] - box[1] + 1) diff --git a/DermSynth3D/dermsynth3d/utils/object_detection_metrics/__init__.py b/DermSynth3D/dermsynth3d/utils/object_detection_metrics/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..934998ea778ae1b55448e27933e77ccc5c036d12 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/object_detection_metrics/__init__.py @@ -0,0 +1,6 @@ +########################################################################################### +# Developed by: Rafael Padilla # +# SMT - Signal Multimedia and Telecommunications Lab # +# COPPE - Universidade Federal do Rio de Janeiro # +# Last modification: May 24th 2018 # +########################################################################################### diff --git a/DermSynth3D/dermsynth3d/utils/object_detection_metrics/utils.py b/DermSynth3D/dermsynth3d/utils/object_detection_metrics/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..715daf0008665db5de08d8bcc27b71c844ff599d --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/object_detection_metrics/utils.py @@ -0,0 +1,129 @@ +from enum import Enum + +# import cv2 + + +class MethodAveragePrecision(Enum): + """ + Class representing if the coordinates are relative to the + image size or are absolute values. + + Developed by: Rafael Padilla + Last modification: Apr 28 2018 + """ + + EveryPointInterpolation = 1 + ElevenPointInterpolation = 2 + + +class CoordinatesType(Enum): + """ + Class representing if the coordinates are relative to the + image size or are absolute values. + + Developed by: Rafael Padilla + Last modification: Apr 28 2018 + """ + + Relative = 1 + Absolute = 2 + + +class BBType(Enum): + """ + Class representing if the bounding box is groundtruth or not. + + Developed by: Rafael Padilla + Last modification: May 24 2018 + """ + + GroundTruth = 1 + Detected = 2 + + +class BBFormat(Enum): + """ + Class representing the format of a bounding box. + It can be (X,Y,width,height) => XYWH + or (X1,Y1,X2,Y2) => XYX2Y2 + + Developed by: Rafael Padilla + Last modification: May 24 2018 + """ + + XYWH = 1 + XYX2Y2 = 2 + + +# size => (width, height) of the image +# box => (X1, X2, Y1, Y2) of the bounding box +def convertToRelativeValues(size, box): + dw = 1.0 / (size[0]) + dh = 1.0 / (size[1]) + cx = (box[1] + box[0]) / 2.0 + cy = (box[3] + box[2]) / 2.0 + w = box[1] - box[0] + h = box[3] - box[2] + x = cx * dw + y = cy * dh + w = w * dw + h = h * dh + # x,y => (bounding_box_center)/width_of_the_image + # w => bounding_box_width / width_of_the_image + # h => bounding_box_height / height_of_the_image + return (x, y, w, h) + + +# size => (width, height) of the image +# box => (centerX, centerY, w, h) of the bounding box relative to the image +def convertToAbsoluteValues(size, box): + # w_box = round(size[0] * box[2]) + # h_box = round(size[1] * box[3]) + xIn = round(((2 * float(box[0]) - float(box[2])) * size[0] / 2)) + yIn = round(((2 * float(box[1]) - float(box[3])) * size[1] / 2)) + xEnd = xIn + round(float(box[2]) * size[0]) + yEnd = yIn + round(float(box[3]) * size[1]) + if xIn < 0: + xIn = 0 + if yIn < 0: + yIn = 0 + if xEnd >= size[0]: + xEnd = size[0] - 1 + if yEnd >= size[1]: + yEnd = size[1] - 1 + return (xIn, yIn, xEnd, yEnd) + + +# def add_bb_into_image(image, bb, color=(255, 0, 0), thickness=2, label=None): +# r = int(color[0]) +# g = int(color[1]) +# b = int(color[2]) +# +# font = cv2.FONT_HERSHEY_SIMPLEX +# fontScale = 0.5 +# fontThickness = 1 +# +# x1, y1, x2, y2 = bb.getAbsoluteBoundingBox(BBFormat.XYX2Y2) +# x1 = int(x1) +# y1 = int(y1) +# x2 = int(x2) +# y2 = int(y2) +# cv2.rectangle(image, (x1, y1), (x2, y2), (b, g, r), thickness) +# # Add label +# if label is not None: +# # Get size of the text box +# (tw, th) = cv2.getTextSize(label, font, fontScale, fontThickness)[0] +# # Top-left coord of the textbox +# (xin_bb, yin_bb) = (x1 + thickness, y1 - th + int(12.5 * fontScale)) +# # Checking position of the text top-left (outside or inside the bb) +# if yin_bb - th <= 0: # if outside the image +# yin_bb = y1 + th # put it inside the bb +# r_Xin = x1 - int(thickness / 2) +# r_Yin = y1 - th - int(thickness / 2) +# # Draw filled rectangle to put the text in it +# cv2.rectangle(image, (r_Xin, r_Yin - thickness), +# (r_Xin + tw + thickness * 3, r_Yin + th + int(12.5 * fontScale)), (b, g, r), +# -1) +# cv2.putText(image, label, (xin_bb, yin_bb), font, fontScale, (0, 0, 0), fontThickness, +# cv2.LINE_AA) +# return image diff --git a/DermSynth3D/dermsynth3d/utils/tensor.py b/DermSynth3D/dermsynth3d/utils/tensor.py new file mode 100644 index 0000000000000000000000000000000000000000..e4464dfe6206440c46ad21c134e47459864fa697 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/tensor.py @@ -0,0 +1,116 @@ +from functools import reduce +from operator import __add__ + +import PIL + +import torch +import numpy as np +import torch.nn.functional as F + + +def same_pad_tensor(x: torch.Tensor, kernel_size: np.array, value: int): + conv_padding = reduce( + __add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in kernel_size[::-1]] + ) + + x_padd = F.pad(x, conv_padding, value=value) + return x_padd + + +def window_overlap_mask( + mask, + window_size, + pad_value: int = 0, + output_type: str = "all_ones", +): + """ + Pad the mask at the borders to maintain original size. + Where the `window_size` has all 1's in the `mask`. + """ + pad_mask = same_pad_tensor(torch.Tensor(mask), window_size, value=pad_value) + + avg_pool = torch.nn.AvgPool2d(window_size, stride=(1, 1)) + overlap = avg_pool(pad_mask[np.newaxis, :, :]) + overlap = overlap.squeeze().numpy() + if output_type == "all_ones": + overlap = overlap >= 1 + elif output_type == "count": + overlap = overlap * window_size[0] * window_size[1] + else: + raise NotImplementedError( + "Error: `output_type={}` is not supported".format(output_type) + ) + + return overlap + + +def max_value_in_window(img, window_size, pad_value=-1): + pad_img = same_pad_tensor(torch.Tensor(img), window_size, value=pad_value) + + max_pool = torch.nn.MaxPool2d(window_size, stride=(1, 1)) + max_window_img = max_pool(pad_img[np.newaxis, :, :]) + return max_window_img + + +def pil_to_tensor(img: PIL.Image.Image): + img_np = (np.asarray(img) / 255).astype(np.float32) + img_tensor = torch.tensor(img_np, dtype=torch.float32)#.cuda() + return img_tensor + + +def diff_max_min(x, kernel_size): + maxpool = torch.nn.MaxPool2d(tuple(kernel_size), stride=(1, 1)) + maxVals = maxpool((x)) + minVals = maxpool((x * -1)) * -1 + + diff_patch = torch.abs(maxVals - minVals) # .numpy() + diff_img = diff_patch.mean(axis=0).squeeze() + return diff_img + + +def depth_differences( + x, patch_kernel_size, local_kernel_size: tuple = (3, 3), value: int = -1 +): + x_depth_local = same_pad_tensor(x, local_kernel_size, value=value) + local_depth_max_diff = diff_max_min(x_depth_local, local_kernel_size) + + x_depth_patch = same_pad_tensor( + local_depth_max_diff.unsqueeze(0), patch_kernel_size, value=value + ) + patch_depth_max_diff = diff_max_min(x_depth_patch, patch_kernel_size) + return patch_depth_max_diff + + +def augmented_predictions( + num_augmentations: int, + test_img, + seg_model, + img_augment_func, + img_transform_func, + device, +): + softmax2d = torch.nn.Softmax2d() + test_img = np.asarray(test_img) + preds_out = [] + for _ in np.arange(num_augmentations): + # aug = spatial_augment(image=test_img) + aug = img_augment_func(image=test_img) + pred_out = seg_model(img_transform_func(aug["image"])[None, :].to(device))[ + "out" + ] + pred_out = softmax2d(pred_out) + preds_out.append(pred_out.cpu().detach().numpy()) + + preds_out = np.asarray(preds_out) + preds_out = preds_out.squeeze() + roll_out = np.rollaxis(preds_out, 1, 4) + return roll_out + + +def average_augmented_predictions(aug_preds, img_size: tuple): + channels = 3 + preds_avg = np.zeros(shape=(img_size[0], img_size[1], channels)) + preds_avg[:, :, 0] = aug_preds.mean(axis=0)[:, :, 0] + preds_avg[:, :, 1] = aug_preds.mean(axis=0)[:, :, 1] + preds_avg[:, :, 2] = aug_preds.mean(axis=0)[:, :, 2] + return preds_avg diff --git a/DermSynth3D/dermsynth3d/utils/textures.py b/DermSynth3D/dermsynth3d/utils/textures.py new file mode 100644 index 0000000000000000000000000000000000000000..9110878550e886fe18fe18b3ff76f0788baae5b7 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/textures.py @@ -0,0 +1,286 @@ +import numpy as np +from scipy import ndimage + +from dermsynth3d.utils.tensor import max_value_in_window + + +class UVViewMapper: + def __init__( + self, + view_uvs, + paste_img, + body_mask_view, + lesion_mask_view, + texture_img_size: int, + ): + """Maps the 2D view to a 2D texture image. + + Args: + view_uvs (np.ndarray): H x W x 2 array of floats of the view. + Each element is a UV coordinate in the range of [0, 1]. + paste_img (np.ndarray): H x W x 3 image of the view with the + pasted lesion. Each element is an RGB pixel. + body_mask_view (np.ndarray): H x W binary image where + True indicates the body foreground, and + False indicates the background. + lesion_mask_view (np.ndarray): H x W binary image where + True indicates the lesion foreground, and False otherwise. + texture_img_size (int): Integer size of the texture image, + which will be of size `img_size` x `img_size`. + """ + + self.view_uvs = view_uvs + self.texture_img_size = texture_img_size + + teximage, lesion_texture_mask = uv_view_to_texture_image_mask( + uv_view=self.view_uvs, + image_view=paste_img, + mask_view=body_mask_view, + mask_seg=lesion_mask_view, + img_size=texture_img_size, + ) + + self.teximage = teximage + self.lesion_texture_mask = lesion_texture_mask + + self.max_dist_view = max_window_distance(view_uvs) + self.max_body_dist = self.max_dist_view * body_mask_view + + self.padder = TexturePadding( + lesion_texture_mask=self.lesion_texture_mask, texture_image=self.teximage + ) + + def max_body_distance(self, dist_thresh=0.1): + body_seam_uvs = self.view_uvs[self.max_body_dist > dist_thresh] + body_seam_uvs_image = uv_map_to_pixels(body_seam_uvs, self.texture_img_size) + + return body_seam_uvs_image + + def body_seams_xy(self, dist_thresh=0.1): + body_seam_uvs_image = self.max_body_distance(dist_thresh) + body_seams_x = self.texture_img_size - body_seam_uvs_image[:, 1] + body_seams_y = body_seam_uvs_image[:, 0] + + return body_seams_x, body_seams_y + + def texture_pad(self, seam_thresh=0.1, niter=1): + body_seams_x, body_seams_y = self.body_seams_xy(dist_thresh=seam_thresh) + + mask_pad, tex_pad = self.padder.texture_pad( + body_seams_x, body_seams_y, niter=niter + ) + + return mask_pad, tex_pad + + +class TexturePadding: + def __init__(self, lesion_texture_mask, texture_image): + self.LESION_CHANNEL = 1 + self.PAD_CHANNEL = 2 + self.LESION_PAD_CHANNEL = 0 + + self.lesion_texture_mask = lesion_texture_mask + self.img_size = self.lesion_texture_mask.shape[0] + + assert ( + self.img_size == self.lesion_texture_mask.shape[1] + ), "Expects equal dimensions." + + self.texture_image = texture_image + + def texture_pad(self, seams_x, seams_y, niter=1): + padded_textures = np.zeros( + shape=(self.img_size, self.img_size, 3), dtype=np.float32 + ) + padded_textures[:, :, self.LESION_CHANNEL] = self.lesion_texture_mask + + mask_padded, texture_padded = self.body_lesion_aware_seam_padding( + seams_x, seams_y, padded_textures, self.texture_image + ) + + if niter > 1: + for idx in np.arange(niter - 1): + seams_x, seams_y = np.where( + mask_padded[:, :, self.PAD_CHANNEL].squeeze() > 0 + ) + mask_padded, texture_padded = self.body_lesion_aware_seam_padding( + seams_x, seams_y, mask_padded, texture_padded + ) + + return mask_padded, texture_padded + + def padded_lesion_mask(self, mask_padded): + """Combine the lesion and lesion padded into a binary array. + + Non-zero values at the lesion or lesion padding channels + are returned as True. + + Args: + mask_padded (np.ndarray): H x W x C array where non-zero values + indicate a value to include in a mask. + The channels `C` correspond to the channels + as defined in the __init__ of this class. + + Returns: + np.ndarray: H x W x 1 binary array + """ + lesion_pad_channel = mask_padded[:, :, self.LESION_PAD_CHANNEL] + lesion_channel = mask_padded[:, :, self.LESION_CHANNEL] + # Binary image where True indicates lesion or lesion padding. + lesion_padded_mask = (lesion_pad_channel + lesion_channel) > 0 + + return lesion_padded_mask[:, :, np.newaxis] + + def body_lesion_aware_seam_padding( + self, seams_x, seams_y, teximage_seams, teximage + ): + """ + Pad around seams of the texture map to obtain uniform blending. + """ + seam_map = teximage_seams.copy() + texture_padded = teximage.copy() + + for x, y