singhtech commited on
Commit
dd8e3a6
·
verified ·
1 Parent(s): b4c1826

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -433
app.py DELETED
@@ -1,433 +0,0 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import os
4
- from crewai import Agent, Task, Crew
5
- from langchain_groq import ChatGroq
6
- import streamlit_ace as st_ace
7
- import traceback
8
- import contextlib
9
- import io
10
- from crewai_tools import FileReadTool
11
- import matplotlib.pyplot as plt
12
- import glob
13
- from dotenv import load_dotenv
14
-
15
-
16
-
17
-
18
-
19
- TEMP_DIR = "temp_files"
20
-
21
- # Ensure the temporary directory exists
22
- if not os.path.exists(TEMP_DIR):
23
- os.makedirs(TEMP_DIR)
24
-
25
- # Function to save uploaded file
26
- def save_uploaded_file(uploaded_file):
27
- file_path = os.path.join(TEMP_DIR, uploaded_file.name)
28
- with open(file_path, 'wb') as f:
29
- f.write(uploaded_file.getbuffer())
30
- return file_path
31
-
32
- # load the .env file
33
- load_dotenv()
34
- # Set up Groq API key
35
- groq_api_key = os.environ.get("GROQ_API_KEY") # os.environ["GROQ_API_KEY"] =
36
-
37
-
38
- def main():
39
- # Set custom CSS for UI
40
- set_custom_css()
41
-
42
- # Initialize session state for edited code
43
- if 'edited_code' not in st.session_state:
44
- st.session_state['edited_code'] = ""
45
-
46
- # Initialize session state for whether the initial code is generated
47
- if 'code_generated' not in st.session_state:
48
- st.session_state['code_generated'] = False
49
-
50
- # Header with futuristic design
51
- st.markdown("""
52
- <div class="header">
53
- <h1>AutoTabML</h1>
54
- <p>Automated Machine Learning Code Generation for Tabluar Data</p>
55
- </div>
56
- """, unsafe_allow_html=True)
57
-
58
- # Sidebar for customization options
59
- st.sidebar.title('LLM Model')
60
- model = st.sidebar.selectbox(
61
- 'Model',
62
- ["llama3-70b-8192"]
63
- )
64
-
65
- # Initialize LLM
66
- llm = initialize_llm(model)
67
-
68
-
69
-
70
- # User inputs
71
- user_question = st.text_area("Describe your ML problem:", key="user_question")
72
- uploaded_file = st.file_uploader("Upload a sample .csv of your data", key="uploaded_file")
73
- try:
74
- file_name = uploaded_file.name
75
- except:
76
- file_name = "dataset.csv"
77
-
78
- # Initialize agents
79
- agents = initialize_agents(llm,file_name)
80
- # Process uploaded file
81
- if uploaded_file:
82
- try:
83
- file_path = save_uploaded_file(uploaded_file)
84
- df = pd.read_csv(uploaded_file)
85
- st.write("Data successfully uploaded:")
86
- st.dataframe(df.head())
87
- data_upload = True
88
- except Exception as e:
89
- st.error(f"Error reading the file: {e}")
90
- data_upload = False
91
- else:
92
- df = None
93
- data_upload = False
94
-
95
- # Process button
96
- if st.button('Process'):
97
- tasks = create_tasks("Process",user_question,file_name, data_upload, df, None, st.session_state['edited_code'], None, agents)
98
- with st.spinner('Processing...'):
99
- crew = Crew(
100
- agents=list(agents.values()),
101
- tasks=tasks,
102
- verbose=2
103
- )
104
-
105
- result = crew.kickoff()
106
-
107
- if result: # Only call st_ace if code has a valid value
108
- code = result.strip("```")
109
- try:
110
- filt_idx = code.index("```")
111
- code = code[:filt_idx]
112
- except:
113
- pass
114
- st.session_state['edited_code'] = code
