from functools import partial import gradio as gr from PIL import Image import numpy as np import gradio as gr import torch import os import fire import multiprocessing as mp import os, sys sys.path.append(os.path.join(os.path.dirname(__file__), "DermSynth3D")) sys.path.append(os.path.join(os.path.dirname(__file__), "DermSynth3D", "dermsynth3d")) sys.path.append(os.path.join(os.path.dirname(__file__), "DermSynth3D", "skin3d")) import pandas as pd import numpy as np from glob import glob from PIL import Image import torch import torch.nn as nn import trimesh import plotly.graph_objects as go from plotly.subplots import make_subplots import math from trimesh import transformations as tf import os from math import pi import matplotlib.pyplot as plt import plotly import plotly.graph_objects as go from skimage import io view_width = 400 view_height = 400 import mediapy as mpy try: from pytorch3d.io import load_objs_as_meshes from pytorch3d.structures import Meshes from pytorch3d.renderer import ( look_at_view_transform, FoVPerspectiveCameras, PointLights, DirectionalLights, Materials, RasterizationSettings, MeshRenderer, MeshRasterizer, SoftPhongShader, TexturesUV, TexturesVertex, ) print("Pytorch3d compiled properly") except: print("Pytorch3d not compiled properly. Install pytorch3d with torch/cuda support") try: sys.path.append("./DermSynth3D/") sys.path.append("./DermSynth3D/dermsynth3d/") sys.path.append("./DermSynth3D/skin3d/") from dermsynth3d import BlendLesions, Generate2DViews, SelectAndPaste from dermsynth3d.tools.generate2d import Generate2DHelper from dermsynth3d.utils.utils import yaml_loader from dermsynth3d.utils.utils import random_bound, make_masks from dermsynth3d.tools.synthesize import Synthesize2D from dermsynth3d.datasets.synth_dataset import SynthesizeDataset from dermsynth3d.tools.renderer import ( MeshRendererPyTorch3D, camera_pos_from_normal, ) from dermsynth3d.deepblend.blend3d import Blended3d from dermsynth3d.utils.channels import Target from dermsynth3d.utils.tensor import ( pil_to_tensor, ) from dermsynth3d.utils.colorconstancy import shade_of_gray_cc from dermsynth3d.datasets.datasets import Fitz17KAnnotations, Background2d from skin3d.skin3d.bodytex import BodyTexDataset print("DermSynth3D compiled properly") except Exception as e: print(e) print("DermSynth3D not in the path. Make sure to add it to the path.") _TITLE = """DermSynth3D: A Framework for generating Synthetic Dermatological Images""" _DESCRIPTION = """ **Step 1**. Select the Mesh, texture map and number of lesions from the dropdown or select an example.
**Step 2**. Selct the number of views to render.
**Step 3** (optional). Randomize the view parameters by clicking on the checkbox.
**Step 4**. Click on the Render Views button to render the views.
""" deployed = True if deployed: print(f"Is CUDA available: {torch.cuda.is_available()}") global DEVICE DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") else: print("Running on CPU") global mesh_paths, mesh_names, all_textures, dir_blended_textures, dir_anatomy global get_no_lesion_path, get_mesh_path, get_mask_path, get_dilated_lesion_path global get_blended_lesion_path, get_pasted_lesion_path, get_texture_module global dir_blended_textures, dir_anatomy, dir_background # File path of the bodytex CSV. bodytex_csv = "./DermSynth3D/skin3d/data/3dbodytex-1.1-highres/bodytex.csv" bodytex_df = pd.read_csv(bodytex_csv, converters={"scan_id": lambda x: str(x)}) bodytex = BodyTexDataset( df=bodytex_df, dir_textures="./DermSynth3D/data/3dbodytex-1.1-highres/", dir_annotate="./DermSynth3D/skin3d/data/3dbodytex-1.1-highres/annotations/", ) # True to use the blended lesions, False to use the pasted lesions. is_blend = True background_ds = Background2d( dir_images="./DermSynth3D/data/background/IndoorScene/", image_filenames=None, ) def prepare_ds_renderer( randomize, mesh_name, texture_name, num_lesion, num_views, dist, elev, azim, light_pos, light_ac, light_dc, light_sc, mat_sh, mat_sc, device=DEVICE, ): mesh_filename = get_mesh_path(mesh_name) mesh = load_mesh_and_texture(mesh_name, texture_name, num_lesion, device) gr.Info("Preparing for Rendering...") mesh_renderer = MeshRendererPyTorch3D(mesh, DEVICE, config=None) extension = f"lesion_{num_lesion}" nevi_exists = os.path.exists(bodytex.annotation_filepath(mesh_name.split("_")[0])) gen2d = Generate2DHelper( mesh_filename=mesh_filename, dir_blended_textures="./hf_demo/lesions/", dir_anatomy="./DermSynth3D/data/bodytex_anatomy_labels/", fitz_ds=None, # fitz_ds, background_ds=background_ds, device=device, debug=True, bodytex=bodytex, blended_file_ext=extension, # if num_lesion > 0 else "demo", config=None, is_blended=is_blend, ) blended3d = Blended3d( mesh_filename=os.path.join( "./DermSynth3D/data/3dbodytex-1.1-highres/", mesh_name, "model_highres_0_normalized.obj", ), device=DEVICE, dir_blended_textures=dir_blended_textures, dir_anatomy=dir_anatomy, extension=extension if num_lesion > 0 else "demo", ) normal_texture = load_texture_map( mesh, mesh_name, "No Lesion", 0, device ).maps_padded() if num_lesion > 0: blended_texture_image = load_texture_map( mesh, mesh_name, "Blended Lesion", num_lesion, device ).maps_padded() pasted_texture_image = load_texture_map( mesh, mesh_name, "Pasted Lesion", num_lesion, device ).maps_padded() dilated_texture_image = load_texture_map( mesh, mesh_name, "Dilated Lesion", num_lesion, device ).maps_padded() # texture_lesion_mask = blended3d.lesion_texture_mask(astensor=True).to(device) # non_skin_texture_mask = blended3d.nonskin_texture_mask(astensor=True).to(device) # vertices_to_anatomy = blended3d.vertices_to_anatomy() # mesh_renderer.raster_settings = raster_settings renderer, cameras, lights, materials = set_rendering_params( randomize, 1, # num_views, dist, elev, azim, light_pos, light_ac, light_dc, light_sc, mat_sh, mat_sc, ) # mesh_renderer.mesh = mesh # mesh_renderer.cameras = cameras # mesh_renderer.lights = lights # mesh_renderer.materials = materials # mesh_renderer.renderer = renderer gr.Info("Successfully prepared renderer.") # render normal images gr.Info("Rendering Images...") # if num_views > 1: # mesh_renderer.mesh = mesh.extend(num_views) gr.Info(f"Rendering {num_views} views on {DEVICE}. Please wait...") img_count = 0 view2d = [] depth2d = [] anatomy2d = [] seg2d = [] view_size = (224, 224) while img_count < num_views: if randomize: gr.Info("Finding suitable parameters...") success = gen2d.randomize_parameters(config=None) if not success: gr.Info("Could not find suitable parameters. Trying again.") continue else: raster_settings = RasterizationSettings( image_size=view_size[0], blur_radius=0.0, faces_per_pixel=1, # max_faces_per_bin=100, # bin_size=0, perspective_correct=True, ) gen2d.mesh_renderer.cameras = cameras gen2d.mesh_renderer.lights = lights gen2d.mesh_renderer.materials = materials gen2d.mesh_renderer.raster_settings = raster_settings gen2d.mesh_renderer.initialize_renderer() gr.Info("Rasterization in progress...") gen2d.mesh_renderer.compute_fragments() gr.Info("Successfully rasterized.") paste_img, target = gen2d.render_image_and_target(paste_lesion=True) if paste_img is None: gr.Info( "***Not enough skin or unable to paste lesion. Skipping and Retrying." ) print("***Not enough skin or unable to paste lesion. Skipping.") continue paste_img = (paste_img * 255).astype(np.uint8) depth_view = target[:, :, 4] depth_img = (depth_view - depth_view.min()) / ( depth_view.max() - depth_view.min() ) depth_img = (depth_img * 255).astype(np.uint8) view2d.append(paste_img) depth2d.append(depth_img) anatomy2d.append(target[:, :, 5]) seg2d.append(target[:, :, 3]) gr.Info(f"Successfully rendered {img_count+1}/{num_views} image+annotations.") img_count += 1 return view2d, depth2d, anatomy2d, seg2d # mesh_renderer.compute_fragments() # view2d = mesh_renderer.render_view(asnumpy=True, asRGB=True) # gr.Info("Successfully rendered images.") # gr.Info("Preparing annotations...") # # breakpoint() # pix2face = torch.from_numpy(mesh_renderer.pixels_to_face()).to( # mesh_renderer.mesh.device # ) # pix2vert = torch.stack( # [a[i] for a, i in zip(mesh_renderer.mesh.faces_padded().squeeze(), pix2face)] # ) # pix2vert = pix2vert.detach().cpu().numpy() # anatomy_image = [ # vertices_to_anatomy[pix2vert[i]] * mesh_renderer.body_mask() # for i in range(num_views) # ] # anatomy_image = np.stack(anatomy_image) # anatomy_image = mesh_renderer.anatomy_image(vertices_to_anatomy) # depth_img = mesh_renderer.depth_view(asnumpy=True) # mesh_renderer.set_texture_image(texture_lesion_mask[:, :, np.newaxis]) # mask2d = mesh_renderer.render_view(asnumpy=True, asRGB=True) # lesion_mask = mesh_renderer.lesion_mask(mask2d[:, :, 0], lesion_mask_id=None) # # skin mask # mesh_renderer.set_texture_image(non_skin_texture_mask) # nonskin_mask = mesh_renderer.render_view(asnumpy=True, asRGB=True) # skin_mask = mesh_renderer.skin_mask(nonskin_mask[:, :, 0] > 0.5) # segmentation_mask = make_masks(lesion_mask, skin_mask) # gr.Info("Successfully prepared annotations.") # print(view2d.shape, anatomy_image.shape, depth_img.shape, segmentation_mask.shape) # convert anatomy image with labels for each pixel to an image with RGB values # map labels to pixels # return ( # view2d, # anatomy_image, # depth_img, # skin_mask, # ) # segmentation_mask # define the list of all the examples def get_examples(): # setup_paths() # get mesh names from here mesh_names = globals()["mesh_names"] # get the textures textures = ["No Lesion", "Pasted Lesion", "Blended Lesion", "Dilated Lesion"] lesions = [1, 2, 5, 10] examples = [] for mesh in mesh_names: for texture in textures: for lesion in lesions: if texture == "No Lesion": # examples.append([mesh, texture, 0, 4, True]) examples.append([mesh, texture, 0]) break # examples.append([mesh, texture, lesion, 4, True]) examples.append([mesh, texture, lesion]) return examples import tempfile def get_trimesh_attrs(mesh_name, tex_name, num_lesion=1): mesh_path = get_mesh_path(mesh_name) texture_path = get_texture_module(tex_name)(mesh_name, num_lesion) texture_img = Image.open(texture_path).convert("RGB") tri_mesh = trimesh.load(mesh_path) angle = -math.pi / 2 direction = [0, 1, 0] center = [0, 0, 0] rot_matrix = tf.rotation_matrix(angle, direction, center) tri_mesh = tri_mesh.apply_transform(rot_matrix) tri_mesh.apply_transform(tf.rotation_matrix(math.pi, [0, 0, 1], [-1, -1, -1])) verts, faces = tri_mesh.vertices, tri_mesh.faces uvs = tri_mesh.visual.uv material = trimesh.visual.texture.SimpleMaterial(image=texture_img) vis = trimesh.visual.TextureVisuals(uv=uvs, material=material, image=texture_img) tri_mesh.visual = vis colors = tri_mesh.visual.to_color() vc = colors.vertex_colors # / 255.0 # timg = tri_mesh.visual.material.image return verts, faces, vc, mesh_name def plotly_image(image): fig = go.Figure() fig.add_trace(go.Image(z=image)) fig.update_layout( width=view_width, height=view_height, margin=dict(l=0, r=0, b=0, t=0, pad=0), paper_bgcolor="rgba(0,0,0,0)", plot_bgcolor="rgba(0,0,0,0)", ) fig.update_xaxes(showticklabels=False) fig.update_yaxes(showticklabels=False) fig.update_traces(hoverinfo="none") return fig def plotly_mesh(verts, faces, vc, mesh_name): fig = go.Figure( data=[ go.Mesh3d( x=verts[:, 0], y=verts[:, 1], z=verts[:, 2], i=faces[:, 0], j=faces[:, 1], k=faces[:, 2], vertexcolor=vc, ) ] ) fig.update_layout(scene_aspectmode="manual", scene_aspectratio=dict(x=1, y=1, z=1)) fig.update_layout(scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False))) fig.update_layout(scene=dict(zaxis=dict(visible=False))) fig.update_layout(scene=dict(camera=dict(up=dict(x=1, y=0, z=1)))) fig.update_layout(scene=dict(camera=dict(eye=dict(x=-2, y=-2, z=-1)))) # disable hover info fig.update_traces(hoverinfo="none") return fig def load_texture_map(mesh, mesh_name, texture_name, num_lesion, device=DEVICE): verts = mesh.verts_packed().detach().cpu().numpy() faces = mesh.faces_packed().detach().cpu().numpy() normals = mesh.verts_normals_packed().detach().cpu().numpy() texture_path = get_texture_module(texture_name)(mesh_name, num_lesion) texture_img = Image.open(texture_path).convert("RGB") texture_tensor = torch.from_numpy(np.array(texture_img)).to(DEVICE) tmap = TexturesUV( maps=texture_tensor.float().to(device=mesh.device).unsqueeze(0), verts_uvs=mesh.textures.verts_uvs_padded(), faces_uvs=mesh.textures.faces_uvs_padded(), ) return tmap def load_mesh_and_texture(mesh_name, texture_name, num_lesion=1, device=DEVICE): """ Load a mesh and its corresponding texture. Args: mesh_name (str): The name of the mesh. texture_name (str): The name of the texture module. num_lesion (int, optional): The number of lesions. Defaults to 1. device (torch.device, optional): The device to load the mesh and texture on. Defaults to DEVICE. Returns: new_mesh (Meshes): The loaded mesh with texture. """ mesh_path = get_mesh_path(mesh_name) texture_path = get_texture_module(texture_name)(mesh_name, num_lesion) gr.Info("Loading mesh and texture...") mesh = load_objs_as_meshes([mesh_path], device=device) tmap = load_texture_map(mesh, mesh_name, texture_name, num_lesion, device) new_mesh = Meshes( verts=mesh.verts_padded(), faces=mesh.faces_padded(), textures=tmap ) return new_mesh def setup_cameras(dist, elev, azim, device=DEVICE): gr.Info("Setting up cameras...") R, T = look_at_view_transform(dist, elev, azim, degrees=True) cameras = FoVPerspectiveCameras(device=device, R=R, T=T, fov=30.0, znear=0.01) return cameras def setup_lights( light_pos, ambient_color, diffuse_color, specular_color, device=DEVICE ): gr.Info("Setting up lights...") lights = PointLights( device=device, location=light_pos, ambient_color=ambient_color, diffuse_color=diffuse_color, specular_color=specular_color, ) return lights def setup_materials(shininess, specularity, device=DEVICE): gr.Info("Setting up materials...") materials = Materials( device=device, specular_color=specularity, # [[specularity, specularity, specularity]], shininess=shininess.reshape(-1), # [shininess], ) return materials def setup_renderer(cameras, lights, materials, device=DEVICE): global raster_settings raster_settings = RasterizationSettings( image_size=128, blur_radius=0.0, faces_per_pixel=1, # max_faces_per_bin=100, # bin_size=0, perspective_correct=True, ) renderer = MeshRenderer( rasterizer=MeshRasterizer(cameras=cameras, raster_settings=raster_settings), shader=SoftPhongShader( device=device, cameras=cameras, lights=lights, materials=materials ), ) return renderer def render_images(renderer, mesh, lights, cameras, materials, nviews, device=DEVICE): meshes = mesh.extend(nviews) gr.Info("Rendering Images...") images = renderer(meshes, lights=lights, cameras=cameras, materials=materials) gr.Info("Successfully rendered images.") images = images[..., :3] images = (images - images.min()) / (images.max() - images.min()) return images fragments = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)(meshes) # print(images.shape) # breakpoint() return