Delete app.py
Browse files
app.py
DELETED
@@ -1,433 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import os
|
4 |
-
from crewai import Agent, Task, Crew
|
5 |
-
from langchain_groq import ChatGroq
|
6 |
-
import streamlit_ace as st_ace
|
7 |
-
import traceback
|
8 |
-
import contextlib
|
9 |
-
import io
|
10 |
-
from crewai_tools import FileReadTool
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
-
import glob
|
13 |
-
from dotenv import load_dotenv
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
TEMP_DIR = "temp_files"
|
20 |
-
|
21 |
-
# Ensure the temporary directory exists
|
22 |
-
if not os.path.exists(TEMP_DIR):
|
23 |
-
os.makedirs(TEMP_DIR)
|
24 |
-
|
25 |
-
# Function to save uploaded file
|
26 |
-
def save_uploaded_file(uploaded_file):
|
27 |
-
file_path = os.path.join(TEMP_DIR, uploaded_file.name)
|
28 |
-
with open(file_path, 'wb') as f:
|
29 |
-
f.write(uploaded_file.getbuffer())
|
30 |
-
return file_path
|
31 |
-
|
32 |
-
# load the .env file
|
33 |
-
load_dotenv()
|
34 |
-
# Set up Groq API key
|
35 |
-
groq_api_key = os.environ.get("GROQ_API_KEY") # os.environ["GROQ_API_KEY"] =
|
36 |
-
|
37 |
-
|
38 |
-
def main():
|
39 |
-
# Set custom CSS for UI
|
40 |
-
set_custom_css()
|
41 |
-
|
42 |
-
# Initialize session state for edited code
|
43 |
-
if 'edited_code' not in st.session_state:
|
44 |
-
st.session_state['edited_code'] = ""
|
45 |
-
|
46 |
-
# Initialize session state for whether the initial code is generated
|
47 |
-
if 'code_generated' not in st.session_state:
|
48 |
-
st.session_state['code_generated'] = False
|
49 |
-
|
50 |
-
# Header with futuristic design
|
51 |
-
st.markdown("""
|
52 |
-
<div class="header">
|
53 |
-
<h1>AutoTabML</h1>
|
54 |
-
<p>Automated Machine Learning Code Generation for Tabluar Data</p>
|
55 |
-
</div>
|
56 |
-
""", unsafe_allow_html=True)
|
57 |
-
|
58 |
-
# Sidebar for customization options
|
59 |
-
st.sidebar.title('LLM Model')
|
60 |
-
model = st.sidebar.selectbox(
|
61 |
-
'Model',
|
62 |
-
["llama3-70b-8192"]
|
63 |
-
)
|
64 |
-
|
65 |
-
# Initialize LLM
|
66 |
-
llm = initialize_llm(model)
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
# User inputs
|
71 |
-
user_question = st.text_area("Describe your ML problem:", key="user_question")
|
72 |
-
uploaded_file = st.file_uploader("Upload a sample .csv of your data", key="uploaded_file")
|
73 |
-
try:
|
74 |
-
file_name = uploaded_file.name
|
75 |
-
except:
|
76 |
-
file_name = "dataset.csv"
|
77 |
-
|
78 |
-
# Initialize agents
|
79 |
-
agents = initialize_agents(llm,file_name)
|
80 |
-
# Process uploaded file
|
81 |
-
if uploaded_file:
|
82 |
-
try:
|
83 |
-
file_path = save_uploaded_file(uploaded_file)
|
84 |
-
df = pd.read_csv(uploaded_file)
|
85 |
-
st.write("Data successfully uploaded:")
|
86 |
-
st.dataframe(df.head())
|
87 |
-
data_upload = True
|
88 |
-
except Exception as e:
|
89 |
-
st.error(f"Error reading the file: {e}")
|
90 |
-
data_upload = False
|
91 |
-
else:
|
92 |
-
df = None
|
93 |
-
data_upload = False
|
94 |
-
|
95 |
-
# Process button
|
96 |
-
if st.button('Process'):
|
97 |
-
tasks = create_tasks("Process",user_question,file_name, data_upload, df, None, st.session_state['edited_code'], None, agents)
|
98 |
-
with st.spinner('Processing...'):
|
99 |
-
crew = Crew(
|
100 |
-