115
- st.session_state['code_generated'] = True
116
-
117
- st.session_state['edited_code'] = st_ace.st_ace(
118
- value=st.session_state['edited_code'],
119
- language='python',
120
- theme='monokai',
121
- keybinding='vscode',
122
- min_lines=20,
123
- max_lines=50
124
- )
125
-
126
- if st.session_state['code_generated']:
127
- # Show options for modification, debugging, and running the code
128
- suggestion = st.text_area("Suggest modifications to the generated code (optional):", key="suggestion")
129
- if st.button('Modify'):
130
- if st.session_state['edited_code'] and suggestion:
131
- tasks = create_tasks("Modify",user_question,file_name, data_upload, df, suggestion, st.session_state['edited_code'], None, agents)
132
- with st.spinner('Modifying code...'):
133
- crew = Crew(
134
- agents=list(agents.values()),
135
- tasks=tasks,
136
- verbose=2
137
- )
138
-
139
- result = crew.kickoff()
140
-
141
- if result: # Only call st_ace if code has a valid value
142
- code = result.strip("```")
143
- try:
144
- filter_idx = code.index("```")
145
- code = code[:filter_idx]
146
- except:
147
- pass
148
- st.session_state['edited_code'] = code
149
-
150
- st.write("Modified code:")
151
- st.session_state['edited_code']= st_ace.st_ace(
152
- value=st.session_state['edited_code'],
153
- language='python',
154
- theme='monokai',
155
- keybinding='vscode',
156
- min_lines=20,
157
- max_lines=50
158
- )
159
-
160
- debugger = st.text_area("Paste error message here for debugging (optional):", key="debugger")
161
- if st.button('Debug'):
162
- if st.session_state['edited_code'] and debugger:
163
- tasks = create_tasks("Debug",user_question,file_name, data_upload, df, None, st.session_state['edited_code'], debugger, agents)
164
- with st.spinner('Debugging code...'):
165
- crew = Crew(
166
- agents=list(agents.values()),
167
- tasks=tasks,
168
- verbose=2
169
- )
170
-
171
- result = crew.kickoff()
172
-
173
- if result: # Only call st_ace if code has a valid value
174
- code = result.strip("```")
175
- try:
176
- filter_idx = code.index("```")
177
- code = code[:filter_idx]
178
- except:
179
- pass
180
- st.session_state['edited_code'] = code
181
-
182
- st.write("Debugged code:")
183
- st.session_state['edited_code'] = st_ace.st_ace(
184
- value=st.session_state['edited_code'],
185
- language='python',
186
- theme='monokai',
187
- keybinding='vscode',
188
- min_lines=20,
189
- max_lines=50
190
- )
191
-
192
- if st.button('Run'):
193
- output = io.StringIO()
194
- with contextlib.redirect_stdout(output):
195
- try:
196
- globals().update({'dataset': df})
197
- final_code = st.session_state["edited_code"]
198
-
199
- with st.expander("Final Code"):
200
- st.code(final_code, language='python')
201
-
202
- exec(final_code, globals())
203
- result = output.getvalue()
204
- success = True
205
- except Exception as e:
206
- result = str(e)
207
- success = False
208
-
209
- st.subheader('Output:')
210
- st.text(result)
211
-
212
- figs = [manager.canvas.figure for manager in plt._pylab_helpers.Gcf.get_all_fig_managers()]
213
- if figs:
214
- st.subheader('Generated Plots:')
215
- for fig in figs:
216
- st.pyplot(fig)
217
-
218
- if success:
219
- st.success("Code executed successfully!")
220
- else:
221
- st.error("Code execution failed! Waiting for debugging input...")