in zip(seams_x, seams_y): + # Get the lesion mask of the patch. + mask_patch = teximage_seams[ + (x - 1) : (x + 2), (y - 1) : (y + 2), self.LESION_CHANNEL + ] + + pad_patch = teximage_seams[ + (x - 1) : (x + 2), (y - 1) : (y + 2), self.PAD_CHANNEL + ] + + # Get the patch of the corresponding image. + img_patch = teximage[(x - 1) : (x + 2), (y - 1) : (y + 2), :] + + isrgb_patch = img_patch.sum(axis=2) > 0 + + # Assign to the pad_channel, the mask padding for the lesion. + seam_map[(x - 1) : (x + 2), (y - 1) : (y + 2), self.PAD_CHANNEL] = ( + (1 - isrgb_patch) * (1 - pad_patch) + ) + pad_patch + + lesion_pad_patch = teximage_seams[ + (x - 1) : (x + 2), (y - 1) : (y + 2), self.LESION_PAD_CHANNEL + ] + + if lesion_pad_patch[1, 1] > 0: + seam_map[ + (x - 1) : (x + 2), (y - 1) : (y + 2), self.LESION_PAD_CHANNEL + ] = ((1 - pad_patch) * (1 - lesion_pad_patch) + lesion_pad_patch) * ( + 1 - mask_patch + ) * ( + (1 - isrgb_patch) * (1 - lesion_pad_patch) + ) + lesion_pad_patch + elif mask_patch[1, 1] > 0: + seam_map[ + (x - 1) : (x + 2), (y - 1) : (y + 2), self.LESION_PAD_CHANNEL + ] = (1 - mask_patch) * (1 - isrgb_patch) + + # If there are some zero rgb values in the patch, + # this indicates a boundary pixel that should be filled. + img_patch_pad = texture_padded[(x - 1) : (x + 2), (y - 1) : (y + 2), :] + if np.sum(img_patch_pad == 0) > 0: + # Get the RGB components. + r = img_patch_pad[:, :, 0] + g = img_patch_pad[:, :, 1] + b = img_patch_pad[:, :, 2] + # In the 3x3 window, for any zeros, assign the mean non-zero value. + r[r == 0] = r[r > 0].mean() + g[g == 0] = g[g > 0].mean() + b[b == 0] = b[b > 0].mean() + + return seam_map, texture_padded + + +def uv_map_to_pixels(uv_map, img_size): + uvs_image = uv_map * img_size + + u_ceil = np.ceil(uvs_image[:, 0, np.newaxis]).astype(np.int) + v_ceil = np.ceil(uvs_image[:, 1, np.newaxis]).astype(np.int) + u_floor = np.floor(uvs_image[:, 0, np.newaxis]).astype(np.int) + v_floor = np.floor(uvs_image[:, 1, np.newaxis]).astype(np.int) + + uvs_ceil_ceil = np.concatenate((u_ceil, v_ceil), axis=1) + uvs_floor_floor = np.concatenate((u_floor, v_floor), axis=1) + uvs_ceil_floor = np.concatenate((u_ceil, v_floor), axis=1) + uvs_floor_ceil = np.concatenate((u_floor, v_ceil), axis=1) + + image_uvs = np.concatenate( + (uvs_ceil_ceil, uvs_floor_floor, uvs_ceil_floor, uvs_floor_ceil) + ) + return image_uvs + + +def uvimage2pixels(uv_image, img_size=(4096, 4096)): + """ + Convert uv space into texture image coordinates. + """ + # Convert uv space to image pixel space. + uv_pixels = uv_image * img_size + + # Discrete locations the uv can map to in pixel space. + u_ceil = np.ceil(uv_pixels[:, :, 0, np.newaxis]).astype(np.int) + v_ceil = np.ceil(uv_pixels[:, :, 1, np.newaxis]).astype(np.int) + u_floor = np.floor(uv_pixels[:, :, 0, np.newaxis]).astype(np.int) + v_floor = np.floor(uv_pixels[:, :, 1, np.newaxis]).astype(np.int) + + uvs_ceil_ceil = np.concatenate((u_ceil, v_ceil), axis=-1) + uvs_floor_floor = np.concatenate((u_floor, v_floor), axis=-1) + uvs_ceil_floor = np.concatenate((u_ceil, v_floor), axis=-1) + uvs_floor_ceil = np.concatenate((u_floor, v_ceil), axis=-1) + + uv_discrete_pixels = np.concatenate( + ( + uvs_ceil_ceil[np.newaxis,], + uvs_floor_floor[np.newaxis,], + uvs_ceil_floor[np.newaxis,], + uvs_floor_ceil[np.newaxis,], + ) + ) + + return uv_discrete_pixels + + +def uv_view_to_texture_image_mask( + uv_view, image_view, mask_view, mask_seg, img_size: int +): + # Increase the resolution for better mapping. + # Use nearest-neighbors for the UVs since we do not want to interpolate. + uv_view_highres = ndimage.zoom(uv_view, (2, 2, 1), order=0) + + # Use interpolation for the image. + image_view_highres = ndimage.zoom(image_view, (2, 2, 1), order=1) + + # Nearest neighbors for the masks. + mask = ndimage.zoom(mask_view, (2, 2), order=0) + seg = ndimage.zoom(mask_seg, (2, 2), order=0) + + # Continous UVs to pixel space. + uv_pixel_coords = uvimage2pixels(uv_view_highres) + + teximage = np.zeros(shape=(img_size, img_size, 3), dtype=np.float32) + lesion_texture_mask = np.zeros(shape=(img_size, img_size), dtype=np.int64) + + for uv_discrete in uv_pixel_coords: + # Skip over pixels where the face indicates is the background. + teximage[ + (img_size - uv_discrete[:, :, 1][mask > 0], uv_discrete[:, :, 0][mask > 0]) + ] = image_view_highres[mask > 0] + # Skip over pixels that are not part of the lesion segmentation. + # i.e., only put pixels for lesion. + lesion_texture_mask[ + (img_size - uv_discrete[:, :, 1][seg > 0], uv_discrete[:, :, 0][seg > 0]) + ] = 1 + + return teximage, lesion_texture_mask + + +def max_window_distance(view_uvs): + max_bary_window0 = max_value_in_window(view_uvs[:, :, 0], (3, 3)).squeeze() + max_bary_window1 = max_value_in_window(view_uvs[:, :, 1], (3, 3)).squeeze() + view_max_dist = np.sqrt( + (max_bary_window0 - view_uvs[:, :, 0]) ** 2 + + (max_bary_window1 - view_uvs[:, :, 1]) ** 2 + ) + return view_max_dist diff --git a/DermSynth3D/dermsynth3d/utils/utils.py b/DermSynth3D/dermsynth3d/utils/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..e9272daf2b9455713e7c311bddc0851ff9ff3941 --- /dev/null +++ b/DermSynth3D/dermsynth3d/utils/utils.py @@ -0,0 +1,403 @@ +import random +import cv2 +import sys +import yaml +import logging +import numpy as np +from PIL import Image +import torch +import torch.distributed as dist +import datetime +import time +from collections import defaultdict, deque +import sys + +from dermsynth3d.utils.channels import Target + + +def random_offset(a=-0.025, b=0.025): + return random_bound(a, b) + + +def random_bound(lower, upper): + r = np.random.random_sample() + return (upper - lower) * r + lower + + +def mask2boundingbox(mask, pad=0): + xx, yy = np.where(mask) + xmin = xx.min() - pad + xmax = xx.max() + pad + ymin = yy.min() - pad + ymax = yy.max() + pad + return xmin, xmax, ymin, ymax + + +def blend_background(fore_img, back_img, fore_mask, soft_blend=False): + """ + Blend background to the foreground + """ + background = back_img * (~(fore_mask[:, :, np.newaxis])) + blend_img = fore_img * fore_mask[:, :, np.newaxis] + background + + if soft_blend: + soft_mask = cv2.GaussianBlur(fore_mask * 1.0, (5, 5), cv2.BORDER_DEFAULT) + soft_mask[soft_mask > 0.999] = 1 + blend_img = (blend_img * soft_mask[:, :, np.newaxis]) + ( + 1 - soft_mask[:, :, np.newaxis] + ) * back_img + + return blend_img + + +def skin_mask_no_lesion(skin_mask: np.ndarray, lesion_mask: np.ndarray): + assert skin_mask.dtype == "bool" + assert lesion_mask.dtype == "bool" + mask = skin_mask.copy() + mask = skin_mask != lesion_mask + return mask + + +def make_masks(lesion_mask, skin_mask): + # For segmentation only 3 channels: Lesion, Skin and Non-skin + n_channels = 3 + masks = np.zeros( + shape=(lesion_mask.shape[0], lesion_mask.shape[1], n_channels), + dtype=np.float32, + ) + + masks[:, :, Target.LESION] = lesion_mask + masks[:, :, Target.SKIN] = np.asarray( + skin_mask_no_lesion(skin_mask, lesion_mask), dtype=np.float32 + ) + masks[:, :, Target.NONSKIN] = np.asarray(~skin_mask, dtype=np.float32) + + return masks + + +def random_resize_crop_seg_lesion( + seg_crop, + lesion_crop, + min_scale=2, + max_scale=None, + min_crop_size=10, + maintain_aspect=True, +): + """ + Randomly resize Lesion to paste + """ + seg_crop_pil = Image.fromarray(seg_crop) + lesion_crop_pil = Image.fromarray(lesion_crop) + + if max_scale is None: + max_size = np.asarray(seg_crop_pil.size) + else: + max_size = np.asarray(seg_crop_pil.size) // max_scale + + if min_scale <= max_scale: + print(max_scale) + min_scale = max_scale + + min_size = np.asarray(seg_crop_pil.size) // min_scale + + if min_size[0] == max_size[0]: + min_size[0] = min_size[0] - 1 + + if min_size[1] == max_size[1]: + min_size[1] = min_size[1] - 1 + + resize_dim_0 = random.randrange(min_size[0], max_size[0]) + if maintain_aspect: + wpercent = resize_dim_0 / float(seg_crop_pil.size[0]) + resize_dim_1 = int((float(seg_crop_pil.size[1]) * float(wpercent))) + else: + resize_dim_1 = random.randrange(min_size[1], max_size[1]) + + # Make sure the dimensions have an even size + # (odd gives errors with pasting) + if resize_dim_0 % 2 != 0: + resize_dim_0 -= 1 + + if resize_dim_1 % 2 != 0: + resize_dim_1 -= 1 + if (resize_dim_0 < min_crop_size) or (resize_dim_1 < min_crop_size): + return None, None + + resize = (resize_dim_0, resize_dim_1) + seg_crop_pil = seg_crop_pil.resize(size=resize, resample=Image.NEAREST) + lesion_crop_pil = lesion_crop_pil.resize(size=resize, resample=Image.NEAREST) + resized_lesion = np.asarray(lesion_crop_pil).astype(np.float32) / 255 + resized_crop = np.asarray(seg_crop_pil).astype(np.float32) / 255 + resized_crop = resized_crop > 0 + + if resized_lesion.shape[0] % 2 != 0: + raise ValueError("Error: output an even shape") + + if resized_lesion.shape[1] % 2 != 0: + raise ValueError("Error: output an even shape") + + return resized_lesion, resized_crop + + +def pix_face_in_set(pix_to_face, face_indexes): + pix_in_set = np.zeros_like(pix_to_face[:, :]) + for x in np.arange(pix_in_set.shape[0]): + for y in np.arange(pix_in_set.shape[1]): + if len(pix_to_face.shape) > 2: + pix_face = set(pix_to_face[x, y]) + else: + pix_face = set([pix_to_face[x, y]]) + + if pix_face & face_indexes: + pix_in_set[x, y] = 1 + + return pix_in_set > 0 + + +def yaml_loader(path): + stream = open(path) + file = yaml.safe_load(stream) + return file + + +def get_logger(filename): + # Logging configuration: set the basic configuration of the logging system + log_formatter = logging.Formatter( + fmt="%(asctime)s [%(processName)s, %(process)s] [%(levelname)-5.5s] %(message)s", + datefmt="%m-%d %H:%M", + ) + logger = logging.getLogger() + logger.setLevel(logging.DEBUG) + # File logger + file_handler = logging.FileHandler("{}.log".format(filename)) + file_handler.setFormatter(log_formatter) + file_handler.setLevel(logging.DEBUG) + logger.addHandler(file_handler) + # Stderr logger + std_handler = logging.StreamHandler(sys.stdout) + std_handler.setFormatter(log_formatter) + std_handler.setLevel(logging.DEBUG) + logger.addHandler(std_handler) + return logger + + +class SmoothedValue(object): + """Track a series of values and provide access to smoothed values over a + window or the global series average. + """ + + def __init__(self, window_size=20, fmt=None): + if fmt is None: + fmt = "{median:.4f} ({global_avg:.4f})" + self.deque = deque(maxlen=window_size) + self.total = 0.0 + self.count = 0 + self.fmt = fmt + + def update(self, value, n=1): + self.deque.append(value) + self.count += n + self.total += value * n + + def synchronize_between_processes(self): + """ + Warning: does not synchronize the deque! + """ + if not is_dist_avail_and_initialized(): + return + t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") + dist.barrier() + dist.all_reduce(t) + t = t.tolist() + self.count = int(t[0]) + self.total = t[1] + + @property + def median(self): + d = torch.tensor(list(self.deque)) + return d.median().item() + + @property + def avg(self): + d = torch.tensor(list(self.deque), dtype=torch.float32) + return d.mean().item() + + @property + def global_avg(self): + return self.total / self.count + + @property + def max(self): + return max(self.deque) + + @property + def value(self): + return self.deque[-1] + + def __str__(self): + return self.fmt.format( + median=self.median, + avg=self.avg, + global_avg=self.global_avg, + max=self.max, + value=self.value, + ) + + +def is_dist_avail_and_initialized(): + if not dist.is_available(): + return False + if not dist.is_initialized(): + return False + return True + + +def get_world_size(): + if not is_dist_avail_and_initialized(): + return 1 + return dist.get_world_size() + + +def reduce_dict(input_dict, average=True): + """ + Args: + input_dict (dict): all the values will be reduced + average (bool): whether to do average or sum + Reduce the values in the dictionary from all processes so that all processes + have the averaged results. Returns a dict with the same fields as + input_dict, after reduction. + """ + world_size = get_world_size() + if world_size < 2: + return input_dict + with torch.no_grad(): + names = [] + values = [] + # sort the keys so that they are consistent across processes + for k in sorted(input_dict.keys()): + names.append(k) + values.append(input_dict[k]) + values = torch.stack(values, dim=0) + dist.all_reduce(values) + if average: + values /= world_size + reduced_dict = {k: v for k, v in zip(names, values)} + return reduced_dict + + +class MetricLogger(object): + def __init__(self, delimiter="\t"): + self.meters = defaultdict(SmoothedValue) + self.delimiter = delimiter + + def update(self, **kwargs): + for k, v in kwargs.items(): + if isinstance(v, torch.Tensor): + v = v.item() + assert isinstance(v, (float, int)) + self.meters[k].update(v) + + def __getattr__(self, attr): + if attr in self.meters: + return self.meters[attr] + if attr in self.