File size: 15,701 Bytes
dcf932e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157df43
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import streamlit as st
import pandas as pd
import os
from crewai import Agent, Task, Crew
from langchain_groq import ChatGroq
import streamlit_ace as st_ace
import traceback
import contextlib
import io
from crewai_tools import FileReadTool
import matplotlib.pyplot as plt
import glob
from dotenv import load_dotenv

# load the .env file
load_dotenv()
# Set up Groq API key
groq_api_key = os.getenv("GROQ_API_KEY")


def main():
    # Set custom CSS for UI
    set_custom_css()

    # Initialize session state for edited code
    if 'edited_code' not in st.session_state:
        st.session_state['edited_code'] = ""
    
    # Initialize session state for whether the initial code is generated
    if 'code_generated' not in st.session_state:
        st.session_state['code_generated'] = False

    # Header with futuristic design
    st.markdown("""
        <div class="header">
            <h1>CrewAI Machine Learning Assistant</h1>
            <p>Your AI-powered partner for machine learning projects.</p>
        </div>
    """, unsafe_allow_html=True)

    # Sidebar for customization options
    st.sidebar.title('Customization')
    model = st.sidebar.selectbox(
        'Choose a model',
        ['llama3-8b-8192', "llama3-70b-8192"]
    )

    # Initialize LLM
    llm = initialize_llm(model)

    

    # User inputs
    user_question = st.text_area("Describe your ML problem:", key="user_question")
    uploaded_file = st.file_uploader("Upload a sample .csv of your data (optional)", key="uploaded_file")
    try:
        file_name = uploaded_file.name
    except: 
        file_name = "dataset.csv"

    # Initialize agents
    agents = initialize_agents(llm,file_name)
    # Process uploaded file
    if uploaded_file:
        try:
            df = pd.read_csv(uploaded_file)
            st.write("Data successfully uploaded:")
            st.dataframe(df.head())
            data_upload = True
        except Exception as e:
            st.error(f"Error reading the file: {e}")
            data_upload = False
    else:
        df = None
        data_upload = False

    # Process button
    if st.button('Process'):
        tasks = create_tasks("Process",user_question,file_name, data_upload, df, None, st.session_state['edited_code'], None, agents)
        with st.spinner('Processing...'):
            crew = Crew(
                agents=list(agents.values()),
                tasks=tasks,
                verbose=2
            )

            result = crew.kickoff()

            if result:  # Only call st_ace if code has a valid value
                code = result.strip("```")
                try:
                    filt_idx = code.index("```")
                    code = code[:filt_idx]
                except:
                    pass
                st.session_state['edited_code'] = code
                st.session_state['code_generated'] = True

        st.session_state['edited_code'] = st_ace.st_ace(
            value=st.session_state['edited_code'],
            language='python',
            theme='monokai',
            keybinding='vscode',
            min_lines=20,
            max_lines=50
        )

    if st.session_state['code_generated']:
        # Show options for modification, debugging, and running the code
        suggestion = st.text_area("Suggest modifications to the generated code (optional):", key="suggestion")
        if st.button('Modify'):
            if st.session_state['edited_code'] and suggestion:
                tasks = create_tasks("Modify",user_question,file_name, data_upload, df, suggestion, st.session_state['edited_code'], None, agents)
                with st.spinner('Modifying code...'):
                    crew = Crew(
                        agents=list(agents.values()),
                        tasks=tasks,
                        verbose=2
                    )

                    result = crew.kickoff()

                    if result:  # Only call st_ace if code has a valid value
                        code = result.strip("```")
                        try:
                            filter_idx = code.index("```")
                            code = code[:filter_idx]
                        except:
                            pass
                        st.session_state['edited_code'] = code

                st.write("Modified code:")
                st.session_state['edited_code']= st_ace.st_ace(
                    value=st.session_state['edited_code'],
                    language='python',
                    theme='monokai',
                    keybinding='vscode',
                    min_lines=20,
                    max_lines=50
                )

        debugger = st.text_area("Paste error message here for debugging (optional):", key="debugger")
        if st.button('Debug'):
            if st.session_state['edited_code'] and debugger:
                tasks = create_tasks("Debug",user_question,file_name, data_upload, df, None, st.session_state['edited_code'], debugger, agents)
                with st.spinner('Debugging code...'):
                    crew = Crew(
                        agents=list(agents.values()),
                        tasks=tasks,
                        verbose=2
                    )