222
-
223
- # Move the generated files section to the sidebar
224
- with st.sidebar:
225
- st.header('Output Files:')
226
- files = glob.glob(os.path.join("Output/", '*'))
227
- for file in files:
228
- if os.path.isfile(file):
229
- with open(file, 'rb') as f:
230
- st.download_button(label=f'Download {os.path.basename(file)}', data=f, file_name=os.path.basename(file))
231
-
232
-
233
-
234
- # Function to set custom CSS for futuristic UI
235
- def set_custom_css():
236
- st.markdown("""
237
- <style>
238
- body {
239
- background: #0e0e0e;
240
- color: #e0e0e0;
241
- font-family: 'Roboto', sans-serif;
242
- }
243
- .header {
244
- background: linear-gradient(135deg, #6e3aff, #b839ff);
245
- padding: 10px;
246
- border-radius: 10px;
247
- }
248
- .header h1, .header p {
249
- color: white;
250
- text-align: center;
251
- }
252
- .stButton button {
253
- background-color: #b839ff;
254
- color: white;
255
- border-radius: 10px;
256
- font-size: 16px;
257
- padding: 10px 20px;
258
- }
259
- .stButton button:hover {
260
- background-color: #6e3aff;
261
- color: #e0e0e0;
262
- }
263
- .spinner {
264
- display: flex;
265
- justify-content: center;
266
- align-items: center;
267
- }
268
- </style>
269
- """, unsafe_allow_html=True)
270
-
271
- # Function to initialize LLM
272
- def initialize_llm(model):
273
- return ChatGroq(
274
- temperature=0,
275
- groq_api_key=groq_api_key,
276
- model_name=model
277
- )
278
-
279
- # Function to initialize agents
280
- def initialize_agents(llm,file_name):
281
- file_read_tool = FileReadTool()
282
- return {
283
- "Data_Reader_Agent": Agent(
284
- role='Data_Reader_Agent',
285
- goal="Read the uploaded dataset and provide it to other agents.",
286
- backstory="Responsible for reading the uploaded dataset.",
287
- verbose=True,
288
- allow_delegation=False,
289
- llm=llm,
290
- tools=[file_read_tool]
291
- ),
292
- "Problem_Definition_Agent": Agent(
293
- role='Problem_Definition_Agent',
294
- goal="Clarify the machine learning problem the user wants to solve.",
295
- backstory="Expert in defining machine learning problems.",
296
- verbose=True,
297
- allow_delegation=False,
298
- llm=llm,
299
- ),
300
- "EDA_Agent": Agent(
301
- role='EDA_Agent',
302
- goal="Perform all possible Exploratory Data Analysis (EDA) on the data provided by the user.",
303
- backstory="Specializes in conducting comprehensive EDA to understand the data characteristics, distributions, and relationships.",
304
- verbose=True,
305
- allow_delegation=False,
306
- llm=llm,
307
- ),
308
- "Feature_Engineering_Agent": Agent(
309
- role='Feature_Engineering_Agent',
310
- goal="Perform feature engineering on the data based on the EDA results provided by the EDA agent.",
311
- backstory="Expert in deriving new features, transforming existing features, and preprocessing data to prepare it for modeling.",
312
- verbose=True,
313
- allow_delegation=False,
314
- llm=llm,
315
- ),
316
- "Model_Recommendation_Agent": Agent(
317
- role='Model_Recommendation_Agent',
318
- goal="Suggest the most suitable machine learning models.",
319
- backstory="Expert in recommending machine learning algorithms.",
320
- verbose=True,
321
- allow_delegation=False,
322
- llm=llm,
323
- ),
324
- "Starter_Code_Generator_Agent": Agent(
325
- role='Starter_Code_Generator_Agent',
326
- goal=f"Generate starter Python code for the project. Always give dataset name as 'temp_files/{file_name}",
327
- backstory="Code wizard for generating starter code templates.",
328
- verbose=True,
329
- allow_delegation=False,
330
- llm=llm,
331
- ),
332
- "Code_Modification_Agent": Agent(
333
- role='Code_Modification_Agent',
334
- goal="Modify the generated Python code based on user suggestions.",
335