__dict__: + return self.__dict__[attr] + raise AttributeError( + "'{}' object has no attribute '{}'".format(type(self).__name__, attr) + ) + + def __str__(self): + loss_str = [] + for name, meter in self.meters.items(): + loss_str.append("{}: {}".format(name, str(meter))) + return self.delimiter.join(loss_str) + + def synchronize_between_processes(self): + for meter in self.meters.values(): + meter.synchronize_between_processes() + + def add_meter(self, name, meter): + self.meters[name] = meter + + def log_every(self, iterable, print_freq, header=None): + i = 0 + if not header: + header = "" + start_time = time.time() + end = time.time() + iter_time = SmoothedValue(fmt="{avg:.4f}") + data_time = SmoothedValue(fmt="{avg:.4f}") + space_fmt = ":" + str(len(str(len(iterable)))) + "d" + if torch.cuda.is_available(): + log_msg = self.delimiter.join( + [ + header, + "[{0" + space_fmt + "}/{1}]", + "eta: {eta}", + "{meters}", + "time: {time}", + "data: {data}", + "max mem: {memory:.0f}", + ] + ) + else: + log_msg = self.delimiter.join( + [ + header, + "[{0" + space_fmt + "}/{1}]", + "eta: {eta}", + "{meters}", + "time: {time}", + "data: {data}", + ] + ) + MB = 1024.0 * 1024.0 + for obj in iterable: + data_time.update(time.time() - end) + yield obj + iter_time.update(time.time() - end) + if i % print_freq == 0 or i == len(iterable) - 1: + eta_seconds = iter_time.global_avg * (len(iterable) - i) + eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) + if torch.cuda.is_available(): + print( + log_msg.format( + i, + len(iterable), + eta=eta_string, + meters=str(self), + time=str(iter_time), + data=str(data_time), + memory=torch.cuda.max_memory_allocated() / MB, + ) + ) + else: + print( + log_msg.format( + i, + len(iterable), + eta=eta_string, + meters=str(self), + time=str(iter_time), + data=str(data_time), + ) + ) + i += 1 + end = time.time() + total_time = time.time() - start_time + total_time_str = str(datetime.timedelta(seconds=int(total_time))) + print( + "{} Total time: {} ({:.4f} s / it)".format( + header, total_time_str, total_time / len(iterable) + ) + ) + + +def warmup_lr_scheduler(optimizer, warmup_iters, warmup_factor): + def f(x): + if x >= warmup_iters: + return 1 + alpha = float(x) / warmup_iters + return warmup_factor * (1 - alpha) + alpha + + return torch.optim.lr_scheduler.LambdaLR(optimizer, f) diff --git a/DermSynth3D/docs/dataset.md b/DermSynth3D/docs/dataset.md new file mode 100644 index 0000000000000000000000000000000000000000..efcc1d12c514f58c490da5fd9a98fece3dcdfb7c --- /dev/null +++ b/DermSynth3D/docs/dataset.md @@ -0,0 +1,179 @@ +# Instructions for downloading the datasets + +The datasets used in this work can be broadly categorized into data required for blending and data necessary for evaluation. + +All the datasets should be downloaded and placed in the `data` directory. + +The directory structure of `data` should be as follows: + +```bash +DermSynth3D_private/ +┣ ... # other source code +┣ data/ # directory to store the data +┃ ┣ 3dbodytex-1.1-highres # data for 3DBodyTex.v1 3d models and texture maps +┃ ┣ fitzpatrick17k/ +┃ ┃ ┣ data/ # Fitzpatrick17k images +┃ ┃ ┗ annotations/ # annotations for Fitzpatrick17k lesions +┃ ┣ ph2/ +┃ ┃ ┣ images/ # PH2 images +┃ ┃ ┗ labels/ # PH2 annotations +┃ ┣ dermofit/ # Dermofit dataset +┃ ┃ ┣ images/ # Dermofit images +┃ ┃ ┗ targets/ # Dermofit annotations +┃ ┣ FUSeg/ +┃ ┃ ┣ train/ # training set with images/labels for FUSeg +┃ ┃ ┣ validation/ # val set with images/labels for FUSeg +┃ ┃ ┗ test/ # test set with images/labels for FUSeg +┃ ┣ Pratheepan_Dataset/ +┃ ┃ ┣ FacePhoto/ # images from Pratheepan dataset +┃ ┃ ┗ GroundT_FacePhoto/ # annotations +┃ ┣ lesions/ # keep the non-skin masks for 3DBodyTex.v1 meshes here +┃ ┣ annotations/ # segmentation masks for Annotated Fitzpatrick17k lesions +┃ ┣ bodytex_anatomy_labels/ # per-vertex labels for anatomy of 3DBodyTex.v1 meshes +┃ ┣ background/ # keep the background scenes for rendering here +┃ ┗ synth_data/ # the generated synthetic data will be stored here + ┣ train/ # training set with images/labels for training on synthetic data + ┣ / # val and test set with images/labels for training on synthetic data +``` +
+ + Data For Blending + + +### Download 3DBodyTex.v1 meshes + + + +The `3DBodyTex.v1` dataset can be downloaded from [here](https://cvi2.uni.lu/datasets/). + +`3DBodyTex.v1` contains the meshes and texture images used in this work and can be downloaded from the external site linked above (after accepting a license agreement). + +**NOTE**: These textured meshes are needed to run the code to generate the data. + +We provide the non-skin texture maps annotations for 2 meshes: `006-f-run` and `221-m-u`. +Hence, to generate the data, make sure to get the `.obj` files for these two meshes and place them in `data/3dbodytex-1.1-highres` before excecuting `scripts/gen_data.py`. + +After accepting the licence, download and unzip the data in `./data/`. + +--- + +### Download the 3DBodyTex.v1 annotations + +| _Non-skin texture maps_| _Anatomy labels_| +|:-:|:-:| +|

We provide the non-skin texture map ($T_{nonskin}$) annotations for 215 meshes from the `3DBodyTex.v1` dataset [here](https://vault.sfu.ca/index.php/s/s8Sy7JdA74r1GN9).

|

We provide the per-vertex labels for anatomical parts of the 3DBodyTex.v1 meshes obtained by fitting SCAPE template body model [here](https://vault.sfu.ca/index.php/s/TLLqxCs7MVhS117).

| +||| + + + + + + + + +The folders are organised with the same IDs as the meshes in `3DBodyTex.v1` dataset. + +--- + + +### Download the Fitzpatrick17k dataset +| _Fitzpatrick17k Images_| _Fitzpatrick17k annotations_| +|:-:|:-:| +|![image](../assets/juvenile-xanthogranuloma63.jpg) | ![mask.](../data/fitzpatrick17k/annotations/test/01ed6482ab261012f398c19db7dfcc6c/lesions.png)| +|

We used the skin conditions from [Fitzpatrick17k](https://github.com/mattgroh/fitzpatrick17k). See their instructions to get access to the Fitzpatrick17k images.
We provide the raw images for the Fitzpatrick17k dataset [here](https://vault.sfu.ca/index.php/s/cMuxZNzk6UUHNmX).
After downloading the dataset, unzip the dataset:
```unzip fitzpatrick17k.zip -d data/fitzpatrick17k/```

|

We provide the densely annotated lesion masks from the Fitzpatrick17k dataset are given within this repository under the `data` directory. More of such annotations can be downloaded from [here](https://vault.sfu.ca/index.php/s/gemdbCeoZXoCqlS).

|

We provide the densely annotated lesion masks from the Fitzpatrick17k dataset are given within this repository under the `data` directory. More of such annotations can be downloaded from [here](https://vault.sfu.ca/index.php/s/gemdbCeoZXoCqlS).

| + + + + +--- + +### Download the Background Scenes + +||| +|:-:|:-:| +|![scene1](../assets/50.jpg)|![scene2](../assets/700.jpg)| + +Although you can use any scenes as background for generating the random views of the lesioned-meshes, we used [SceneNet RGB-D](https://robotvault.bitbucket.io/scenenet-rgbd.html) for the background IndoorScenes. Specifically, we used [this split](https://www.doc.ic.ac.uk/~bjm113/scenenet_data/train_split/train_0.tar.gz), and sampled 3000 images from it. + +For convenience, the background scenes we used to generate the ssynthetic dataset can be downloaded from [here](https://vault.sfu.ca/index.php/s/r7nc1QHKwgW2FDk). + +
+ +--- +
+ + Data For Training + +### Download the FUSeg dataset + +||| +|:-:|:-:| +|![scene1](../assets/0011.png)|![scene2](../assets/0011_m.png)| + +The Foot Ulcer Segmentation Challenge (FUSeg) dataset is available to download from [their official repository](https://github.com/uwm-bigdata/wound-segmentation/tree/master/data/Foot%20Ulcer%20Segmentation%20Challenge). +Download and unpack the dataset at `data/FUSeg/`, maintaining the Folder Structure shown above. + +For simplicity, we mirror the FUSeg dataset [here](https://vault.sfu.ca/index.php/s/2mb8kZg8wOltptT). + + --- + +### Download the Pratheepan dataset + +![prath](../assets/prath.png) + +The Pratheepan dataset is available to download from [their official website](https://web.fsktm.um.edu.my/~cschan/downloads_skin_dataset.html). +The images and the corresponding ground truth masks are available in a ZIP file hosted on Google Drive. Download and unpack the dataset at `data/Pratheepan_Dataset/`. + +--- + +### Download the PH2 dataset + +![ph2](../assets/ph2.png) + +The PH2 dataset can be downloaded from [the official ADDI Project website](https://www.fc.up.pt/addi/ph2%20database.html). +Download and unpack the dataset at `data/ph2/`, maintaining the Folder Structure shown below. + +--- + +### Download the DermoFit dataset + +![dermo](../assets/Example-images-for-the-different-skin-lesions-including-BCC-a-IEC-b-SCC-c-and_W640.jpg) + +_An example image from the DermoFit dataset showing different skin lesions._ + +The DermoFit dataset is available through a paid perpetual academic license from the University of Edinburgh. Please access the dataset following the instructions for [the DermoFit Image Library](https://licensing.edinburgh-innovations.ed.ac.uk/product/dermofit-image-library) and unpack it at `data/dermofit/`, maintaining the Folder Structure shown above. + +--- + +### Creating the Synthetic dataset + +![annots](../assets/AnnotationOverview.png) +For convenience, we provide the generated synthetic data we used in this work for various downstream tasks [here](https://vault.sfu.ca/index.php/s/mF2NVawbvvbW9lU). + +If you want to train your models on a different split of the synthetic data, you can download a dataset generated by blending lesions on 26 3DBodyTex scans from [here](https://vault.sfu.ca/index.php/s/rBTjTRaxTLrnqiE). +To prepare the synthetic dataset for training. Sample the `images`, and `targets` from the path where you saved this dataset and then organise them into `train/val`. + +Alternatively, you can use the code provided in `scripts/prep_data.py` to create it. + +Even better, you can generate your own dataset, by following the instructions [here](./README.md#generating-synthetic-dataset). + +
diff --git a/DermSynth3D/docs/preprint.pdf b/DermSynth3D/docs/preprint.pdf new file mode 100644 index 0000000000000000000000000000000000000000..84123b21e0cc1a24971260dcab831c82139d6ce9 --- /dev/null +++ b/DermSynth3D/docs/preprint.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9807f770290f0c88399be929b1285fcaf5a38cfc939c8deae9ac38a8f14c6734 +size 10541461 diff --git a/DermSynth3D/docs/unity.md b/DermSynth3D/docs/unity.md new file mode 100644 index 0000000000000000000000000000000000000000..223c0fc2be97d47c44ce88c5042db74a8b20e30c --- /dev/null +++ b/DermSynth3D/docs/unity.md @@ -0,0 +1,227 @@ +# DermSynth3D Physically Based Rendering (PBR) Using Unity + +## Summary + +This document explains how to create photorealistic renders using DermSynth3D but with [Unity](https://unity.com/) instead of [PyTorch3D](https://pytorch3d.org/). + +## Overview + +The render creation process consists of four main steps: + +1. **Raw data processing**: in this step, a Python script (*process_raw_data.py*) is used to extract the information required to create renders from the raw data and then arrange and save the information in a way that facilitates the render creation process using [Unity](https://unity.com/). +2. **FBX file creation**: in this step, [Blender](https://www.blender.org/) is used to create FBX files of the modified 3DBodyTex scans (i.e. 3DBodyTex meshes with modified texture maps), to facilitate scan import into Unity. +3. **Render creation**: in this step, [Unity](https://unity.com/) is used to create renders of the modified 3DBodyTex scans. +4. **Render post-processing**: in this step, a Python script (`add_2d_bkg_to_unity_renders.py`) is used to add backgrounds to the renders created in step 3. + +## Software Dependencies + +| Name | Why Required | +| --- | --- | +| [Blender](https://www.blender.org/) | To convert [3DBodyTex](https://cvi2.uni.lu/3dbodytexv1/) scan OBJ files into FBX files, to facilitate import of scans into [Unity](https://unity.com/) | +| [Unity](https://unity.com/) | To create renders | +| [Python](https://www.python.org/) | To process raw data and post-process renders created using [Unity](https://unity.com/) | + + +## Data + +Follow the instructions in [datasets](./dataset.md) to download the [3DBodyTex](https://cvi2.uni.lu/3dbodytexv1/) scans (OBJ and MTL files) required to create renders. + +In addition, follow the instructions in [usage](../README.md#generating-synthetic-dataset) to generate the synthetic data and metadata using DermSynth3D pipeline. + +The (sub)folder in [`./data`](./dataset.md) should look like below: + + + + + + +## Raw Data + + +``` + DermSynth3D_private/ + └── data/ + ├── blended_lesions # the 'save_dir` key in configs/blend.yaml + │ │ ├── gen_008/ # folder containing images, targets and metadata + │ │ │ └── data.csv + │ │ ├── ... + │ │ └── gen_355/ + │ │ └── data.csv + │ ├── 3dbodytex_dataset/ # folder containing the meshes, texture maps, and texture masks + │ │ ├── 355-m-scape039/ + │ │ │ ├── model_highres_0_normalized_debug.png + │ │ │ └── model_highres_0_normalized_mask.png + │ │ ├── ... + │ └── processed_raw_data/ # folder containing the processed renders + │ ├── 0.jpg + │ ├── ... + │ └── 7475.jpg + └── processed_raw_data/ # folder containing the metadata for unity and texture maps after pre-processing + ├── 008-f-run-blended/ + │ ├── all_params.csv + │ └── model_highres_0_normalized.png + ├── ... +``` +## Pre-Processing of metadata + +### Step 1: Change camera co-ordinate system + +Once you have a folder structure that resembles the one above, run the script `process_raw_data.py` to: +- read the raw data CSV files +- extract and save the information as CSV files in a format that is easier for [Unity](https://unity.com/) to read. + +More specifically, the script extracts the following information: + + + + +1. The location (x-, y- and z-coordinates) of the point light in each scene, and the x-, y- and z-coordinates of the point which the light is focused on +2. The location (x-, y- and z-coordinates) of the camera in each scene, and the x-, y- and z-coordinates of the point which the camera is focused on +3. The ID of the background that should be added to each render + +**Note** that all the coordinates are in the [PyTorch3D](https://pytorch3d.org/) coordinate system which is different to that of [Unity](https://unity.com/). + +The script assumes that folders and files have the structure and naming convention shown in the *Raw Data* section above. +It creates a new folder for each modified 3DBodyTex scan and saves the CSV file of extracted information and a renamed copy of the modified texture map in this folder. +The texture map is renamed so that the [3DBodyTex](https://cvi2.uni.lu/3dbodytexv1/) scan OBJ, MTL and modified texture map all have the same name. +All the folders, CSV files and modified texture maps created by the script are stored in the *processed_raw_data* folder + + +### Step 2: FBX File Creation + +The [3DBodyTex](https://cvi2.uni.lu/3dbodytexv1/) scan meshes are OBJ files. +However, import of such files into [Unity](https://unity.com/) is more error-prone than import of FBX files. +Converting the [3DBodyTex](https://cvi2.uni.lu/3dbodytexv1/) scans into FBX files is therefore desirable and achieved using [Blender](https://www.blender.org/). + + + + +In order to convert the `.obj` scans to `.fbx`: + +1. Copy the OBJ and MTL files of each [3DBodyTex](https://cvi2.uni.lu/3dbodytexv1/) scan to the corresponding folder created during the raw data processing. For example, copy the OBJ and MTL files of [3DBodyTex](https://cvi2.uni.lu/3dbodytexv1/) scan *008-f-run* to the *008-f-run* folder. +2. Import the OBJ file into [Blender](https://www.blender.org/). +3. Export the scan as an FBX file, ensuring the correct export settings (see Figure below) are selected. + +![FBX File Export Settings](../assets/blender_fbx_export_settings.jpg) + +For more information about converting OBJ files to FBX files using [Blender](https://www.blender.org/), see [this](https://www.youtube.com/watch?v=jZWSHBEOaR0&ab_channel=RichTanner) video. + + +### Step 3: Render Creation + +The Unity [perception package](https://github.com/Unity-Technologies/com.unity.perception) creates binary masks showing where the scans are in the renders. +These binary masks are required to add backgrounds to the renders. + +#### Dependencies + +- Unity [perception package](https://github.com/Unity-Technologies/com.unity.perception) +- The C# scripts *MoveCamera.cs* and *MoveLight.cs* + +#### Instructions + +1. Complete steps 1 and 2 of [this](https://github.com/Unity-Technologies/com.unity.perception/blob/main/com.unity.perception/Documentation%7E/Tutorial/Phase1.md) tutorial to set up a new project in [Unity](https://unity.com/) and download the Unity [perception package](https://github.com/Unity-Technologies/com.unity.perception). +2. Create an empty scene in [Unity](https://unity.com/). +3. Add a camera and a light to the scene. +4. Add a Perception Camera component to the camera. See step 3 of the tutorial above for more information on how to do this. +5. Modify the Scheduled Capture properties of the camera to: + - Simulation Delta Time: 0.01 + - Start at Frame: 99 + - Frames Between Captures: 99 +6. Change the camera Field of View to 30 and its Near Clipping Plane to 0.01. +7. Change the output image matrix size to 512x512 pixels (Game View>>Free Aspect>>+). +8. Change the folder where renders will be saved (Edit>>Project Settings>>Perception>>Solo Endpoint>>Base Path). +9. Add the C# scripts *MoveCamera.cs* and *MoveLight.cs* to the Assets folder in [Unity](https://unity.com/). +10. Add *MoveCamera.cs* to the camera you added to the scene in step 3. +11. Add *MoveLight.cs* to the light you added to the scene in step 3. +12. Add a folder containing a modified 3DBodyTex scan FBX file to the Assets folder. +13. Open the newly added folder and add the *model_highres_0_normalized* FBX file to the scene. +14. Set up the ground-truth label for the FBX file. See step 4 of the tutorial above for more information on how to do this. +15. Add the *all_params.csv* file from the folder added to the Assets folder in step 12 to the MoveCamera component of the camera and the MoveLight component of the light. +16. Click on the play button to run the simulation, and then press on the play button again to stop the simulation when all renders have been created. Renders and binary masks showing where the scans are in the renders will be saved in the folder specified in step 8. +17. Delete the *model_highres_0_normalized* FBX file in the scene. +18. Delete the folder added to the Assets folder in step 12. +19. Repeat steps 12 to 18 (except step 15) for another folder containing a modified 3DBodyTex scan FBX file. + +For detailed instructions on how to set up the Unity [perception package](https://github.com/Unity-Technologies/com.unity.perception), see [this](https://www.youtube.com/watch?v=mkVE2Yhe454&ab_channel=TheSecretsofApagayoIsland) video. + +*MoveCamera.cs* and *MoveLight.cs* read the coordinates in the CSV files of extracted information and move the camera and light to these coordinates. + +## Post-Processing of the Renderings + +After the pre-processing of raw data is completeed, we are now ready to create the renderings using Unity with the background scene same as that in`raw metadata`. + + + + +Consequently, run the python script `add_2d_bkg_to_unity_renders.py` to combine the background images and the renders and binary masks created using [Unity](https://unity.com/) and the Unity [perception package](https://github.com/Unity-Technologies/com.unity.perception), and then save the resulting images as PNG files. +The Figure below shows an overview of this process. + +![Render Post-Processing Overview](../assets/post_processing_overview.png) + +The script assumes that folders and files have the structure and naming convention shown below. It creates two new folders (*renders* and *masks*) in each modified 3DBodyTex scan folder (e.g. *008-f-run-blended* in the Figure below) and saves the post-processed images as PNG files in renders and renamed copies of the binary masks in *masks*. The name of each post-processed image is the unique ID listed in the corresponding CSV file of raw data. + \ No newline at end of file diff --git a/DermSynth3D/requirements.txt b/DermSynth3D/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..c8921da8cd5af62d654d9669d36099c07662ff13 --- /dev/null +++ b/DermSynth3D/requirements.txt @@ -0,0 +1,14 @@ + #torch==1.12.1 torchvision==0.13.1 + --extra-index-url https://download.pytorch.org/whl/cu113 + torch==1.12.1+cu113 + torchvision==0.13.1+cu113 + torchmetrics<=0.11 + plyfile + trimesh + streamlit + plotly + pytorch-lightning==1.7.5 + scikit-image==0.19.3 + mediapy + -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py38_cu113_pyt1121/download.html + pytorch3d diff --git a/DermSynth3D/skin3d/.gitignore b/DermSynth3D/skin3d/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..b6e47617de110dea7ca47e087ff1347cc2646eda --- /dev/null +++ b/DermSynth3D/skin3d/.gitignore @@ -0,0 +1,129 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +pip-wheel-metadata/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +.python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ diff --git a/DermSynth3D/skin3d/LICENSE.txt b/DermSynth3D/skin3d/LICENSE.txt new file mode 100644 index 0000000000000000000000000000000000000000..569cdc3a5e4d4b0157847b8c88021d518ccb2c5e --- /dev/null +++ b/DermSynth3D/skin3d/LICENSE.txt @@ -0,0 +1,3 @@ +This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. + +To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. diff --git a/DermSynth3D/skin3d/README.md b/DermSynth3D/skin3d/README.md new file mode 100644 index 0000000000000000000000000000000000000000..5ef61bc3b25d5ff3d6484a8aeec0d895eba72260 --- /dev/null +++ b/DermSynth3D/skin3d/README.md @@ -0,0 +1,102 @@ +# Skin3D + +![Skin3D Graphical Abstract](https://ars.els-cdn.com/content/image/1-s2.0-S1361841521003741-ga1_lrg.jpg "Graphical Abstract of our contributions") + + + + + [Paper](https://www.sciencedirect.com/science/article/pii/S1361841521003741) | [Arxiv](https://arxiv.org/pdf/2105.00374.pdf) | [DOI](https://doi.org/10.1016/j.media.2021.102329) | [Video](https://www.youtube.com/watch?v=8iErLS0bzY4) + +This is the official code repository for our paper, "[Skin3D: Detection and Longitudinal Tracking of Pigmented Skin Lesions in 3D Total-Body Textured Meshes](https://www.sciencedirect.com/science/article/pii/S1361841521003741)", published in Medical Imaging Analysis, 2021. + +In this work, we propose an automated approach to detect and longitudinally track skin lesions on the skin surface of 3D total-body scans. +As there currently is no other large-scale publicly available dataset of 3D total-body skin lesions, we publicly release over `25,000` 3DBodyTex manual annotations, which we hope will further encourage research on total-body skin lesion analysis. + +This repo provides the data for 3DBodyTex bounding boxes annotations, and shows how to visualize and use the code in your project. + +If you use the data or any part of the code, please consider citing our work, and the original 3DBodyTex dataset. + +```tex +@article{zhao2022skin3d, + title={Skin3D: Detection and longitudinal tracking of pigmented skin lesions in 3D total-body textured meshes}, + author={Zhao, Mengliu and Kawahara, Jeremy and Abhishek, Kumar and Shamanian, Sajjad and Hamarneh, Ghassan}, + journal={Medical Image Analysis}, + volume={77}, + pages={102329}, + year={2022}, + publisher={Elsevier} +} +``` + + +## Download the Meshes + +The 3D total-body scans can be downloaded here: [3DBodyTex.v1](https://cvi2.uni.lu/datasets/). +You need to sign an agreement in order to access the data. +Once you get the data, you can start using `skin3d`. + +**NOTE**: The bounding boxes provided by `skin3d` correspond to the high resolution meshes. + +## Installation Instructions + +To use `skin3d`: + +1. Fill out the form to request and download [3DBodyTex.v1](https://cvi2.uni.lu/datasets/) +2. Clone this repository: `git clone https://github.com/jeremykawahara/skin3d.git` +3. Navigate to the repository: `cd skin3d` +4. Create a new environment using [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-with-commands): `conda create -n skin3d python=3.7` +5. Activate the environment: `conda activate skin3d` +6. Install the requirements: `pip install -r requirements.txt` + +## How to Use `Skin3D` + +We provide example notebooks to help explain the format of the data. + +- [bodytex_annotations_data](https://github.com/jeremykawahara/skin3d/blob/master/notebooks/bodytex_annotations_data.ipynb) shows the format of the train, valid, and multiple annotator test data +- [bodytex_longitudinal_data](https://github.com/jeremykawahara/skin3d/blob/master/notebooks/bodytex_longitudinal_data.ipynb) shows