agents=list(agents.values()),
|
101 |
-
tasks=tasks,
|
102 |
-
verbose=2
|
103 |
-
)
|
104 |
-
|
105 |
-
result = crew.kickoff()
|
106 |
-
|
107 |
-
if result: # Only call st_ace if code has a valid value
|
108 |
-
code = result.strip("```")
|
109 |
-
try:
|
110 |
-
filt_idx = code.index("```")
|
111 |
-
code = code[:filt_idx]
|
112 |
-
except:
|
113 |
-
pass
|
114 |
-
st.session_state['edited_code'] = code
|
115 |
-
st.session_state['code_generated'] = True
|
116 |
-
|
117 |
-
st.session_state['edited_code'] = st_ace.st_ace(
|
118 |
-
value=st.session_state['edited_code'],
|
119 |
-
language='python',
|
120 |
-
theme='monokai',
|
121 |
-
keybinding='vscode',
|
122 |
-
min_lines=20,
|
123 |
-
max_lines=50
|
124 |
-
)
|
125 |
-
|
126 |
-
if st.session_state['code_generated']:
|
127 |
-
# Show options for modification, debugging, and running the code
|
128 |
-
suggestion = st.text_area("Suggest modifications to the generated code (optional):", key="suggestion")
|
129 |
-
if st.button('Modify'):
|
130 |
-
if st.session_state['edited_code'] and suggestion:
|
131 |
-
tasks = create_tasks("Modify",user_question,file_name, data_upload, df, suggestion, st.session_state['edited_code'], None, agents)
|
132 |
-
with st.spinner('Modifying code...'):
|
133 |
-
crew = Crew(
|
134 |
-
agents=list(agents.values()),
|
135 |
-
tasks=tasks,
|
136 |
-
verbose=2
|
137 |
-
)
|
138 |
-
|
139 |
-
result = crew.kickoff()
|
140 |
-
|
141 |
-
if result: # Only call st_ace if code has a valid value
|
142 |
-
code = result.strip("```")
|
143 |
-
try:
|
144 |
-
filter_idx = code.index("```")
|
145 |
-
code = code[:filter_idx]
|
146 |
-
except:
|
147 |
-
pass
|
148 |
-
st.session_state['edited_code'] = code
|
149 |
-
|
150 |
-
st.write("Modified code:")
|
151 |
-
st.session_state['edited_code']= st_ace.st_ace(
|
152 |
-
value=st.session_state['edited_code'],
|
153 |
-
language='python',
|
154 |
-
theme='monokai',
|
155 |
-
keybinding='vscode',
|
156 |
-
min_lines=20,
|
157 |
-
max_lines=50
|
158 |
-
)
|
159 |
-
|
160 |
-
debugger = st.text_area("Paste error message here for debugging (optional):", key="debugger")
|
161 |
-
if st.button('Debug'):
|
162 |
-
if st.session_state['edited_code'] and debugger:
|
163 |
-
tasks = create_tasks("Debug",user_question,file_name, data_upload, df, None, st.session_state['edited_code'], debugger, agents)
|
164 |
-
with st.spinner('Debugging code...'):
|
165 |
-
crew = Crew(
|
166 |
-
agents=list(agents.values()),
|
167 |
-
tasks=tasks,
|
168 |
-
verbose=2
|
169 |
-
)
|
170 |
-
|
171 |
-
result = crew.kickoff()
|
172 |
-
|
173 |
-
if result: # Only call st_ace if code has a valid value
|
174 |
-
code = result.strip("```")
|
175 |
-
try:
|
176 |
-
filter_idx = code.index("```")
|
177 |
-
code = code[:filter_idx]
|
178 |
-
except:
|
179 |
-
pass
|
180 |
-
st.session_state['edited_code'] = code
|
181 |
-
|
182 |
-
st.write("Debugged code:")
|
183 |
-
st.session_state['edited_code'] = st_ace.st_ace(
|
184 |
-
value=st.session_state['edited_code'],
|
185 |
-
language='python',
|
186 |
-
theme='monokai',
|
187 |
-
keybinding='vscode',
|
188 |
-
min_lines=20,
|
189 |
-
max_lines=50
|
190 |
-
)
|
191 |
-
|
192 |
-
if st.button('Run'):
|
193 |
-
output = io.StringIO()
|
194 |
-
with contextlib.redirect_stdout(output):
|
195 |
-
try:
|