images def randomize_view_params(randomize, num_views): dist = torch.rand(num_views).uniform_(0.0, 10.0) elev = torch.rand(num_views).uniform_(-90, 90) azim = torch.rand(num_views).uniform_(-90, 90) light_pos = torch.rand(num_views, 3).uniform_(0.0, 2.0) light_ac = torch.rand(num_views, 3).uniform_(0.0, 1.0) light_dc = torch.rand(num_views, 3).uniform_(0.0, 1.0) light_sc = torch.rand(num_views, 3).uniform_(0.0, 1.0) mat_sh = torch.rand(num_views, 1).uniform_(0, 100) mat_sc = torch.rand(num_views, 3).uniform_(0.0, 1.0) gr.Info("Randomized view parameters...") return ( dist, elev, azim, light_pos, light_ac, light_dc, light_sc, mat_sh, mat_sc, ) def sample_camera_params(num_views, dist, elev, azim): gr.Info("Setting up cameras...") dist = torch.linspace(dist - num_views // 2, dist + num_views // 2, num_views) elev = torch.linspace(elev - num_views // 2, elev + num_views // 2, num_views) azim = torch.linspace(azim - num_views // 2, azim + num_views // 2, num_views) cameras = setup_cameras(dist, elev, azim) return cameras def sample_light_params(num_views, light_pos, light_ac, light_dc, light_sc): gr.Info("Setting up lights...") light_pos = ( torch.linspace( light_pos - num_views // 2, light_pos + num_views // 2, num_views ) .reshape(-1, 1) .repeat(1, 3) ) light_ac = ( torch.linspace(light_ac - num_views // 2, light_ac + num_views // 2, num_views) .reshape(-1, 1) .repeat(1, 3) ) light_dc = ( torch.linspace(light_dc - num_views // 2, light_dc + num_views // 2, num_views) .reshape(-1, 1) .repeat(1, 3) ) light_sc = ( torch.linspace(light_sc - num_views // 2, light_sc + num_views // 2, num_views) .reshape(-1, 1) .repeat(1, 3) ) lights = setup_lights(light_pos, light_ac, light_dc, light_sc) return lights def sample_material_params(num_views, mat_sh, mat_sc): gr.Info("Setting up materials...") mat_sh = ( torch.linspace(mat_sh - num_views // 2, mat_sh + num_views // 2, num_views) .reshape(-1, 1) .repeat(1, 1) ) mat_sc = ( torch.linspace(mat_sc - num_views // 2, mat_sc + num_views // 2, num_views) .reshape(-1, 1) .repeat(1, 3) ) materials = setup_materials(mat_sh, mat_sc) return materials def set_rendering_params( randomize, num_views, dist, elev, azim, light_pos, light_ac, light_dc, light_sc, mat_sh, mat_sc, ): if randomize: ( dist, elev, azim, light_pos, light_ac, light_dc, light_sc, mat_sh, mat_sc, ) = randomize_view_params(randomize, num_views) cameras = setup_cameras(dist, elev, azim) lights = setup_lights(light_pos, light_ac, light_dc, light_sc) materials = setup_materials(mat_sh, mat_sc) else: cameras = sample_camera_params(num_views, dist, elev, azim) lights = sample_light_params(num_views, light_pos, light_ac, light_dc, light_sc) materials = sample_material_params(num_views, mat_sh, mat_sc) renderer = setup_renderer(cameras, lights, materials) return renderer, cameras, lights, materials def process_examples(mesh_name, tex_name, n_lesion): mesh_path = get_mesh_path(mesh_name) texture_path = get_texture_module(tex_name)(mesh_name, n_lesion) mesh_to_view = plotly_mesh(*get_trimesh_attrs(mesh_name, tex_name, n_lesion)) # mesh = load_mesh_and_texture(mesh_name, tex_name, n_lesion) return mesh_to_view, texture_path, n_lesion def update_plots(mesh_name, texture_name, num_lesion): if num_lesion > 0 and texture_name == "No Lesion": gr.Warning( f"Cannot display '{texture_name}' texture map with {num_lesion} lesions! Please change the texture. Meanwhile, not updating the display." ) return default_mesh_plot, default_texture, num_lesion elif num_lesion == 0 and texture_name != "No Lesion": go.Warning( f"Cannot display '{texture_name}' texture map with {num_lesion} lesions! Please increase the number of lesions." ) return default_mesh_plot, default_texture, num_lesion