the format of the IDs used to track the same lesion across scans +- [bodytex_annotations_visual](https://github.com/jeremykawahara/skin3d/blob/master/notebooks/bodytex_annotations_visual.ipynb) illustrates how to visualize multiple annotators on a texture image + +## Folder Structure + +This repository is structured as follows: + +- [data/](https://github.com/jeremykawahara/skin3d/tree/master/data) contains the 25,000+ manual lesion annotations for 3DBodyTex +- [notebooks/](https://github.com/jeremykawahara/skin3d/tree/master/notebooks) contains example notebooks that load and process the annotations +- [skin3d/](https://github.com/jeremykawahara/skin3d/tree/master/skin3d) contains the Python package to load and process the annotations + +## Related Publications + +If you use this data or code, please cite the following works: + +Description of the annotated bounding boxes [[pdf](https://arxiv.org/abs/2105.00374)] [[doi](https://doi.org/10.1016/j.media.2021.102329)]: + +```tex +@article{zhao2022skin3d, + title={Skin3D: Detection and longitudinal tracking of pigmented skin lesions in 3D total-body textured meshes}, + author={Zhao, Mengliu and Kawahara, Jeremy and Abhishek, Kumar and Shamanian, Sajjad and Hamarneh, Ghassan}, + journal={Medical Image Analysis}, + volume={77}, + pages={102329}, + year={2022}, + publisher={Elsevier} +} +``` + +Description of the meshes [[pdf](https://core.ac.uk/download/pdf/162022926.pdf)] [[doi](https://doi.org/10.1109/3DV.2018.00063)]: + +```tex +@inproceedings{saint20183dbodytex, + title={3dbodytex: Textured 3d body dataset}, + author={Saint, Alexandre and Ahmed, Eman and Cherenkova, Kseniya and Gusev, Gleb and Aouada, Djamila and Ottersten, Bjorn and others}, + booktitle={2018 International Conference on 3D Vision (3DV)}, + pages={495--504}, + year={2018}, + organization={IEEE} +} +``` diff --git a/DermSynth3D/skin3d/data/3dbodytex-1.1-highres/annotations/006.csv b/DermSynth3D/skin3d/data/3dbodytex-1.1-highres/annotations/006.csv new file mode 100644 index 0000000000000000000000000000000000000000..16e6a01e19c622bb03583aefd8fce8d7a42ff11e --- /dev/null +++ b/DermSynth3D/skin3d/data/3dbodytex-1.1-highres/annotations/006.csv @@ -0,0 +1,131 @@ +filename,file_size,file_attributes,region_count,region_id,region_shape_attributes,region_attributes +model_highres_0_normalized.png,9328449,"{}",130,0,"{""name"":""rect"",""x"":1511,""y"":226,""width"":32,""height"":38}","{}" +model_highres_0_normalized.png,9328449,"{}",130,1,"{""name"":""rect"",""x"":1618,""y"":243,""width"":35,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,2,"{""name"":""rect"",""x"":1585,""y"":691,""width"":31,""height"":35}","{}" +model_highres_0_normalized.png,9328449,"{}",130,3,"{""name"":""rect"",""x"":1463,""y"":352,""width"":25,""height"":31}","{}" +model_highres_0_normalized.png,9328449,"{}",130,4,"{""name"":""rect"",""x"":1469,""y"":275,""width"":22,""height"":27}","{}" +model_highres_0_normalized.png,9328449,"{}",130,5,"{""name"":""rect"",""x"":410,""y"":299,""width"":32,""height"":27}","{}" +model_highres_0_normalized.png,9328449,"{}",130,6,"{""name"":""rect"",""x"":306,""y"":268,""width"":25,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,7,"{""name"":""rect"",""x"":416,""y"":345,""width"":27,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,8,"{""name"":""rect"",""x"":485,""y"":333,""width"":29,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,9,"{""name"":""rect"",""x"":533,""y"":382,""width"":28,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,10,"{""name"":""rect"",""x"":597,""y"":400,""width"":22,""height"":21}","{}" +model_highres_0_normalized.png,9328449,"{}",130,11,"{""name"":""rect"",""x"":552,""y"":423,""width"":18,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,12,"{""name"":""rect"",""x"":771,""y"":319,""width"":25,""height"":32}","{}" +model_highres_0_normalized.png,9328449,"{}",130,13,"{""name"":""rect"",""x"":931,""y"":313,""width"":18,""height"":21}","{}" +model_highres_0_normalized.png,9328449,"{}",130,14,"{""name"":""rect"",""x"":864,""y"":364,""width"":18,""height"":20}","{}" +model_highres_0_normalized.png,9328449,"{}",130,15,"{""name"":""rect"",""x"":208,""y"":226,""width"":20,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,16,"{""name"":""rect"",""x"":882,""y"":785,""width"":25,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,17,"{""name"":""rect"",""x"":972,""y"":787,""width"":28,""height"":27}","{}" +model_highres_0_normalized.png,9328449,"{}",130,18,"{""name"":""rect"",""x"":988,""y"":929,""width"":27,""height"":27}","{}" +model_highres_0_normalized.png,9328449,"{}",130,19,"{""name"":""rect"",""x"":1218,""y"":993,""width"":28,""height"":32}","{}" +model_highres_0_normalized.png,9328449,"{}",130,20,"{""name"":""rect"",""x"":1170,""y"":968,""width"":25,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,21,"{""name"":""rect"",""x"":827,""y"":759,""width"":28,""height"":31}","{}" +model_highres_0_normalized.png,9328449,"{}",130,22,"{""name"":""rect"",""x"":1013,""y"":718,""width"":28,""height"":31}","{}" +model_highres_0_normalized.png,9328449,"{}",130,23,"{""name"":""rect"",""x"":1385,""y"":1159,""width"":24,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,24,"{""name"":""rect"",""x"":1352,""y"":1274,""width"":29,""height"":35}","{}" +model_highres_0_normalized.png,9328449,"{}",130,25,"{""name"":""rect"",""x"":1448,""y"":1607,""width"":27,""height"":36}","{}" +model_highres_0_normalized.png,9328449,"{}",130,26,"{""name"":""rect"",""x"":1575,""y"":1454,""width"":29,""height"":32}","{}" +model_highres_0_normalized.png,9328449,"{}",130,27,"{""name"":""rect"",""x"":292,""y"":1443,""width"":39,""height"":35}","{}" +model_highres_0_normalized.png,9328449,"{}",130,28,"{""name"":""rect"",""x"":416,""y"":1664,""width"":27,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,29,"{""name"":""rect"",""x"":261,""y"":2355,""width"":25,""height"":32}","{}" +model_highres_0_normalized.png,9328449,"{}",130,30,"{""name"":""rect"",""x"":625,""y"":2383,""width"":25,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,31,"{""name"":""rect"",""x"":571,""y"":2033,""width"":27,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,32,"{""name"":""rect"",""x"":593,""y"":2109,""width"":18,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,33,"{""name"":""rect"",""x"":527,""y"":2130,""width"":35,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,34,"{""name"":""rect"",""x"":1169,""y"":2164,""width"":29,""height"":33}","{}" +model_highres_0_normalized.png,9328449,"{}",130,35,"{""name"":""rect"",""x"":886,""y"":1974,""width"":27,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,36,"{""name"":""rect"",""x"":1212,""y"":1855,""width"":25,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,37,"{""name"":""rect"",""x"":794,""y"":1143,""width"":38,""height"":27}","{}" +model_highres_0_normalized.png,9328449,"{}",130,38,"{""name"":""rect"",""x"":900,""y"":1134,""width"":29,""height"":33}","{}" +model_highres_0_normalized.png,9328449,"{}",130,39,"{""name"":""rect"",""x"":258,""y"":1604,""width"":29,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,40,"{""name"":""rect"",""x"":3471,""y"":3718,""width"":24,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,41,"{""name"":""rect"",""x"":3521,""y"":3641,""width"":25,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,42,"{""name"":""rect"",""x"":3530,""y"":3694,""width"":22,""height"":17}","{}" +model_highres_0_normalized.png,9328449,"{}",130,43,"{""name"":""rect"",""x"":3538,""y"":3719,""width"":21,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,44,"{""name"":""rect"",""x"":3571,""y"":3797,""width"":22,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,45,"{""name"":""rect"",""x"":3450,""y"":3783,""width"":25,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,46,"{""name"":""rect"",""x"":3482,""y"":3751,""width"":20,""height"":18}","{}" +model_highres_0_normalized.png,9328449,"{}",130,47,"{""name"":""rect"",""x"":3398,""y"":3817,""width"":22,""height"":21}","{}" +model_highres_0_normalized.png,9328449,"{}",130,48,"{""name"":""rect"",""x"":3403,""y"":3852,""width"":24,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,49,"{""name"":""rect"",""x"":3436,""y"":3859,""width"":18,""height"":21}","{}" +model_highres_0_normalized.png,9328449,"{}",130,50,"{""name"":""rect"",""x"":3458,""y"":3862,""width"":13,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,51,"{""name"":""rect"",""x"":3347,""y"":3860,""width"":25,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,52,"{""name"":""rect"",""x"":3245,""y"":3881,""width"":27,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,53,"{""name"":""rect"",""x"":3188,""y"":3996,""width"":22,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,54,"{""name"":""rect"",""x"":3472,""y"":3382,""width"":20,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,55,"{""name"":""rect"",""x"":3481,""y"":3474,""width"":20,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,56,"{""name"":""rect"",""x"":3446,""y"":3559,""width"":25,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,57,"{""name"":""rect"",""x"":3428,""y"":3609,""width"":31,""height"":32}","{}" +model_highres_0_normalized.png,9328449,"{}",130,58,"{""name"":""rect"",""x"":3601,""y"":3746,""width"":32,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,59,"{""name"":""rect"",""x"":2870,""y"":2727,""width"":31,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,60,"{""name"":""rect"",""x"":2747,""y"":2617,""width"":33,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,61,"{""name"":""rect"",""x"":2648,""y"":2607,""width"":29,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,62,"{""name"":""rect"",""x"":2819,""y"":2861,""width"":29,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,63,"{""name"":""rect"",""x"":2719,""y"":1987,""width"":27,""height"":32}","{}" +model_highres_0_normalized.png,9328449,"{}",130,64,"{""name"":""rect"",""x"":2693,""y"":1713,""width"":28,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,65,"{""name"":""rect"",""x"":2789,""y"":1733,""width"":33,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,66,"{""name"":""rect"",""x"":2593,""y"":1843,""width"":27,""height"":27}","{}" +model_highres_0_normalized.png,9328449,"{}",130,67,"{""name"":""rect"",""x"":2600,""y"":1955,""width"":29,""height"":31}","{}" +model_highres_0_normalized.png,9328449,"{}",130,68,"{""name"":""rect"",""x"":2529,""y"":1998,""width"":35,""height"":33}","{}" +model_highres_0_normalized.png,9328449,"{}",130,69,"{""name"":""rect"",""x"":2525,""y"":1795,""width"":28,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,70,"{""name"":""rect"",""x"":3729,""y"":2165,""width"":24,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,71,"{""name"":""rect"",""x"":3050,""y"":1271,""width"":22,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,72,"{""name"":""rect"",""x"":2991,""y"":1317,""width"":22,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,73,"{""name"":""rect"",""x"":2903,""y"":1304,""width"":31,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,74,"{""name"":""rect"",""x"":2866,""y"":1433,""width"":25,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,75,"{""name"":""rect"",""x"":2928,""y"":1431,""width"":29,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,76,"{""name"":""rect"",""x"":2924,""y"":1500,""width"":28,""height"":32}","{}" +model_highres_0_normalized.png,9328449,"{}",130,77,"{""name"":""rect"",""x"":2967,""y"":1590,""width"":29,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,78,"{""name"":""rect"",""x"":3164,""y"":1456,""width"":28,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,79,"{""name"":""rect"",""x"":2687,""y"":776,""width"":24,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,80,"{""name"":""rect"",""x"":2750,""y"":767,""width"":27,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,81,"{""name"":""rect"",""x"":2641,""y"":854,""width"":35,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,82,"{""name"":""rect"",""x"":2538,""y"":982,""width"":32,""height"":31}","{}" +model_highres_0_normalized.png,9328449,"{}",130,83,"{""name"":""rect"",""x"":2704,""y"":1038,""width"":29,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,84,"{""name"":""rect"",""x"":2646,""y"":1124,""width"":31,""height"":31}","{}" +model_highres_0_normalized.png,9328449,"{}",130,85,"{""name"":""rect"",""x"":2422,""y"":1070,""width"":24,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,86,"{""name"":""rect"",""x"":2510,""y"":1247,""width"":20,""height"":21}","{}" +model_highres