196 |
-
globals().update({'dataset': df})
|
197 |
-
final_code = st.session_state["edited_code"]
|
198 |
-
|
199 |
-
with st.expander("Final Code"):
|
200 |
-
st.code(final_code, language='python')
|
201 |
-
|
202 |
-
exec(final_code, globals())
|
203 |
-
result = output.getvalue()
|
204 |
-
success = True
|
205 |
-
except Exception as e:
|
206 |
-
result = str(e)
|
207 |
-
success = False
|
208 |
-
|
209 |
-
st.subheader('Output:')
|
210 |
-
st.text(result)
|
211 |
-
|
212 |
-
figs = [manager.canvas.figure for manager in plt._pylab_helpers.Gcf.get_all_fig_managers()]
|
213 |
-
if figs:
|
214 |
-
st.subheader('Generated Plots:')
|
215 |
-
for fig in figs:
|
216 |
-
st.pyplot(fig)
|
217 |
-
|
218 |
-
if success:
|
219 |
-
st.success("Code executed successfully!")
|
220 |
-
else:
|
221 |
-
st.error("Code execution failed! Waiting for debugging input...")
|
222 |
-
|
223 |
-
# Move the generated files section to the sidebar
|
224 |
-
with st.sidebar:
|
225 |
-
st.header('Output Files:')
|
226 |
-
files = glob.glob(os.path.join("Output/", '*'))
|
227 |
-
for file in files:
|
228 |
-
if os.path.isfile(file):
|
229 |
-
with open(file, 'rb') as f:
|
230 |
-
st.download_button(label=f'Download {os.path.basename(file)}', data=f, file_name=os.path.basename(file))
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
# Function to set custom CSS for futuristic UI
|
235 |
-
def set_custom_css():
|
236 |
-
st.markdown("""
|
237 |
-
<style>
|
238 |
-
body {
|
239 |
-
background: #0e0e0e;
|
240 |
-
color: #e0e0e0;
|
241 |
-
font-family: 'Roboto', sans-serif;
|
242 |
-
}
|
243 |
-
.header {
|
244 |
-
background: linear-gradient(135deg, #6e3aff, #b839ff);
|
245 |
-
padding: 10px;
|
246 |
-
border-radius: 10px;
|
247 |
-
}
|
248 |
-
.header h1, .header p {
|
249 |
-
color: white;
|
250 |
-
text-align: center;
|
251 |
-
}
|
252 |
-
.stButton button {
|
253 |
-
background-color: #b839ff;
|
254 |
-
color: white;
|
255 |
-
border-radius: 10px;
|
256 |
-
font-size: 16px;
|
257 |
-
padding: 10px 20px;
|
258 |
-
}
|
259 |
-
.stButton button:hover {
|
260 |
-
background-color: #6e3aff;
|
261 |
-
color: #e0e0e0;
|
262 |
-
}
|
263 |
-
.spinner {
|
264 |
-
display: flex;
|
265 |
-
justify-content: center;
|
266 |
-
align-items: center;
|
267 |
-
}
|
268 |
-
</style>
|
269 |
-
""", unsafe_allow_html=True)
|
270 |
-
|
271 |
-
# Function to initialize LLM
|
272 |
-
def initialize_llm(model):
|
273 |
-
return ChatGroq(
|
274 |
-
temperature=0,
|
275 |
-
groq_api_key=groq_api_key,
|
276 |
-
model_name=model
|
277 |
-
)
|
278 |
-
|
279 |
-
# Function to initialize agents
|
280 |
-
def initialize_agents(llm,file_name):
|
281 |
-
file_read_tool = FileReadTool()
|
282 |
-
return {
|
283 |
-
"Data_Reader_Agent": Agent(
|
284 |
-
role='Data_Reader_Agent',
|
285 |
-
goal="Read the uploaded dataset and provide it to other agents.",
|
286 |
-
backstory="Responsible for reading the uploaded dataset.",
|
287 |
-
verbose=True,
|
288 |
-
allow_delegation=False,
|
289 |
-
llm=llm,
|
290 |
-
tools=[file_read_tool]
|
291 |
-
),
|
292 |
-
"Problem_Definition_Agent": Agent(
|
293 |
-
role='Problem_Definition_Agent',
|
294 |
-
goal="Clarify the machine learning problem the user wants to solve.",
|
295 |
-
backstory="Expert in defining machine learning problems.",
|
296 |
-
verbose=True,