- backstory="Expert in adapting code according to user feedback.",
336
- verbose=True,
337
- allow_delegation=False,
338
- llm=llm,
339
- ),
340
- # "Code_Runner_Agent": Agent(
341
- # role='Code_Runner_Agent',
342
- # goal="Run the generated Python code and catch any errors.",
343
- # backstory="Debugging expert.",
344
- # verbose=True,
345
- # allow_delegation=True,
346
- # llm=llm,
347
- # ),
348
- "Code_Debugger_Agent": Agent(
349
- role='Code_Debugger_Agent',
350
- goal="Debug the generated Python code.",
351
- backstory="Seasoned code debugger.",
352
- verbose=True,
353
- allow_delegation=False,
354
- llm=llm,
355
- ),
356
- "Compiler_Agent":Agent(
357
- role = "Code_compiler",
358
- goal = "Extract only the python code.",
359
- backstory = "You are the compiler which extract only the python code.",
360
- verbose = True,
361
- allow_delegation = False,
362
- llm = llm
363
- )
364
- }
365
-
366
- # Function to create tasks based on user inputs
367
- def create_tasks(func_call,user_question,file_name, data_upload, df, suggestion, edited_code, debugger, agents):
368
- info = df.info()
369
- tasks = []
370
- if(func_call == "Process"):
371
- tasks.append(Task(
372
- description=f"Clarify the ML problem: {user_question}",
373
- agent=agents["Problem_Definition_Agent"],
374
- expected_output="A clear and concise definition of the ML problem."
375
- )
376
- )
377
-
378
- if data_upload:
379
- tasks.extend([
380
- Task(
381
- description=f"Evaluate the data provided by the file name . This is the data: {df}",
382
- agent=agents["EDA_Agent"],
383
- expected_output="An assessment of the EDA and preprocessing like dataset info, missing value, duplication, outliers etc. on the data provided"
384
- ),
385
- Task(
386
- description=f"Feature Engineering on data {df} based on EDA output: {info}",
387
- agent=agents["Feature_Engineering_Agent"],
388
- expected_output="An assessment of the Featuring Engineering and preprocessing like handling missing values, handling duplication, handling outliers, feature encoding, feature scaling etc. on the data provided"
389
- )
390
- ])
391
-
392
- tasks.extend([
393
- Task(
394
- description="Suggest suitable ML models.",
395
- agent=agents["Model_Recommendation_Agent"],
396
- expected_output="A list of suitable ML models."
397
- ),
398
- Task(
399
- description=f"Generate starter Python code based on feature engineering, where column names are {df.columns.tolist()}. Generate only the code without any extra text",
400
- agent=agents["Starter_Code_Generator_Agent"],
401
- expected_output="Starter Python code."
402
- ),
403
- ])
404
- if(func_call == "Modify"):
405
- if suggestion:
406
- tasks.append(
407
- Task(
408
- description=f"Modify the already generated code {edited_code} according to the suggestion: {suggestion} \n\n Do not generate entire new code.",
409
- agent=agents["Code_Modification_Agent"],
410
- expected_output="Modified code."
411
- )
412
- )
413
- if(func_call == "Debug"):
414
- if debugger:
415
- tasks.append(
416
- Task(
417
- description=f"Debug and fix any errors for data with column names {df.columns.tolist()} with data as {df} in the generated code: {edited_code} \n\n According to the debugging: {debugger}. \n\n Do not generate entire new code. Just remove the error in the code by modifying only necessary parts of the code.",
418
- agent=agents["Code_Debugger_Agent"],
419
- expected_output="Debugged and successfully executed code."
420
- )
421
- )
422
- tasks.append(
423
- Task(
424
- description = "Your job is to only extract python code from string",
425
- agent = agents["Compiler_Agent"],
426
- expected_output = "Running python code."
427
- )
428
- )
429
-
430
- return tasks
431
-
432
- if __name__ == "__main__":
433
- main()