|
import streamlit as st
|
|
import pandas as pd
|
|
import os
|
|
from crewai import Crew
|
|
from langchain_groq import ChatGroq
|
|
import streamlit_ace as st_ace
|
|
import traceback
|
|
import contextlib
|
|
import io
|
|
from crewai_tools import FileReadTool
|
|
import matplotlib.pyplot as plt
|
|
import glob
|
|
from dotenv import load_dotenv
|
|
from autotabml_agents import initialize_agents
|
|
from autotabml_tasks import create_tasks
|
|
|
|
|
|
TEMP_DIR = "temp_dir"
|
|
OUTPUT_DIR = "Output_dir"
|
|
|
|
if not os.path.exists(TEMP_DIR):
|
|
os.makedirs(TEMP_DIR)
|
|
|
|
|
|
if not os.path.exists(OUTPUT_DIR):
|
|
os.makedirs(OUTPUT_DIR)
|
|
|
|
|
|
def save_uploaded_file(uploaded_file):
|
|
file_path = os.path.join(TEMP_DIR, uploaded_file.name)
|
|
with open(file_path, 'wb') as f:
|
|
f.write(uploaded_file.getbuffer())
|
|
return file_path
|
|
|
|
|
|
load_dotenv()
|
|
|
|
groq_api_key = os.environ.get("GROQ_API_KEY")
|
|
|
|
|
|
def main():
|
|
|
|
set_custom_css()
|
|
|
|
|
|
if 'edited_code' not in st.session_state:
|
|
st.session_state['edited_code'] = ""
|
|
|
|
|
|
if 'code_generated' not in st.session_state:
|
|
st.session_state['code_generated'] = False
|
|
|
|
|
|
st.markdown("""
|
|
<div class="header">
|
|
<h1>AutoTabML</h1>
|
|
<p>Automated Machine Learning Code Generation for Tabluar Data</p>
|
|
</div>
|
|
""", unsafe_allow_html=True)
|
|
|
|
|
|
st.sidebar.title('LLM Model')
|
|
model = st.sidebar.selectbox(
|
|
'Model',
|
|
["llama3-70b-8192"]
|
|
)
|
|
|
|
|
|
llm = initialize_llm(model)
|
|
|
|
|
|
|
|
|
|
user_question = st.text_area("Describe your ML problem:", key="user_question")
|
|
uploaded_file = st.file_uploader("Upload a sample .csv of your data", key="uploaded_file")
|
|
try:
|
|
file_name = uploaded_file.name
|
|
except:
|
|
file_name = "dataset.csv"
|
|
|
|
|
|
agents = initialize_agents(llm,file_name)
|
|
|
|
if uploaded_file:
|
|
try:
|
|
file_path = save_uploaded_file(uploaded_file)
|
|
df = pd.read_csv(uploaded_file)
|
|
st.write("Data successfully uploaded:")
|
|
st.dataframe(df.head())
|
|
data_upload = True
|
|
except Exception as e:
|
|
st.error(f"Error reading the file: {e}")
|
|
data_upload = False
|
|
else:
|
|
df = None
|
|
data_upload = False
|
|
|
|
|
|
if st.button('Process'):
|
|
tasks = create_tasks("Process",user_question,file_name, data_upload, df, None, st.session_state['edited_code'], None, agents)
|
|
with st.spinner('Processing...'):
|
|
crew = Crew(
|
|
agents=list(agents.values()),
|
|
tasks=tasks,
|
|
verbose=2
|
|
)
|
|
|
|
result = crew.kickoff()
|
|
|
|
if result:
|
|
code = result.strip("```")
|
|
try:
|
|
filt_idx = code.index("```")
|
|
code = code[:filt_idx]
|
|
except:
|
|
pass
|
|
st.session_state['edited_code'] = code
|
|
st.session_state['code_generated'] = True
|
|
|
|
st.session_state['edited_code'] = st_ace.st_ace(
|
|
value=st.session_state['edited_code'],
|
|
language='python',
|
|
theme='monokai',
|
|
keybinding='vscode',
|
|
min_lines=20,
|
|
max_lines=50
|
|
)
|
|
|
|
if st.session_state['code_generated']:
|
|
|
|
suggestion = st.text_area("Suggest modifications to the generated code (optional):", key="suggestion")
|
|
if st.button('Modify'):
|
|
if st.session_state['edited_code'] and suggestion:
|
|
tasks = create_tasks("Modify",user_question,file_name, data_upload, df, suggestion, st.session_state['edited_code'], None, agents)
|
|
with st.spinner('Modifying code...'):
|
|
crew = Crew(
|
|
agents=list(agents.values()),
