Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_chat import message
|
3 |
+
from langchain.chains import ConversationalRetrievalChain
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.llms import LlamaCpp
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain.document_loaders import PyPDFLoader
|
10 |
+
import os
|
11 |
+
import tempfile
|
12 |
+
from langchain.document_loaders import PyPDFDirectoryLoader
|
13 |
+
from langchain.chains import RetrievalQA
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def initialize_session_state():
|
19 |
+
if 'history' not in st.session_state:
|
20 |
+
st.session_state['history'] = []
|
21 |
+
|
22 |
+
if 'generated' not in st.session_state:
|
23 |
+
st.session_state['generated'] = ["Hello! Ask me anything about 🤗"]
|
24 |
+
|
25 |
+
if 'past' not in st.session_state:
|
26 |
+
st.session_state['past'] = ["Hey! 👋"]
|
27 |
+
|
28 |
+
def conversation_chat(query, chain, history):
|
29 |
+
result = chain({"question": query, "chat_history": history})
|
30 |
+
history.append((query, result["answer"]))
|
31 |
+
return result["answer"]
|
32 |
+
|
33 |
+
def display_chat_history(chain):
|
34 |
+
reply_container = st.container()
|
35 |
+
container = st.container()
|
36 |
+
|
37 |
+
with container:
|
38 |
+
with st.form(key='my_form', clear_on_submit=True):
|
39 |
+
user_input = st.text_input("Question:", placeholder="Ask about your PDF", key='input')
|
40 |
+
submit_button = st.form_submit_button(label='Send')
|
41 |
+
|
42 |
+
if submit_button and user_input:
|
43 |
+
with st.spinner('Generating response...'):
|
44 |
+
output = conversation_chat(user_input, chain, st.session_state['history'])
|
45 |
+
|
46 |
+
st.session_state['past'].append(user_input)
|
47 |
+
st.session_state['generated'].append(output)
|
48 |
+
|
49 |
+
if st.session_state['generated']:
|
50 |
+
with reply_container:
|
51 |
+
for i in range(len(st.session_state['generated'])):
|
52 |
+
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
|
53 |
+
message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")
|
54 |
+
|
55 |
+
def create_conversational_chain(vector_store):
|
56 |
+
# Create llm
|
57 |
+
# Importing the Model
|
58 |
+
llm = LlamaCpp(
|
59 |
+
streaming = True,
|
60 |
+
model_path = "model/mistral-7b-instruct-v0.2.Q4_K_M.gguf",
|
61 |
+
temperature = 0.75,
|
62 |
+
top_p = 1,
|
63 |
+
verbose = True,
|
64 |
+
n_ctx = 4096
|
65 |
+
)
|
66 |
+
|
67 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
68 |
+
|
69 |
+
chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
|
70 |
+
retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
|
71 |
+
memory=memory)
|
72 |
+
return chain
|
73 |
+
|
74 |
+
def main():
|
75 |
+
# Initialize session state
|
76 |
+
initialize_session_state()
|
77 |
+
st.title("Multi-PDF ChatBot using Mistral-7B-Instruct :books:")
|
78 |
+
# Initialize Streamlit
|
79 |
+
# st.sidebar.title("Document Processing")
|
80 |
+
# uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)
|
81 |
+
# Loading the file directory using PyPDF Directory
|
82 |
+
loader = PyPDFDirectoryLoader("data_pdf/")
|
83 |
+
data = loader.load()
|
84 |
+
|
85 |
+
# Splitting extracted text data into chunks for easier processing
|
86 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 100000, chunk_overlap = 20)
|
87 |
+
text_chunks = text_splitter.split_documents(data)
|
88 |
+
|
89 |
+
# Downloading Embessings
|
90 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
91 |
+
|
92 |
+
# Creating Embeddings for each of the text chunk
|
93 |
+
vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
|
94 |
+
|
95 |
+
# Create the chain object
|
96 |
+
chain = create_conversational_chain(vector_store)
|
97 |
+
|
98 |
+
display_chat_history(chain)
|
99 |
+
|
100 |
+
if __name__ == "__main__":
|
101 |
+
main()
|