_0_normalized.png,9328449,"{}",130,87,"{""name"":""rect"",""x"":2585,""y"":1265,""width"":14,""height"":15}","{}" +model_highres_0_normalized.png,9328449,"{}",130,88,"{""name"":""rect"",""x"":2217,""y"":1310,""width"":28,""height"":21}","{}" +model_highres_0_normalized.png,9328449,"{}",130,89,"{""name"":""rect"",""x"":2172,""y"":1342,""width"":25,""height"":27}","{}" +model_highres_0_normalized.png,9328449,"{}",130,90,"{""name"":""rect"",""x"":2235,""y"":1436,""width"":22,""height"":31}","{}" +model_highres_0_normalized.png,9328449,"{}",130,91,"{""name"":""rect"",""x"":2356,""y"":1391,""width"":20,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,92,"{""name"":""rect"",""x"":2441,""y"":1377,""width"":21,""height"":20}","{}" +model_highres_0_normalized.png,9328449,"{}",130,93,"{""name"":""rect"",""x"":2352,""y"":1440,""width"":21,""height"":18}","{}" +model_highres_0_normalized.png,9328449,"{}",130,94,"{""name"":""rect"",""x"":2328,""y"":1468,""width"":22,""height"":27}","{}" +model_highres_0_normalized.png,9328449,"{}",130,95,"{""name"":""rect"",""x"":2161,""y"":1528,""width"":24,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,96,"{""name"":""rect"",""x"":2133,""y"":1553,""width"":15,""height"":21}","{}" +model_highres_0_normalized.png,9328449,"{}",130,97,"{""name"":""rect"",""x"":2129,""y"":1592,""width"":18,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,98,"{""name"":""rect"",""x"":2215,""y"":1625,""width"":21,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,99,"{""name"":""rect"",""x"":2091,""y"":1543,""width"":24,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,100,"{""name"":""rect"",""x"":2321,""y"":1293,""width"":17,""height"":20}","{}" +model_highres_0_normalized.png,9328449,"{}",130,101,"{""name"":""rect"",""x"":2366,""y"":1349,""width"":18,""height"":15}","{}" +model_highres_0_normalized.png,9328449,"{}",130,102,"{""name"":""rect"",""x"":2246,""y"":1260,""width"":25,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,103,"{""name"":""rect"",""x"":2284,""y"":1304,""width"":27,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,104,"{""name"":""rect"",""x"":2296,""y"":1417,""width"":17,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,105,"{""name"":""rect"",""x"":2444,""y"":908,""width"":28,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,106,"{""name"":""rect"",""x"":2365,""y"":876,""width"":22,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,107,"{""name"":""rect"",""x"":2494,""y"":1069,""width"":20,""height"":18}","{}" +model_highres_0_normalized.png,9328449,"{}",130,108,"{""name"":""rect"",""x"":3158,""y"":307,""width"":32,""height"":31}","{}" +model_highres_0_normalized.png,9328449,"{}",130,109,"{""name"":""rect"",""x"":2997,""y"":208,""width"":22,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,110,"{""name"":""rect"",""x"":2817,""y"":349,""width"":28,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,111,"{""name"":""rect"",""x"":2677,""y"":236,""width"":31,""height"":28}","{}" +model_highres_0_normalized.png,9328449,"{}",130,112,"{""name"":""rect"",""x"":2656,""y"":361,""width"":36,""height"":39}","{}" +model_highres_0_normalized.png,9328449,"{}",130,113,"{""name"":""rect"",""x"":2619,""y"":381,""width"":20,""height"":21}","{}" +model_highres_0_normalized.png,9328449,"{}",130,114,"{""name"":""rect"",""x"":3432,""y"":215,""width"":22,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,115,"{""name"":""rect"",""x"":3198,""y"":403,""width"":27,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,116,"{""name"":""rect"",""x"":2882,""y"":744,""width"":33,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,117,"{""name"":""rect"",""x"":2931,""y"":778,""width"":31,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,118,"{""name"":""rect"",""x"":3121,""y"":698,""width"":22,""height"":33}","{}" +model_highres_0_normalized.png,9328449,"{}",130,119,"{""name"":""rect"",""x"":3372,""y"":709,""width"":28,""height"":29}","{}" +model_highres_0_normalized.png,9328449,"{}",130,120,"{""name"":""rect"",""x"":2977,""y"":2635,""width"":21,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,121,"{""name"":""rect"",""x"":2909,""y"":2712,""width"":25,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,122,"{""name"":""rect"",""x"":3595,""y"":1356,""width"":28,""height"":31}","{}" +model_highres_0_normalized.png,9328449,"{}",130,123,"{""name"":""rect"",""x"":1547,""y"":480,""width"":29,""height"":25}","{}" +model_highres_0_normalized.png,9328449,"{}",130,124,"{""name"":""rect"",""x"":1509,""y"":472,""width"":21,""height"":20}","{}" +model_highres_0_normalized.png,9328449,"{}",130,125,"{""name"":""rect"",""x"":3793,""y"":2070,""width"":33,""height"":24}","{}" +model_highres_0_normalized.png,9328449,"{}",130,126,"{""name"":""rect"",""x"":3624,""y"":2112,""width"":18,""height"":18}","{}" +model_highres_0_normalized.png,9328449,"{}",130,127,"{""name"":""rect"",""x"":3630,""y"":2076,""width"":25,""height"":22}","{}" +model_highres_0_normalized.png,9328449,"{}",130,128,"{""name"":""rect"",""x"":3772,""y"":1775,""width"":25,""height"":27}","{}" +model_highres_0_normalized.png,9328449,"{}",130,129,"{""name"":""rect"",""x"":3693,""y"":2323,""width"":17,""height"":20}","{}" \ No newline at end of file diff --git a/DermSynth3D/skin3d/data/3dbodytex-1.1-highres/annotations/221.csv b/DermSynth3D/skin3d/data/3dbodytex-1.1-highres/annotations/221.csv new file mode 100644 index 0000000000000000000000000000000000000000..a8870b7bd3a4f391574de2c2d76495aff18494f5 --- /dev/null +++ b/DermSynth3D/skin3d/data/3dbodytex-1.1-highres/annotations/221.csv @@ -0,0 +1,23 @@ +filename,file_size,file_attributes,region_count,region_id,region_shape_attributes,region_attributes +model_highres_0_normalized.png,7141347,"{}",22,0,"{""name"":""rect"",""x"":1298,""y"":1166,""width"":21,""height"":23}","{""annotator"":""A4"",""lesion_id"":""1""}" +model_highres_0_normalized.png,7141347,"{}",22,1,"{""name"":""rect"",""x"":1138,""y"":645,""width"":22,""height"":22}","{""annotator"":""A4"",""lesion_id"":""2""}" +model_highres_0_normalized.png,7141347,"{}",22,2,"{""name"":""rect"",""x"":1213,""y"":545,""width"":18,""height"":18}","{""annotator"":""A4"",""lesion_id"":""3""}" +model_highres_0_normalized.png,7141347,"{}",22,3,"{""name"":""rect"",""x"":2436,""y"":2350,""width"":18,""height"":17}","{""annotator"":""A4"",""lesion_id"":""4""}" +model_highres_0_normalized.png,7141347,"{}",22,4,"{""name"":""rect"",""x"":2328,""y"":2275,""width"":20,""height"":23}","{""annotator"":""A4"",""lesion_id"":""5""}" +model_highres_0_normalized.png,7141347,"{}",22,5,"{""name"":""rect"",""x"":864,""y"":862,""width"":16,""height"":18}","{""annotator"":""A4"",""lesion_id"":""6""}" +model_highres_0_normalized.png,7141347,"{}",22,6,"{""name"":""rect"",""x"":2671,""y"":3178,""width"":20,""height"":23}","{""annotator"":""A4"",""lesion_id"":""7""}" +model_highres_0_normalized.png,7141347,"{}",22,7,"{""name"":""rect"",""x"":2579,""y"":3185,""width"":21,""height"":23}","{""annotator"":""A4"",""lesion_id"":""8""}" +model_highres_0_normalized.png,7141347,"{}",22,8,"{""name"":""rect"",""x"":3747,""y"":563,""width"":22,""height"":23}","{""annotator"":""A4"",""lesion_id"":""9""}" +model_highres_0_normalized.png,7141347,"{}",22,9,"{""name"":""rect"",""x"":1114,""y"":873,""width"":20,""height"":21}","{""annotator"":""A4"",""lesion_id"":""10""}" +model_highres_0_normalized.png,7141347,"{}",22,10,"{""name"":""rect"",""x"":1059,""y"":708,""width"":19,""height"":20}","{""lesion_id"":""11""}" +model_highres_0_normalized.png,7141347,"{}",22,11,"{""name"":""rect"",""x"":1359,""y"":1096,""width"":19,""height"":15}","{""lesion_id"":""12""}" +model_highres_0_normalized.png,7141347,"{}",22,12,"{""name"":""rect"",""x"":1447,""y"":1079,""width"":21,""height"":21}","{""lesion_id"":""13""}" +model_highres_0_normalized.png,7141347,"{}",22,13,"{""name"":""rect"",""x"":1457,""y"":1123,""width"":16,""height"":19}","{""lesion_id"":""14""}" +model_highres_0_normalized.png,7141347,"{}",22,14,"{""name"":""rect"",""x"":1510,""y"":1248,""width"":19,""height"":21}","{""lesion_id"":""15""}" +model_highres_0_normalized.png,7141347,"{}",22,15,"{""name"":""rect"",""x"":1257,""y"":1015,""width"":16,""height"":19}","{""lesion_id"":""16""}" +model_highres_0_normalized.png,7141347,"{}",22,16,"{""name"":""rect"",""x"":1225,""y"":1003,""width"":15,""height"":18}","{""lesion_id"":""17""}" +model_highres_0_normalized.png,7141347,"{}",22,17,"{""name"":""rect"",""x"":1207,""y"":1015,""width"":14,""height"":20}","{""lesion_id"":""18""}" +model_highres_0_normalized.png,7141347,"{}",22,18,"{""name"":""rect"",""x"":1230,""y"":1067,""width"":19,""height"":19}","{""lesion_id"":""19""}" +model_highres_0_normalized.png,7141347,"{}",22,19,"{""name"":""rect"",""x"":1454,""y"":876,""width"":19,""height"":21}","{""lesion_id"":""20""}" +model_highres_0_normalized.png,7141347,"{}",22,20,"{""name"":""rect"",""x"":1388,""y"":900,""width"":23,""height"":21}","{""lesion_id"":""21""}" +model_highres_0_normalized.png,7141347,"{}",22,21,"{""name"":""rect"",""x"":1437,""y"":974,""width"":19,""height"":18}","{""lesion_id"":""22""}" \ No newline at end of file diff --git a/DermSynth3D/skin3d/data/3dbodytex-1.1-highres/bodytex.csv b/DermSynth3D/skin3d/data/3dbodytex-1.1-highres/bodytex.csv new file mode 100644 index 0000000000000000000000000000000000000000..03b36faf92e0738b98edbf8b18d929a21ba65469 --- /dev/null +++ b/DermSynth3D/skin3d/data/3dbodytex-1.1-highres/bodytex.csv @@ -0,0 +1,401 @@ +subject_id,scan_name,scan_id,sex,pose,partition,selected +000-001,000-f-run,000,f,run,test,TRUE +000-001,001-f-u,001,f,u,test,FALSE +002-003,002-f-run,002,f,run,train,TRUE +002-003,003-f-u,003,f,u,train,TRUE +004-005,004-f-run,004,f,run,train,TRUE +004-005,005-f-u,005,f,u,train,TRUE +006-007,006-f-run,006,f,run,train,TRUE +006-007,007-f-u,007,f,u,train,TRUE +008-009,008-f-run,008,f,run,long,TRUE +008-009,009-f-u,009,f,u,test,TRUE +010-011,010-f-run,010,f,run,valid,TRUE +010-011,011-f-u,011,f,u,valid,TRUE +012-013,012-f-run,012,f,run,train,TRUE +012-013,013-f-u,013,f,u,train,TRUE +014-015,014-f-scape015,014,f,scape015,train,TRUE +014-015,015-f-u,015,f,u,train,TRUE +016-017,016-f-scape038,016,f,scape038,train,TRUE +016-017,017-f-u,017,f,u,train,FALSE +018-019,018-f-scape013,018,f,scape013,valid,TRUE +018-019,019-f-u,019,f,u,valid,FALSE +020-021,020-f-scape003,020,f,scape003,long,TRUE +020-021,021-f-u,021,f,u,test,TRUE +022-023,022-f-scape061,022,f,scape061,valid,TRUE +022-023,023-f-u,023,f,u,valid,FALSE +024-025,024-f-scape046,024,f,scape046,test,TRUE +024-025,025-f-u,025,f,u,test,FALSE +026-027,026-f-scape002,026,f,scape002,train,TRUE +026-027,027-f-u,027,f,u,train,TRUE +028-029,028-f-scape038,028,f,scape038,train,TRUE +028-029,029-f-u,029,f,u,train,FALSE +030-031,030-f-scape059,030,f,scape059,valid,TRUE +030-031,031-f-u,031,f,u,valid,FALSE +032-033,032-f-scape059,032,f,scape059,valid,TRUE +032-033,033-f-u,033,f,u,valid,FALSE +034-035,034-f-scape009,034,f,scape009,train,TRUE +034-035,035-f-u,035,f,u,train,FALSE +036-037,036-f-scape010,036,f,scape010,test,TRUE +036-037,037-f-u,037,f,u,test,FALSE +038-039,038-f-scape008,038,f,scape008,train,TRUE +038-039,039-f-u,039,f,u,train,TRUE +040-041,040-f-scape002,040,f,scape002,train,FALSE +040-041,041-f-u,041,f,u,train,TRUE +042-043,042-f-scape062,042,f,scape062,train,FALSE +042-043,043-f-u,043,f,u,train,TRUE +044-045,044-f-scape013,044,f,scape013,test,FALSE +044-045,045-f-u,045,f,u,test,TRUE +046-047,046-f-scape012,046,f,scape012,train,FALSE +046-047,047-f-u,047,f,u,train,TRUE +048-049,048-f-scape046,048,f,scape046,train,FALSE +048-049,049-f-u,049,f,u,train,TRUE +050-051,050-f-scape031,050,f,scape031,train,FALSE +050-051,051-f-u,051,f,u,train,TRUE +052-053,052-f-scape003,052,f,scape003,valid,FALSE +052-053,053-f-u,053,f,u,valid,TRUE +054-055,054-f-scape063,054,f,scape063,train,FALSE +054-055,055-f-u,055,f,u,train,TRUE +056-057,056-f-scape006,056,f,scape006,valid,FALSE +056-057,057-f-u,057,f,u,valid,TRUE +058-059,058-f-scape031,058,f,scape031,train,FALSE +058-059,059-f-u,059,f,u,train,TRUE +060-061,060-f-scape029,060,f,scape029,test,FALSE +060-061,061-f-u,061,f,u,test,TRUE +062-063,062-f-scape036,062,f,scape036,test,FALSE +062-063,063-f-u,063,f,u,test,TRUE +064-065,064-f-scape010,064,f,scape010,train,FALSE +064-065,065-f-u,065,f,u,train,TRUE +066-067,066-f-scape031,066,f,scape031,test,FALSE +066-067,067-f-u,067,f,u,test,TRUE +068-069,068-f-scape012,068,f,scape012,train,FALSE +068-069,069-f-u,069,f,u,train,TRUE +070-071,070-f-scape003,070,f,scape003,valid,FALSE +070-071,071-f-u,071,f,u,valid,TRUE +072-073,072-f-scape036,072,f,scape036,train,FALSE +072-073,073-f-u,073,f,u,train,TRUE +074-075,074-f-scape008,074,f,scape008,train,FALSE +074-075,075-f-u,075,f,u,train,TRUE +076-077,076-f-scape038,076,f,scape038,train,FALSE +076-077,077-f-u,077,f,u,train,TRUE +078-079,078-f-a,078,f,a,test,TRUE +078-079,079-f-scape057,079,f,scape057,test,FALSE +080-081,080-f-a,080,f,a,valid,FALSE +080-081,081-f-scape008,081,f,scape008,valid,TRUE +082-083,082-f-a,082,f,a,train,TRUE +082-083,083-f-scape011,083,f,scape011,train,FALSE +084-085,084-f-a,084,f,a,valid,FALSE +084-085,085-f-scape006,085,f,scape006,valid,TRUE +086-087,086-f-a,086,f,a,train,FALSE +086-087,087-f-scape027,087,f,scape027,train,FALSE +088-089,088-f-a,088,f,a,test,FALSE +088-089,089-f-scape015,089,f,scape015,test,TRUE +090-091,090-f-a,090,f,a,test,FALSE +090-091,091-f-scape068,091,f,scape068,test,TRUE +092-093,092-f-a,092,f,a,train,TRUE +092-093,093-f-scape036,093,f,scape036,train,FALSE +094-095,094-f-a,094,f,a,valid,TRUE +094-095,095-f-scape050,095,f,scape050,valid,FALSE +096-097,096-f-a,096,f,a,train,FALSE +096-097,097-f-scape034,097,f,scape034,train,TRUE +098-099,098-f-a,098,f,a,train,FALSE +098-099,099-f-scape063,099,f,scape063,train,TRUE +100-101,100-f-a,100,f,a,train,FALSE +100-101,101-f-scape008,101,f,scape008,train,TRUE +102-103,102-f-a,102,f,a,train,TRUE +102-103,103-f-scape059,103,f,scape059,train,FALSE +104-105,104-f-a,104,f,a,train,TRUE +104-105,105-f-scape012,105,f,scape012,train,FALSE +106-107,106-f-a,106,f,a,long,TRUE +106-107,107-f-scape062,107,f,scape062,test,TRUE +108-109,108-f-a,108,f,a,train,TRUE +108-109,109-f-scape032,109,f,scape032,train,FALSE +110-111,110-f-a,110,f,a,valid,TRUE +110-111,111-f-scape009,111,f,scape009,valid,FALSE +112-113,112-f-a,112,f,a,train,TRUE +112-113,113-f-scape020,113,f,scape020,train,FALSE +114-115,114-f-a,114,f,a,train,TRUE +114-115,115-f-scape046,115,f,scape046,train,FALSE +116-117,116-f-a,116,f,a,train,TRUE +116-117,117-f-scape048,117,f,scape048,train,FALSE +118-119,118-f-a,118,f,a,train,TRUE +118-119,119-f-scape034,119,f,scape034,train,FALSE +120-121,120-f-a,120,f,a,train,TRUE +120-121,121-f-scape020,121,f,scape020,train,FALSE +122-123,122-f-a,122,f,a,train,TRUE +122-123,123-f-scape013,123,f,scape013,train,FALSE +124-125,124-f-a,124,f,a,train,TRUE +124-125,125-f-scape046,125,f,scape046,train,FALSE +126-127,126-f-a,126,f,a,train,TRUE +126-127,127-f-scape039,127,f,scape039,train,FALSE +128-129,128-f-a,128,f,a,train,TRUE +128-129,129-f-scape032,129,f,scape032,train,FALSE +130-131,130-f-a,130,f,a,valid,TRUE +130-131,131-f-scape027,131,f,scape027,valid,FALSE +132-133,132-f-a,132,f,a,valid,TRUE +132-133,133-f-scape034,133,f,scape034,valid,FALSE +134-135,134-f-a,134,f,a,train,TRUE +134-135,135-f-scape029,135,f,scape029,train,FALSE +136-137,136-f-a,136,f,a,train,TRUE +136-137,137-f-scape011,137,f,scape011,train,FALSE +138-139,138-f-a,138,f,a,valid,TRUE +138-139,139-f-scape010,139,f,scape010,valid,FALSE +140-141,140-f-a,140,f,a,test,TRUE +140-141,141-f-scape057,141,f,scape057,test,FALSE +142-143,142-f-a,142,f,a,train,TRUE +142-143,143-f-scape002,143,f,scape002,train,FALSE +144-145,144-f-a,144,f,a,valid,TRUE +144-145,145-f-scape014,145,f,scape014,valid,FALSE +146-147,146-f-a,146,f,a,test,TRUE +146-147,147-f-scape032,147,f,scape032,test,FALSE +148-149,148-f-a,148,f,a,train,TRUE +148-149,149-f-scape009,149,f,scape009,train,FALSE +150-151,150-f-a,150,f,a,train,TRUE +150-151,151-f-scape070,151,f,scape070,train,FALSE +152-153,152-f-a,152,f,a,test,TRUE +152-153,153-f-scape068,153,f,scape068,test,FALSE +154-155,154-f-a,154,f,a,test,TRUE +154-155,155-f-scape014,155,f,scape014,long,TRUE +156-157,156-f-a,156,f,a,train,TRUE +156-157,157-f-scape036,157,f,scape036,train,FALSE +158-159,158-f-a,158,f,a,train,TRUE +158-159,159-f-scape006,159,f,scape006,train,FALSE +160-161,160-f-a,160,f,a,test,TRUE +160-161,161-f-scape015,161,f,scape015,test,FALSE +162-163,162-f-a,162,f,a,train,TRUE +162-163,163-f-scape039,163,f,scape039,train,FALSE +164-165,164-f-a,164,f,a,train,TRUE +164-165,165-f-scape050,165,f,scape050,train,FALSE +166-167,166-f-a,166,f,a,long,FALSE +166-167,167-f-scape048,167,f,scape048,test,TRUE +168-169,168-f-a,168,f,a,train,TRUE +168-169,169-f-scape029,169,f,scape029,train,FALSE +170-171,170-f-a,170,f,a,valid,TRUE +170-171,171-f-scape011,171,f,scape011,valid,FALSE +172-173,172-f-a,172,f,a,train,TRUE +172-173,173-f-scape006,173,f,scape006,train,FALSE +174-175,174-f-a,174,f,a,train,TRUE +174-175,175-f-scape031,175,f,scape031,train,FALSE +176-177,176-f-a,176,f,a,valid,TRUE +176-177,177-f-scape068,177,f,scape068,valid,FALSE +178-179,178-f-a,178,f,a,train,TRUE +178-179,179-f-scape015,179,f,scape015,train,FALSE +180-181,180-f-a,180,f,a,test,TRUE +180-181,181-f-scape032,181,f,scape032,test,FALSE +182-183,182-f-a,182,f,a,train,TRUE +182-183,183-f-scape038,183,f,scape038,train,FALSE +184-185,184-f-a,184,f,a,train,TRUE +184-185,185-f-scape039,185,f,scape039,train,FALSE +186-187,186-f-a,186,f,a,valid,TRUE +186-187,187-f-scape061,187,f,scape061,valid,FALSE +188-189,188-f-a,188,f,a,train,TRUE +188-189,189-f-scape063,189,f,scape063,train,FALSE +190-191,190-f-a,190,f,a,train,TRUE +190-191,191-f-scape057,191,f,scape057,train,FALSE +192-193,192-f-a,192,f,a,valid,TRUE +192-193,193-f-scape032,193,f,scape032,valid,FALSE +194-195,194-f-a,194,f,a,train,TRUE +194-195,195-f-scape020,195,f,scape020,train,FALSE +196-197,196-f-a,196,f,a,train,TRUE +196-197,197-f-scape014,197,f,scape014,train,FALSE +198-199,198-f-a,198,f,a,train,TRUE +198-199,199-f-scape010,199,f,scape010,train,FALSE +200-201,200-m-run,200,m,run,test,TRUE +200-201,201-m-u,201,m,u,test,FALSE +202-203,202-m-run,202,m,run,train,TRUE +202-203,203-m-u,203,m,u,train,FALSE +204-205,204-m-run,204,m,run,train,TRUE +204-205,205-m-u,205,m,u,train,FALSE +206-207,206-m-run,206,m,run,train,TRUE +206-207,207-m-u,207,m,u,train,FALSE +208-209,208-m-run,208,m,run,long,TRUE +208-209,209-m-u,209,m,u,test,TRUE +210-211,210-m-run,210,m,run,valid,TRUE +210-211,211-m-u,211,m,u,valid,FALSE +212-213,212-m-run,212,m,run,train,TRUE +212-213,213-m-u,213,m,u,train,FALSE +214-215,214-m-run,214,m,run,train,TRUE +214-215,215-m-u,215,m,u,train,FALSE +216-217,216-m-scape010,216,m,scape010,train,TRUE +216-217,217-m-u,217,m,u,train,FALSE +218-219,218-m-scape032,218,m,scape032,valid,TRUE +218-219,219-m-u,219,m,u,valid,FALSE +220-221,220-m-scape059,220,m,scape059,test,TRUE +220-221,221-m-u,221,m,u,long,TRUE +222-223,222-m-scape068,222,m,scape068,valid,TRUE +222-223,223-m-u,223,m,u,valid,FALSE +224-225,224-m-scape009,224,m,scape009,test,TRUE +224-225,225-m-u,225,m,u,test,FALSE +226-227,226-m-scape010,226,m,scape010,train,FALSE +226-227,227-m-u,227,m,u,train,TRUE +228-229,228-m-scape070,228,m,scape070,train,TRUE +228-229,229-m-u,229,m,u,train,FALSE +230-231,230-m-scape063,230,m,scape063,valid,TRUE +230-231,231-m-u,231,m,u,valid,FALSE +232-233,232-m-scape010,232,m,scape010,valid,TRUE +232-233,233-m-u,233,m,u,valid,FALSE +234-235,234-m-scape070,234,m,scape070,train,TRUE +234-235,235-m-u,235,m,u,train,FALSE +236-237,236-m-scape008,236,m,scape008,test,FALSE +236-237,237-m-u,237,m,u,test,TRUE +238-239,238-m-scape059,238,m,scape059,train,TRUE +238-239,239-m-u,239,m,u,train,TRUE +240-241,240-m-scape012,240,m,scape012,train,TRUE +240-241,241-m-u,241,m,u,train,FALSE +242-243,242-m-scape057,242,m,scape057,train,TRUE +242-243,243-m-u,243,m,u,train,FALSE +244-245,244-m-scape012,244,m,scape012,test,TRUE +244-245,245-m-u,245,m,u,test,FALSE +246-247,246-m-scape015,246,m,scape015,train,FALSE +246-247,247-m-u,247,m,u,train,TRUE +248-249,248-m-scape034,248,m,scape034,train,TRUE +248-249,249-m-u,249,m,u,train,FALSE +250-251,250-m-scape046,250,m,scape046,train,TRUE +250-251,251-m-u,251,m,u,train,FALSE +252-253,252-m-scape068,252,m,scape068,valid,TRUE +252-253,253-m-u,253,m,u,valid,FALSE +254-255,254-m-scape011,254,m,scape011,train,TRUE +254-255,255-m-u,255,m,u,train,FALSE +256-257,256-m-scape063,256,m,scape063,valid,TRUE +256-257,257-m-u,257,m,u,valid,FALSE +258-259,258-m-scape036,258,m,scape036,train,FALSE +258-259,259-m-u,259,m,u,train,TRUE +260-261,260-m-scape002,260,m,scape002,test,TRUE +260-261,261-m-u,261,m,u,test,FALSE +262-263,262-m-scape032,262,m,scape032,test,TRUE +262-263,263-m-u,263,m,u,test,FALSE +264-265,264-m-scape031,264,m,scape031,train,TRUE +264-265,265-m-u,265,m,u,train,FALSE +266-267,266-m-scape046,266,m,scape046,test,TRUE +266-267,267-m-u,267,m,u,test,FALSE +268-269,268-m-scape039,268,m,scape039,train,TRUE +268-269,269-m-u,269,m,u,train,FALSE +270-271,270-m-scape048,270,m,scape048,valid,TRUE +270-271,271-m-u,271,m,u,valid,FALSE +272-273,272-m-scape034,272,m,scape034,train,FALSE +272-273,273-m-u,273,m,u,train,TRUE +274-275,274-m-scape015,274,m,scape015,train,TRUE +274-275,275-m-u,275,m,u,train,FALSE +276-277,276-m-scape006,276,m,scape006,train,TRUE +276-277,277-m-u,277,m,u,train,FALSE +278-279,278-m-scape013,278,m,scape013,test,TRUE +278-279,279-m-u,279,m,u,test,FALSE +280-281,280-m-scape032,280,m,scape032,valid,TRUE +280-281,281-m-u,281,m,u,valid,FALSE +282-283,282-m-scape057,282,m,scape057,train,TRUE +282-283,283-m-u,283,m,u,train,FALSE +284-285,284-m-scape008,284,m,scape008,valid,TRUE +284-285,285-m-u,285,m,u,valid,FALSE +286-287,286-m-scape061,286,m,scape061,train,TRUE +286-287,287-m-u,287,m,u,train,FALSE +288-289,288-m-scape061,288,m,scape061,test,TRUE +288-289,289-m-u,289,m,u,test,FALSE +290-291,290-m-a,290,m,a,test,TRUE +290-291,291-m-scape029,291,m,scape029,test,FALSE +292-293,292-m-a,292,m,a,train,TRUE +292-293,293-m-scape057,293,m,scape057,train,FALSE +294-295,294-m-a,294,m,a,valid,TRUE +294-295,295-m-scape038,295,m,scape038,valid,FALSE +296-297,296-m-a,296,m,a,train,TRUE +296-297,297-m-scape029,297,m,scape029,train,FALSE +298-299,298-m-a,298,m,a,train,TRUE +298-299,299-m-scape006,299,m,scape006,train,FALSE +300-301,300-m-a,300,m,a,train,TRUE +300-301,301-m-scape012,301,m,scape012,train,FALSE +302-303,302-m-a,302,m,a,train,TRUE +302-303,303-m-scape027,303,m,scape027,train,FALSE +304-305,304-m-a,304,m,a,train,FALSE +304-305,305-m-scape020,305,m,scape020,train,TRUE +306-307,306-m-a,306,m,a,long,TRUE +306-307,307-m-scape048,307,m,scape048,test,TRUE +308-309,308-m-a,308,m,a,train,FALSE +308-309,309-m-scape050,309,m,scape050,train,TRUE +310-311,310-m-a,310,m,a,valid,FALSE +310-311,311-m-scape020,311,m,scape020,valid,TRUE +312-313,312-m-a,312,m,a,train,FALSE +312-313,313-m-scape011,313,m,scape011,train,TRUE +314-315,314-m-a,314,m,a,train,FALSE +314-315,315-m-scape027,315,m,scape027,train,TRUE +316-317,316-m-a,316,m,a,train,TRUE +316-317,317-m-scape008,317,m,scape008,train,FALSE +318-319,318-m-a,318,m,a,train,FALSE +318-319,319-m-scape005,319,m,scape005,train,TRUE +320-321,320-m-a,320,m,a,train,TRUE +320-321,321-m-scape005,321,m,scape005,train,FALSE +322-323,322-m-a,322,m,a,train,FALSE +322-323,323-m-scape014,323,m,scape014,train,TRUE +324-325,324-m-a,324,m,a,train,TRUE +324-325,325-m-scape050,325,m,scape050,train,FALSE +326-327,326-m-a,326,m,a,train,FALSE +326-327,327-m-scape039,327,m,scape039,train,TRUE +328-329,328-m-a,328,m,a,train,FALSE +328-329,329-m-scape042,329,m,scape042,train,TRUE +330-331,330-m-a,330,m,a,valid,FALSE +330-331,331-m-scape013,331,m,scape013,valid,TRUE +332-333,332-m-a,332,m,a,valid,TRUE +332-333,333-m-scape061,333,m,scape061,valid,FALSE +334-335,334-m-a,334,m,a,train,FALSE +334-335,335-m-scape059,335,m,scape059,train,TRUE +336-337,336-m-a,336,m,a,train,FALSE +336-337,337-m-scape050,337,m,scape050,train,TRUE +338-339,338-m-a,338,m,a,valid,FALSE +338-339,339-m-scape002,339,m,scape002,valid,TRUE +340-341,340-m-a,340,m,a,test,FALSE +340-341,341-m-scape005,341,m,scape005,test,TRUE +342-343,342-m-a,342,m,a,train,FALSE +342-343,343-m-scape014,343,m,scape014,train,TRUE +344-345,344-m-a,344,m,a,valid,TRUE +344-345,345-m-scape062,345,m,scape062,valid,FALSE +346-347,346-m-a,346,m,a,test,TRUE +346-347,347-m-scape068,347,m,scape068,test,FALSE +348-349,348-m-a,348,m,a,train,FALSE +348-349,349-m-scape050,349,m,scape050,train,TRUE +350-351,350-m-a,350,m,a,train,TRUE +350-351,351-m-scape038,351,m,scape038,train,FALSE +352-353,352-m-a,352,m,a,test,TRUE +352-353,353-m-scape034,353,m,scape034,test,FALSE +354-355,354-m-a,354,m,a,long,TRUE +354-355,355-m-scape038,355,m,scape038,test,TRUE +356-357,356-m-a,356,m,a,train,TRUE +356-357,357-m-scape009,357,m,scape009,train,FALSE +358-359,358-m-a,358,m,a,train,FALSE +358-359,359-m-scape011,359,m,scape011,train,TRUE +360-361,360-m-a,360,m,a,long,TRUE +360-361,361-m-scape062,361,m,scape062,test,TRUE +362-363,362-m-a,362,m,a,train,FALSE +362-363,363-m-scape039,363,m,scape039,train,TRUE +364-365,364-m-a,364,m,a,train,FALSE +364-365,365-m-scape068,365,m,scape068,train,TRUE +366-367,366-m-a,366,m,a,long,TRUE +366-367,367-m-scape046,367,m,scape046,test,TRUE +368-369,368-m-a,368,m,a,train,FALSE +368-369,369-m-scape013,369,m,scape013,train,TRUE +370-371,370-m-a,370,m,a,valid,FALSE +370-371,371-m-scape015,371,m,scape015,valid,FALSE +372-373,372-m-a,372,m,a,train,FALSE +372-373,373-m-scape048,373,m,scape048,train,TRUE +374-375,374-m-a,374,m,a,train,FALSE +374-375,375-m-scape014,375,m,scape014,train,TRUE +376-377,376-m-a,376,m,a,valid,FALSE +376-377,377-m-scape046,377,m,scape046,valid,TRUE +378-379,378-m-a,378,m,a,train,TRUE +378-379,379-m-scape063,379,m,scape063,train,FALSE +380-381,380-m-a,380,m,a,test,TRUE +380-381,381-m-scape002,381,m,scape002,test,FALSE +382-383,382-m-a,382,m,a,train,TRUE +382-383,383-m-scape031,383,m,scape031,train,FALSE +384-385,384-m-a,384,m,a,train,FALSE +384-385,385-m-scape003,385,m,scape003,train,TRUE +386-387,386-m-a,386,m,a,valid,TRUE +386-387,387-m-scape027,387,m,scape027,valid,FALSE +388-389,388-m-a,388,m,a,train,FALSE +388-389,389-m-scape011,389,m,scape011,train,TRUE +390-391,390-m-a,390,m,a,train,TRUE +390-391,391-m-scape029,391,m,scape029,train,FALSE +392-393,392-m-a,392,m,a,valid,FALSE +392-393,393-m-scape006,393,m,scape006,valid,TRUE +394-395,394-m-a,394,m,a,train,TRUE +394-395,395-m-scape070,395,m,scape070,train,TRUE +396-397,396-m-a,396,m,a,train,TRUE +396-397,397-m-scape034,397,m,scape034,train,FALSE +398-399,398-m-a,398,m,a,train,FALSE +398-399,399-m-scape020,399,m,scape020,train,TRUE \ No newline at end of file diff --git a/DermSynth3D/skin3d/requirements.txt b/DermSynth3D/skin3d/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..5e500009eed0c076d88b927a92628081a8be120f --- /dev/null +++ b/DermSynth3D/skin3d/requirements.txt @@ -0,0 +1,4 @@ +pandas +numpy +pillow +jupyterlab diff --git a/DermSynth3D/skin3d/skin3d/__pycache__/annotate.cpython-310.pyc b/DermSynth3D/skin3d/skin3d/__pycache__/annotate.