                    result = crew.kickoff()

                    if result:  # Only call st_ace if code has a valid value
                        code = result.strip("```")
                        try:
                            filter_idx = code.index("```")
                            code = code[:filter_idx]
                        except:
                            pass
                        st.session_state['edited_code'] = code

                st.write("Debugged code:")
                st.session_state['edited_code'] = st_ace.st_ace(
                    value=st.session_state['edited_code'],
                    language='python',
                    theme='monokai',
                    keybinding='vscode',
                    min_lines=20,
                    max_lines=50
                )

        if st.button('Run'):
            output = io.StringIO()
            with contextlib.redirect_stdout(output):
                try:
                    globals().update({'dataset': df})
                    final_code = st.session_state["edited_code"]
                    
                    with st.expander("Final Code"):
                        st.code(final_code, language='python')

                    exec(final_code, globals())
                    result = output.getvalue()
                    success = True
                except Exception as e:
                    result = str(e)
                    success = False

            st.subheader('Output:')
            st.text(result)

            figs = [manager.canvas.figure for manager in plt._pylab_helpers.Gcf.get_all_fig_managers()]
            if figs:
                st.subheader('Generated Plots:')
                for fig in figs:
                    st.pyplot(fig)

            if success:
                st.success("Code executed successfully!")
            else:
                st.error("Code execution failed! Waiting for debugging input...")

            # Move the generated files section to the sidebar
            with st.sidebar:
                st.header('Output Files:')
                files = glob.glob(os.path.join("Output/", '*'))
                for file in files:
                    if os.path.isfile(file):
                        with open(file, 'rb') as f:
                            st.download_button(label=f'Download {os.path.basename(file)}', data=f, file_name=os.path.basename(file))



# Function to set custom CSS for futuristic UI
def set_custom_css():
    st.markdown("""
        <style>
            body {
                background: #0e0e0e;
                color: #e0e0e0;
                font-family: 'Roboto', sans-serif;
            }
            .header {
                background: linear-gradient(135deg, #6e3aff, #b839ff);
                padding: 10px;
                border-radius: 10px;
            }
            .header h1, .header p {
                color: white;
                text-align: center;
            }
            .stButton button {
                background-color: #b839ff;
                color: white;
                border-radius: 10px;
                font-size: 16px;
                padding: 10px 20px;
            }
            .stButton button:hover {
                background-color: #6e3aff;
                color: #e0e0e0;
            }
            .spinner {
                display: flex;
                justify-content: center;
                align-items: center;
            }
        </style>
    """, unsafe_allow_html=True)

# Function to initialize LLM
def initialize_llm(model):
    return ChatGroq(
        temperature=0,
        groq_api_key=groq_api_key,
        model_name=model
    )