|
|
tasks=tasks,
|
|
verbose=2
|
|
)
|
|
|
|
result = crew.kickoff()
|
|
|
|
if result:
|
|
code = result.strip("```")
|
|
try:
|
|
filter_idx = code.index("```")
|
|
code = code[:filter_idx]
|
|
except:
|
|
pass
|
|
st.session_state['edited_code'] = code
|
|
|
|
st.write("Modified code:")
|
|
st.session_state['edited_code']= st_ace.st_ace(
|
|
value=st.session_state['edited_code'],
|
|
language='python',
|
|
theme='monokai',
|
|
keybinding='vscode',
|
|
min_lines=20,
|
|
max_lines=50
|
|
)
|
|
|
|
debugger = st.text_area("Paste error message here for debugging (optional):", key="debugger")
|
|
if st.button('Debug'):
|
|
if st.session_state['edited_code'] and debugger:
|
|
tasks = create_tasks("Debug",user_question,file_name, data_upload, df, None, st.session_state['edited_code'], debugger, agents)
|
|
with st.spinner('Debugging code...'):
|
|
crew = Crew(
|
|
agents=list(agents.values()),
|
|
tasks=tasks,
|
|
verbose=2
|
|
)
|
|
|
|
result = crew.kickoff()
|
|
|
|
if result:
|
|
code = result.strip("```")
|
|
try:
|
|
filter_idx = code.index("```")
|
|
code = code[:filter_idx]
|
|
except:
|
|
pass
|
|
st.session_state['edited_code'] = code
|
|
|
|
st.write("Debugged code:")
|
|
st.session_state['edited_code'] = st_ace.st_ace(
|
|
value=st.session_state['edited_code'],
|
|
language='python',
|
|
theme='monokai',
|
|
keybinding='vscode',
|
|
min_lines=20,
|
|
max_lines=50
|
|
)
|
|
|
|
if st.button('Run'):
|
|
output = io.StringIO()
|
|
with contextlib.redirect_stdout(output):
|
|
try:
|
|
globals().update({'dataset': df})
|
|
final_code = st.session_state["edited_code"]
|
|
|
|
with st.expander("Final Code"):
|
|
st.code(final_code, language='python')
|
|
|
|
exec(final_code, globals())
|
|
result = output.getvalue()
|
|
success = True
|
|
except Exception as e:
|
|
result = str(e)
|
|
success = False
|
|
|
|
st.subheader('Output:')
|
|
st.text(result)
|
|
|
|
figs = [manager.canvas.figure for manager in plt._pylab_helpers.Gcf.get_all_fig_managers()]
|
|
if figs:
|
|
st.subheader('Generated Plots:')
|
|
for fig in figs:
|
|
st.pyplot(fig)
|
|
|
|
if success:
|
|
st.success("Code executed successfully!")
|
|
else:
|
|
st.error("Code execution failed! Waiting for debugging input...")
|
|
|
|
|
|
with st.sidebar:
|
|
st.header('Output_dir :')
|
|
files = glob.glob(os.path.join(OUTPUT_DIR,"/", '*'))
|
|
for file in files:
|
|
if os.path.isfile(file):
|
|
with open(file, 'rb') as f:
|
|
st.download_button(label=f'Download {os.path.basename(file)}', data=f, file_name=os.path.basename(file))
|
|
|
|
|
|
|
|
|
|
def set_custom_css():
|
|
st.markdown("""
|
|
<style>
|
|
body {
|
|
background: #0e0e0e;
|
|
color: #e0e0e0;
|
|
font-family: 'Roboto', sans-serif;
|
|
}
|
|
.header {
|
|
background: linear-gradient(135deg, #6e3aff, #b839ff);
|
|
padding: 10px;
|
|
border-radius: 10px;
|
|
}
|
|
.header h1, .header p {
|
|
color: white;
|
|
text-align: center;
|
|
}
|
|
.stButton button {
|
|
background-color: #b839ff;
|
|
color: white;
|
|
border-radius: 10px;
|
|
font-size: 16px;
|
|
padding: 10px 20px;
|
|
}
|
|
.stButton button:hover {
|
|
background-color: #6e3aff;
|
|
color: #e0e0e0;
|
|
}
|
|
.spinner {
|
|
display: flex;
|
|
justify-content: center;
|
|
align-items: center;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
|
|
|
|
def initialize_llm(model):
|
|
return ChatGroq(
|
|
temperature=0,
|
|
groq_api_key=groq_api_key,
|
|
model_name=model
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
main() |