|
297 |
-
allow_delegation=False,
|
298 |
-
llm=llm,
|
299 |
-
),
|
300 |
-
"EDA_Agent": Agent(
|
301 |
-
role='EDA_Agent',
|
302 |
-
goal="Perform all possible Exploratory Data Analysis (EDA) on the data provided by the user.",
|
303 |
-
backstory="Specializes in conducting comprehensive EDA to understand the data characteristics, distributions, and relationships.",
|
304 |
-
verbose=True,
|
305 |
-
allow_delegation=False,
|
306 |
-
llm=llm,
|
307 |
-
),
|
308 |
-
"Feature_Engineering_Agent": Agent(
|
309 |
-
role='Feature_Engineering_Agent',
|
310 |
-
goal="Perform feature engineering on the data based on the EDA results provided by the EDA agent.",
|
311 |
-
backstory="Expert in deriving new features, transforming existing features, and preprocessing data to prepare it for modeling.",
|
312 |
-
verbose=True,
|
313 |
-
allow_delegation=False,
|
314 |
-
llm=llm,
|
315 |
-
),
|
316 |
-
"Model_Recommendation_Agent": Agent(
|
317 |
-
role='Model_Recommendation_Agent',
|
318 |
-
goal="Suggest the most suitable machine learning models.",
|
319 |
-
backstory="Expert in recommending machine learning algorithms.",
|
320 |
-
verbose=True,
|
321 |
-
allow_delegation=False,
|
322 |
-
llm=llm,
|
323 |
-
),
|
324 |
-
"Starter_Code_Generator_Agent": Agent(
|
325 |
-
role='Starter_Code_Generator_Agent',
|
326 |
-
goal=f"Generate starter Python code for the project. Always give dataset name as 'temp_files/{file_name}",
|
327 |
-
backstory="Code wizard for generating starter code templates.",
|
328 |
-
verbose=True,
|
329 |
-
allow_delegation=False,
|
330 |
-
llm=llm,
|
331 |
-
),
|
332 |
-
"Code_Modification_Agent": Agent(
|
333 |
-
role='Code_Modification_Agent',
|
334 |
-
goal="Modify the generated Python code based on user suggestions.",
|
335 |
-
backstory="Expert in adapting code according to user feedback.",
|
336 |
-
verbose=True,
|
337 |
-
allow_delegation=False,
|
338 |
-
llm=llm,
|
339 |
-
),
|
340 |
-
# "Code_Runner_Agent": Agent(
|
341 |
-
# role='Code_Runner_Agent',
|
342 |
-
# goal="Run the generated Python code and catch any errors.",
|
343 |
-
# backstory="Debugging expert.",
|
344 |
-
# verbose=True,
|
345 |
-
# allow_delegation=True,
|
346 |
-
# llm=llm,
|
347 |
-
# ),
|
348 |
-
"Code_Debugger_Agent": Agent(
|
349 |
-
role='Code_Debugger_Agent',
|
350 |
-
goal="Debug the generated Python code.",
|
351 |
-
backstory="Seasoned code debugger.",
|
352 |
-
verbose=True,
|
353 |
-
allow_delegation=False,
|
354 |
-
llm=llm,
|
355 |
-
),
|
356 |
-
"Compiler_Agent":Agent(
|
357 |
-
role = "Code_compiler",
|
358 |
-
goal = "Extract only the python code.",
|
359 |
-
backstory = "You are the compiler which extract only the python code.",
|
360 |
-
verbose = True,
|
361 |
-
allow_delegation = False,
|
362 |
-
llm = llm
|
363 |
-
)
|
364 |
-
}
|
365 |
-
|
366 |
-
# Function to create tasks based on user inputs
|
367 |
-
def create_tasks(func_call,user_question,file_name, data_upload, df, suggestion, edited_code, debugger, agents):
|
368 |
-
info = df.info()
|
369 |
-
tasks = []
|
370 |
-
if(func_call == "Process"):
|
371 |
-
tasks.append(Task(
|
372 |
-
description=f"Clarify the ML problem: {user_question}",
|
373 |
-
agent=agents["Problem_Definition_Agent"],
|
374 |
-
expected_output="A clear and concise definition of the ML problem."