# Function to initialize agents
def initialize_agents(llm,file_name):
    file_read_tool = FileReadTool()
    return {
        "Data_Reader_Agent": Agent(
            role='Data_Reader_Agent',
            goal="Read the uploaded dataset and provide it to other agents.",
            backstory="Responsible for reading the uploaded dataset.",
            verbose=True,
            allow_delegation=False,
            llm=llm,
            tools=[file_read_tool]
        ),
        "Problem_Definition_Agent": Agent(
            role='Problem_Definition_Agent',
            goal="Clarify the machine learning problem the user wants to solve.",
            backstory="Expert in defining machine learning problems.",
            verbose=True,
            allow_delegation=False,
            llm=llm,
        ),
        "EDA_Agent": Agent(
            role='EDA_Agent',
            goal="Perform all possible Exploratory Data Analysis (EDA) on the data provided by the user.",
            backstory="Specializes in conducting comprehensive EDA to understand the data characteristics, distributions, and relationships.",
            verbose=True,
            allow_delegation=False,
            llm=llm,
        ),
        "Feature_Engineering_Agent": Agent(
            role='Feature_Engineering_Agent',
            goal="Perform feature engineering on the data based on the EDA results provided by the EDA agent.",
            backstory="Expert in deriving new features, transforming existing features, and preprocessing data to prepare it for modeling.",
            verbose=True,
            allow_delegation=False,
            llm=llm,
        ),
        "Model_Recommendation_Agent": Agent(
            role='Model_Recommendation_Agent',
            goal="Suggest the most suitable machine learning models.",
            backstory="Expert in recommending machine learning algorithms.",
            verbose=True,
            allow_delegation=False,
            llm=llm,
        ),
        "Starter_Code_Generator_Agent": Agent(
            role='Starter_Code_Generator_Agent',
            goal=f"Generate starter Python code for the project. Always give dataset name as {file_name}",
            backstory="Code wizard for generating starter code templates.",
            verbose=True,
            allow_delegation=False,
            llm=llm,
        ),
        "Code_Modification_Agent": Agent(
            role='Code_Modification_Agent',
            goal="Modify the generated Python code based on user suggestions.",
            backstory="Expert in adapting code according to user feedback.",
            verbose=True,
            allow_delegation=False,
            llm=llm,
        ),
        # "Code_Runner_Agent": Agent(
        #     role='Code_Runner_Agent',
        #     goal="Run the generated Python code and catch any errors.",
        #     backstory="Debugging expert.",
        #     verbose=True,
        #     allow_delegation=True,
        #     llm=llm,
        # ),
        "Code_Debugger_Agent": Agent(
            role='Code_Debugger_Agent',
            goal="Debug the generated Python code.",
            backstory="Seasoned code debugger.",
            verbose=True,
            allow_delegation=False,
            llm=llm,
        ),
        "Compiler_Agent":Agent(
            role = "Code_compiler",
            goal = "Extract only the python code.",
            backstory = "You are the compiler which extract only the python code.",
            verbose = True,
            allow_delegation = False,
            llm = llm
        )
    }

# Function to create tasks based on user inputs
def create_tasks(func_call,user_question,file_name, data_upload, df, suggestion, edited_code, debugger, agents):
    info = df.info()
    tasks = []
    if(func_call == "Process"):
        tasks.append(Task(
                description=f"Clarify the ML problem: {user_question}",
                agent=agents["Problem_Definition_Agent"],
                expected_output="A clear and concise definition of the ML problem."
            )
            )
        
        if data_upload:
            tasks.extend([
                Task(
                    description=f"Evaluate the data provided by the file name . This is the data: {df}",
                    agent=agents["EDA_Agent"],
                    expected_output="An assessment of the EDA and preprocessing like dataset info, missing value, duplication, outliers etc. on the data provided"
                ),
                Task(
                    description=f"Feature Engineering on data {df} based on EDA output: {info}",
                    agent=agents["Feature_Engineering_Agent"],
                    expected_output="An assessment of the Featuring Engineering and preprocessing like handling missing values, handling duplication, handling outliers, feature encoding, feature scaling etc. on the data provided"
                )
            ])

        tasks.extend([
            Task(
                description="Suggest suitable ML models.",
                agent=agents["Model_Recommendation_Agent"],
                expected_output="A list of suitable ML models."
            ),
            Task(
                description=f"Generate starter Python code based on feature engineering, where column names are {df.columns.tolist()}. Generate only the code without any extra text",
                agent=agents["Starter_Code_Generator_Agent"],
                expected_output="Starter Python code."
            ),
        ])
    if(func_call == "Modify"):
        if suggestion:
            tasks.append(
                Task(
                    description=f"Modify the already generated code {edited_code} according to the suggestion: {suggestion} \n\n Do not generate entire new code.",
                    agent=agents["Code_Modification_Agent"],
                    expected_output="Modified code."
                )
            )
    if(func_call == "Debug"):
        if debugger:
            tasks.append(
                Task(
                    description=f"Debug and fix any errors for data with column names {df.columns.tolist()} with data as {df} in the generated code: {edited_code}  \n\n According to the debugging: {debugger}. \n\n Do not generate entire new code. Just remove the error in the code by modifying only necessary parts of the code.",
                    agent=agents["Code_Debugger_Agent"],
                    expected_output="Debugged and successfully executed code."
                )
            )
    tasks.append(
        Task(
            description = "Your job is to only extract python code from string",
            agent = agents["Compiler_Agent"],
            expected_output = "Running python code."
        )
    )

    return tasks

if __name__ == "__main__":
    main()