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..83ade1abcd2d4404581a654c79b2b6f6fb823992 Binary files /dev/null and b/DermSynth3D/skin3d/skin3d/__pycache__/annotate.cpython-310.pyc differ diff --git a/DermSynth3D/skin3d/skin3d/__pycache__/bodytex.cpython-310.pyc b/DermSynth3D/skin3d/skin3d/__pycache__/bodytex.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4ef2861473b91feabc7a2cea24be690c184b6b35 Binary files /dev/null and b/DermSynth3D/skin3d/skin3d/__pycache__/bodytex.cpython-310.pyc differ diff --git a/DermSynth3D/skin3d/skin3d/annotate.py b/DermSynth3D/skin3d/skin3d/annotate.py new file mode 100644 index 0000000000000000000000000000000000000000..20562d9fbbdcae0d7b18a840c8f384506c9b04aa --- /dev/null +++ b/DermSynth3D/skin3d/skin3d/annotate.py @@ -0,0 +1,84 @@ +from __future__ import annotations +import os +import json +import pandas as pd +from typing import Optional + + +def lesion_properties_from_annotations( + df: pd.DataFrame, + scan_id: Optional[str] = None, + ) -> list[dict]: + """Load specific properties from the annotations.""" + + properties = [] + for region_attributes, coords in zip( + df.region_attributes, df.region_shape_attributes): + coords = json.loads(coords) + x = coords['x'] + y = coords['y'] + w = coords['width'] + h = coords['height'] + + # Some annotations had `undefined` values, + # which JSON does not parse well without quotes. + if 'undefined' in region_attributes: + region_attributes = region_attributes.replace( + 'undefined', '"undefined"') + + region_attributes = json.loads(region_attributes) + # If the lesion_id field exists and is set, + # then set the lesion_id. + lesion_id = "" + if 'lesion_id' in region_attributes and \ + region_attributes['lesion_id'] != "": + lesion_id = int(region_attributes['lesion_id']) + + annotator = "" + if 'annotator' in region_attributes: + annotator = region_attributes['annotator'] + + properties.append( + { + 'scan_id': scan_id, + 'x': x, 'y': y, + 'x2': x + w, 'y2': y + h, + 'width': w, 'height': h, + 'annotator': annotator, + 'lesion_id': lesion_id, + } + ) + + return properties + + +def load_multiple_annotations( + dir_multi_annotate: str + ) -> dict[dict[pd.DataFrame]]: + """Returns a dictionary of annotations for multiple readers. + + The returned dictionary contains a dictionary of dataframes. + annotations.keys() -> list of annotaor IDs e.g., ['A1', 'A2'] + annotations['A1'].keys() -> list of scan IDs e.g., ['000', '009'] + annotations['A1']['000'] -> dataframe of annotations + done by 'A1' for scan '000' + """ + + annotators = sorted(os.listdir(dir_multi_annotate)) + annotators = [ann for ann in annotators if not ann.startswith('.')] + + annotations = {} + for annotator in annotators: + dir_single_annotator = os.path.join(dir_multi_annotate, annotator) + user_annotation_csvs = sorted(os.listdir(dir_single_annotator)) + user_annotations = {} + for csv_name in user_annotation_csvs: + csv_filepath = os.path.join(dir_single_annotator, csv_name) + annotate_df = pd.read_csv(csv_filepath) + lesion_properties = lesion_properties_from_annotations(annotate_df) + scan_id, _ = csv_name.split('.') + user_annotations[scan_id] = pd.DataFrame(lesion_properties) + + annotations[annotator] = user_annotations + + return annotations diff --git a/DermSynth3D/skin3d/skin3d/bodytex.py b/DermSynth3D/skin3d/skin3d/bodytex.py new file mode 100644 index 0000000000000000000000000000000000000000..bd2dcb0635d0a47dd6238587256597ed73d7220e --- /dev/null +++ b/DermSynth3D/skin3d/skin3d/bodytex.py @@ -0,0 +1,201 @@ +import os +import pandas as pd +from PIL import Image +from typing import Optional, List +from skin3d.annotate import ( + lesion_properties_from_annotations, +) + + +class BodyTexDataset: + """3DBodyTex dataset with manual annotations. + + Args: + df: Data-frame summarizing the BodyTex dataset. + dir_annotate: String indication the directory containing + the single manual annotations. + dir_multi_annotate: String indicating the directory + containing the test manual annotations of multiple annotators. + dir_textures: Optional string indicating the directory of the + meshes' texture images. + """ + + def __init__( + self, + df: pd.DataFrame, + dir_annotate: str = '../data/3dbodytex-1.1-highres/annotations/', + dir_multi_annotate: str = '../data/3dbodytex-1.1-highres/multiple_annotators/', + dir_textures: Optional[str] = None, + ): + + self.df = df + self.dir_annotate = dir_annotate + self.dir_multi_annotate = dir_multi_annotate + self.dir_textures = dir_textures + + def annotated_scan_ids(self, partition: str) -> List[str]: + """Return the annotated scan IDs of the given `partition`.""" + return list( + self.annotated_samples_in_partition(partition).scan_id.values) + + def scan_row(self, scan_id: str) -> pd.DataFrame: + """Return the row corresponding to the `scan_id`. + + Raises: + ValueError: Raises if multiple records correspond + to the `scan_id`. + """ + scan_row = self.df[self.df.scan_id == scan_id] + if len(scan_row) > 1: + raise ValueError( + "Multiple rows returned. `scan_id` should be unique.") + + return scan_row + + def texture_filepath( + self, scan_id: str, highres: bool = True) -> str: + """Return the filepath to the texture image for the given `scan_id`. + + Args: + scan_id (string): A string representing scan identifier + (i.e., `self.df.scan_id`). + highres (bool, optional): If True, returns the filepath + to the high-resolution image. + Else, returns the filepath to the low-resolution image. + This assumes you correctly set the `self.dir_textures` + to the directory containing the low or high-resolution images + + Returns: + string: Filepath to the texture image. + """ + scan_row = self.scan_row(scan_id) + + if highres: + image_name = 'model_highres_0_normalized.png' + else: + image_name = 'model_lowres_0_normalized.png' + + folder_filename = os.path.join( + scan_row.scan_name.values[0], image_name) + + if self.dir_textures is None: + return folder_filename + else: + return os.path.join(self.dir_textures, folder_filename) + + def annotation_filepath( + self, + scan_id: int, + annotator: Optional[str] = None, + ) -> str: + """Return the path to the annotation CSV.""" + + filepath = scan_id + '.csv' + + if annotator is None: + filepath = os.path.join(self.dir_annotate, filepath) + else: + filepath = os.path.join( + self.dir_multi_annotate, annotator, filepath) + + return filepath + + def annotation( + self, + scan_id: str, + annotator: Optional[str] = None, + ) -> pd.DataFrame: + """Return a dataframe for the annotations of `scan_id`. + + If `annotator` is None, then return + the annotations in `self.dir_annotate`. + If `annotator` is not None, then return + the annotations for `scan_id` for the given `annotator`. + Specifically, this gets the annotations + in `self.dir_multi_annotate/` + `annotator`, + which corresponds to the test set annotations + done by `annotator`. + """ + + annotated_df = pd.read_csv( + self.annotation_filepath(scan_id=scan_id, annotator=annotator), + ) + ann_properties = lesion_properties_from_annotations( + annotated_df, scan_id) + + return pd.DataFrame(ann_properties) + + def annotations( + self, + scan_ids: List[str], + annotator: Optional[str] = None, + ) -> pd.DataFrame: + """Return a dataframe of all annotations for the given `scan_ids`.""" + all_ann_dfs = [] + for scan_id in scan_ids: + ann = self.annotation(scan_id=scan_id, annotator=annotator) + all_ann_dfs.append(ann) + + return pd.concat(all_ann_dfs) + + def texture_image(self, scan_id: str) -> Image: + """Return the texture image corresponding to `scan_id`.""" + img_path = self.texture_filepath(scan_id=scan_id) + img = Image.open(img_path).convert("RGB") + return img + + def annotation_ids_in_partition(self, partition: str) -> List[str]: + partition_ids = self.annotated_samples_in_partition( + partition=partition).scan_id.values + + return list(partition_ids) + + def annotated_samples_in_partition(self, partition: str) -> pd.DataFrame: + """Return the selected annotated samples belonging to the `partition`. + + We select a subset of the rows (i.e., scans) to annotate + and include in our experiments. + + Args: + partition (string): A string indicating the partition. + Corresponds to `self.df.partition`. + + Returns: + DataFrame: The rows assigned to the partition + that were selected to be studied in the experiment. + """ + is_partition = (self.df.partition == partition).values + is_selected = self.df.selected.values + return self.df[is_partition & is_selected] + + def summary(self): + """Print summary statistics of the annotations.""" + train_ids = self.annotated_scan_ids('train') + valid_ids = self.annotated_scan_ids('valid') + test_ids = self.annotated_scan_ids('test') + long_ids = self.annotated_scan_ids('long') + scan_ids = train_ids + valid_ids + test_ids + long_ids + + # Load the single annotator annotations. + annotations_single = self.annotations(scan_ids) + + # Load the multiple annototators' test annotations. + a1 = self.annotations(test_ids, annotator='A1') + a2 = self.annotations(test_ids, annotator='A2') + a3 = self.annotations(test_ids, annotator='A3') + + # Combine all annotations into a single data-frame to compute stats. + annotations = annotations_single.append([a1, a2, a3]) + + print("Number of scans annotated with lesions: {}".format( + len(scan_ids))) + print("Number of annotated training scans: {}".format(len(train_ids))) + print("Number of annotated validation scans: {}".format( + len(valid_ids))) + print("Number of annotated testing scans: {}".format(len(test_ids))) + print("Number of annotated longitudinal scans: {}".format( + len(long_ids))) + print("Total number of lesions annotated: {}".format( + len(annotations))) + print("Average annotated lesion width={:.2f}, height={:.2f}".format( + annotations.width.mean(), annotations.height.mean())) diff --git a/DermSynth3D/skin3d/skin3d/visualize.py b/DermSynth3D/skin3d/skin3d/visualize.py new file mode 100644 index 0000000000000000000000000000000000000000..d0434e8043288cc95ac3e45141b7233c53297ecb --- /dev/null +++ b/DermSynth3D/skin3d/skin3d/visualize.py @@ -0,0 +1,25 @@ +import numpy as np +import pandas as pd + + +def embed_box_borders(img, x, y, w, h, color, pad): + p = pad + + img[y:y + h, x - p:x, :] = color + img[y:y + h, x + w:x + w + p, :] = color + img[y - p:y, x - p:x + w + p, :] = color + img[y + h:y + h + p, x - p:x + w + p, :] = color + + +def embed_annotatations( + img: np.array, + annotations: pd.DataFrame, + color: tuple, pad: int): + """Embed the annotations in the image. + + Note that `img` is a mutable object and will be changed + (which is why nothing is returned). + + """ + for _, row in annotations.iterrows(): + embed_box_borders(img, row.x, row.y, row.width, row.height, color, pad)