|
375 |
-
)
|
376 |
-
)
|
377 |
-
|
378 |
-
if data_upload:
|
379 |
-
tasks.extend([
|
380 |
-
Task(
|
381 |
-
description=f"Evaluate the data provided by the file name . This is the data: {df}",
|
382 |
-
agent=agents["EDA_Agent"],
|
383 |
-
expected_output="An assessment of the EDA and preprocessing like dataset info, missing value, duplication, outliers etc. on the data provided"
|
384 |
-
),
|
385 |
-
Task(
|
386 |
-
description=f"Feature Engineering on data {df} based on EDA output: {info}",
|
387 |
-
agent=agents["Feature_Engineering_Agent"],
|
388 |
-
expected_output="An assessment of the Featuring Engineering and preprocessing like handling missing values, handling duplication, handling outliers, feature encoding, feature scaling etc. on the data provided"
|
389 |
-
)
|
390 |
-
])
|
391 |
-
|
392 |
-
tasks.extend([
|
393 |
-
Task(
|
394 |
-
description="Suggest suitable ML models.",
|
395 |
-
agent=agents["Model_Recommendation_Agent"],
|
396 |
-
expected_output="A list of suitable ML models."
|
397 |
-
),
|
398 |
-
Task(
|
399 |
-
description=f"Generate starter Python code based on feature engineering, where column names are {df.columns.tolist()}. Generate only the code without any extra text",
|
400 |
-
agent=agents["Starter_Code_Generator_Agent"],
|
401 |
-
expected_output="Starter Python code."
|
402 |
-
),
|
403 |
-
])
|
404 |
-
if(func_call == "Modify"):
|
405 |
-
if suggestion:
|
406 |
-
tasks.append(
|
407 |
-
Task(
|
408 |
-
description=f"Modify the already generated code {edited_code} according to the suggestion: {suggestion} \n\n Do not generate entire new code.",
|
409 |
-
agent=agents["Code_Modification_Agent"],
|
410 |
-
expected_output="Modified code."
|
411 |
-
)
|
412 |
-
)
|
413 |
-
if(func_call == "Debug"):
|
414 |
-
if debugger:
|
415 |
-
tasks.append(
|
416 |
-
Task(
|
417 |
-
description=f"Debug and fix any errors for data with column names {df.columns.tolist()} with data as {df} in the generated code: {edited_code} \n\n According to the debugging: {debugger}. \n\n Do not generate entire new code. Just remove the error in the code by modifying only necessary parts of the code.",
|
418 |
-
agent=agents["Code_Debugger_Agent"],
|
419 |
-
expected_output="Debugged and successfully executed code."
|
420 |
-
)
|
421 |
-
)
|
422 |
-
tasks.append(
|
423 |
-
Task(
|
424 |
-
description = "Your job is to only extract python code from string",
|
425 |
-
agent = agents["Compiler_Agent"],
|
426 |
-
expected_output = "Running python code."
|
427 |
-
)
|
428 |
-
)
|
429 |
-
|
430 |
-
return tasks
|
431 |
-
|
432 |
-
if __name__ == "__main__":
|
433 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|