mesh_path = get_mesh_path(mesh_name) texture_path = get_texture_module(texture_name)(mesh_name, num_lesion) mesh_to_view = plotly_mesh(*get_trimesh_attrs(mesh_name, texture_name, num_lesion)) gr.Info("Successfully updated mesh and texture.") return mesh_to_view, texture_path, num_lesion def run_demo(): # get the defined examples all_examples = get_examples() mesh_block = gr.Plot( label="Selected Mesh", value=default_mesh_plot, # scale=1, ) texture_block = gr.Image( value=default_texture, type="pil", image_mode="RGB", height="auto", width="auto", label="Selected Texture", ) num_lesions = gr.Radio( choices=[0, 1, 2, 5, 10], label="Number of Lesions", value=0, interactive=True, ) num_views = gr.Slider(2, 32, 4, label="Number of Views", step=2, interactive=True) randomize = gr.Checkbox( label="Randomize View Parameters", value=True, interactive=True ) render_button = gr.Button("Render Views") select_mesh = gr.Dropdown( choices=mesh_names, value=mesh_names[0], interactive=True, label="Input Mesh", info="Select the mesh to render", ) select_texture = gr.Dropdown( choices=["No Lesion", "Pasted Lesion", "Blended Lesion", "Dilated Lesion"], value="No Lesion", interactive=True, label="Input Texture", info="Select the texture to use for the mesh.", ) # compose demo layout and data flow with gr.Blocks( title=_TITLE, analytics_enabled=True, theme=gr.themes.Base() ) as demo: with gr.Row(): with gr.Column(scale=1): gr.Markdown(f"# {_TITLE}") gr.Markdown(_DESCRIPTION) # User input panel with gr.Row(variant="panel"): with gr.Column(scale=1): select_mesh.render() select_texture.render() num_lesions.render() num_views.render() randomize.render() with gr.Column(scale=1): mesh_block.render() with gr.Column(scale=1): texture_block.render() gr.on( triggers=[ select_mesh.change, select_texture.change, num_lesions.change, ], inputs=[select_mesh, select_texture, num_lesions], outputs=[mesh_block, texture_block, num_lesions], fn=update_plots, ) # @gr.on( # inputs=[ # select_mesh, # select_texture, # num_lesions, # ], # outputs=[ # mesh_block, # texture_block, # num_lesions, # ], # triggers=[ # select_mesh.change, # select_texture.change, # num_lesions.change, # ], # ) # def update(m, t, l): # return update_plots(m, t, l) # rendering choices with gr.Row(variant="panel"): with gr.Column(scale=1): render_button.render() with gr.Column(scale=1): with gr.Accordion("Configure View Parameters", open=False): # setup cameras with gr.Accordion("Camera Parameters", open=False): dist = gr.Slider( minimum=0.0, maximum=10.0, value=0.5, step=0.5, interactive=True, label="Distance", ) elev = gr.Slider( label="Elevation", interactive=True, minimum=-90, maximum=90, value=0, step=10, ) azim = gr.Slider( label="Azimuth", interactive=True, minimum=-90, maximum=90, value=90, step=10, ) # setup lights with gr.Accordion("Lighting Parameters", open=False): light_pos = gr.Slider( label="Light Position", interactive=True, minimum=0.0, maximum=2.0, value=0.5, step=0.1, ) light_ac = gr.Slider( label="Ambient Color", minimum=0.0, maximum=1.0, interactive=True, value=0.5, step=0.1, ) light_dc = gr.Slider( label="Diffuse Color", minimum=0.0, maximum=1.0, interactive=True, value=0.5, step=0.1, ) light_sc = gr.Slider( label="Specular Color", minimum=0.0, maximum=1.0, interactive=True, value=0.5, step=0.1, ) # setup material parameters with gr.Accordion("Material Parameters", open=False): mat_sh = gr.Slider( label="Shininess", interactive=True, minimum=0, maximum=100, value=50, step=10, ) mat_sc = gr.Slider( label="Specularity", minimum=0.0, interactive=True, maximum=1.0, value=0.5, step=0.1, ) update_view_btn = gr.Button("Update View Parameters") gr.on( triggers=[ update_view_btn.click, dist.change, elev.change, azim.change, light_pos.change, light_ac.change, light_dc.change, light_sc.change, mat_sh.change, mat_sc.change, ], inputs=[randomize], outputs=[randomize], fn=lambda x: False, show_progress="hidden", queue=False, scroll_to_output=True, ) # rendered views panel with gr.Row(variant="panel"): render_block = gr.Gallery( label="Rendered Views", columns=4, height="auto", object_fit="contain" ) @gr.on( triggers=[render_button.click], inputs=[ randomize, select_mesh, select_texture, num_lesions, num_views, dist, elev, azim, light_pos, light_ac, light_dc, light_sc, mat_sh, mat_sc, ], outputs=[render_block], ) def render_views( randomize, select_mesh, select_texture, num_lesions, num_views, dist, elev, azim, light_pos, light_ac, light_dc, light_sc, mat_sh, mat_sc, ): renderer, cameras, lights, materials = set_rendering_params( randomize, num_views, dist, elev, azim, light_pos, light_ac, light_dc, light_sc, mat_sh, mat_sc, ) # gr.Info("Loading mesh and texture...") # mesh = load_mesh_and_texture(select_mesh, select_texture, num_lesions) # cameras # images = render_images( # renderer, mesh, lights, cameras, materials, num_views # ) # return [_ for _ in images.detach().cpu().numpy()] view2d, anatomy, depth, segmentation = prepare_ds_renderer( randomize, select_mesh, select_texture, num_lesions, num_views, dist, elev, azim, light_pos, light_ac, light_dc, light_sc, mat_sh, mat_sc, ) return view2d # examples panel when the iuser does not want to input with gr.Row(variant="panel"): with gr.Column(scale=1): gr.Examples( examples=all_examples, inputs=[ select_mesh, select_texture, num_lesions, ], outputs=[ mesh_block, texture_block, num_lesions, ], cache_examples=False, fn=update_plots, label="Meshes and Textures for Demo (Click to start)", ) demo.queue(max_size=10) demo.launch( share=True, max_threads=mp.cpu_count(), show_error=True, show_api=False, ) def get_texture_module(tex_type): if tex_type == "No Lesion": return get_no_lesion_path elif tex_type == "Pasted Lesion": return get_pasted_lesion_path elif tex_type == "Blended Lesion": return get_blended_lesion_path elif tex_type == "Dilated Lesion": return get_dilated_lesion_path else: raise ValueError(f"Texture type {tex_type} not supported!") if __name__ == "__main__": # setup_paths() mesh_paths = glob("./DermSynth3D//data/3dbodytex-1.1-highres/*/*.obj") mesh_names = [os.path.basename(os.path.dirname(x)) for x in mesh_paths] # get the textures all_textures = glob("./DermSynth3D//data/3dbodytex-1.1-highres/*/*.png") dir_blended_textures = "./hf_demo/lesions/" dir_anatomy = "./DermSynth3D/data/bodytex_anatomy_labels/" dir_background = "./DermSynth3D/data/background/IndoorScene/" get_no_lesion_path = lambda x, y: os.path.join( "./DermSynth3D/data/3dbodytex-1.1-highres", x, "model_highres_0_normalized.png" ) get_mesh_path = lambda x: os.path.join( "./DermSynth3D/data/3dbodytex-1.1-highres", x, "model_highres_0_normalized.obj" ) # get the textures with the lesions get_mask_path = lambda x: os.path.join( "./hf_demo/lesions/", x, "model_highres_0_normalized_mask.png" ) get_dilated_lesion_path = lambda x, y: os.path.join( "./hf_demo/lesions/", x, f"model_highres_0_normalized_dilated_lesion_{y}.png", ) get_blended_lesion_path = lambda x, y: os.path.join( "./hf_demo/lesions/", x, f"model_highres_0_normalized_blended_lesion_{y}.png", ) get_pasted_lesion_path = lambda x, y: os.path.join( "./hf_demo/lesions/", x, f"model_highres_0_normalized_pasted_lesion_{y}.png", ) default_mesh_plot = plotly_mesh(*get_trimesh_attrs(mesh_names[0], "No Lesion", 0)) default_texture = Image.open(all_textures[0]).convert("RGB").resize((512, 512)) new_values = { "default_mesh_plot": default_mesh_plot, "default_texture": default_texture, } globals().update(new_values) run_demo()