Spaces:
Build error
Build error
File size: 15,331 Bytes
169e11c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
from typing import List
from configs.path_cfg import MOTSYNTH_ROOT, MOTCHA_ROOT, OUTPUT_DIR
import datetime
import os.path as osp
import os
import time
import coloredlogs
import logging
from torchinfo import summary
import torch
import torch.utils.data
from src.detection.vision.mot_data import MOTObjDetect
from src.detection.model_factory import ModelFactory
from src.detection.graph_utils import save_train_loss_plot
import src.detection.vision.presets as presets
import src.detection.vision.utils as utils
from src.detection.vision.engine import train_one_epoch, evaluate
from src.detection.vision.group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
from src.detection.mot_dataset import get_mot_dataset
import torchvision
from torchvision.models.detection.faster_rcnn import fasterrcnn_resnet50_fpn_v2
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
coloredlogs.install(level='DEBUG')
logger = logging.getLogger(__name__)
def get_args_parser(add_help=True):
import argparse
parser = argparse.ArgumentParser(
description="PyTorch Detection Training", add_help=add_help)
# Output directory used to save model, plots and summary
parser.add_argument("--output-dir", default='fasterrcnn_training',
type=str, help="Path to save outputs (default: fasterrcnn_training)")
# Dataset params
parser.add_argument("--train-dataset", default="motsynth_split1",
type=str, help="Dataset name. Please select one of the following: motsynth_split1, motsynth_split2, motsynth_split3, motsynth_split4, MOT17 (default: motsynth_split1)")
parser.add_argument("--val-dataset", default="MOT17",
type=str, help="Dataset name. Please select one of the following: MOT17 (default: MOT17)")
# Transforms params
parser.add_argument(
"--data-augmentation", default="hflip", type=str, help="Data augmentation policy (default: hflip)"
)
# Data Loaders params
parser.add_argument(
"-b", "--batch-size", default=3, type=int, help="Images per gpu (default: 3)"
)
parser.add_argument(
"-j", "--workers", default=0, type=int, metavar="N", help="Number of data loading workers (default: 0)"
)
parser.add_argument("--aspect-ratio-group-factor", default=3,
type=int, help="Aspect ration group factor (default:3)")
# Model param
parser.add_argument(
"--model", default="fasterrcnn_resnet50_fpn", type=str, help="Model name (default: fasterrcnn_resnet50_fpn)")
parser.add_argument(
"--weights", default="DEFAULT", type=str, help="Model weights (default: DEFAULT)"
)
parser.add_argument(
"--backbone", default='resnet50', type=str, help="Type of backbone (default: resnet50)"
)
parser.add_argument(
"--trainable-backbone-layers", default=3, type=int, help="Number of trainable layers of backbone (default: 3)"
)
parser.add_argument(
"--backbone-weights", default="DEFAULT", type=str, help="Backbone weights (default: DEFAULT)"
)
# Device param
parser.add_argument("--device", default="cuda", type=str,
help="device (default: cuda)")
# Test mode param
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
parser.add_argument(
"--model-eval", type=str, help="model path for test only mode"
)
# Optimizer params
parser.add_argument(
"--lr",
default=0.0025,
type=float,
help="Learning rate (default: 0.0025)",
)
parser.add_argument("--momentum", default=0.9,
type=float, metavar="M", help="Momentum (default: 0.9")
parser.add_argument(
"--wd",
"--weight-decay",
default=1e-4,
type=float,
metavar="W",
help="Weight decay (default: 1e-4)",
dest="weight_decay",
)
# Lr Scheduler params
parser.add_argument(
"--lr-scheduler", default="multisteplr", type=str, help="Name of lr scheduler (default: multisteplr)"
)
parser.add_argument(
"--lr-steps",
default=[16, 22],
nargs="+",
type=int,
help="Decrease lr every step-size epochs (multisteplr scheduler only)",
)
parser.add_argument(
"--lr-gamma", default=0.1, type=float, help="Decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
)
# Mixed precision training params
parser.add_argument("--amp", action="store_true",
help="Use torch.cuda.amp for mixed precision training")
# Resume training params
parser.add_argument("--resume", default="", type=str,
help="path of checkpoint")
# training param
parser.add_argument("--start_epoch", default=0,
type=int, help="start epoch")
parser.add_argument("--epochs", default=30, type=int,
metavar="N", help="number of total epochs to run")
parser.add_argument("--print-freq", default=20,
type=int, help="print frequency")
return parser
def get_transform(train, data_augmentation):
if train:
return presets.DetectionPresetTrain(data_augmentation)
else:
return presets.DetectionPresetEval()
def get_motsynth_dataset(ds_name: str, transforms):
data_path = osp.join(MOTSYNTH_ROOT, 'comb_annotations', f"{ds_name}.json")
dataset = get_mot_dataset(MOTSYNTH_ROOT, data_path, transforms=transforms)
return dataset
def get_MOT17_dataset(split: str, split_seqs: List, transforms):
data_path = osp.join(MOTCHA_ROOT, "MOT17", "train")
dataset = MOTObjDetect(
data_path, transforms=transforms, split_seqs=split_seqs)
return dataset
def create_dataset(ds_name: str, transforms, split=None):
if (ds_name.startswith("motsynth")):
return get_motsynth_dataset(ds_name, transforms)
elif (ds_name.startswith("MOT17")):
if split == "train":
split_seqs = ['MOT17-02-FRCNN', 'MOT17-04-FRCNN',
'MOT17-11-FRCNN', 'MOT17-13-FRCNN']
elif split == "test":
split_seqs = ['MOT17-09-FRCNN', 'MOT17-10-FRCNN', 'MOT17-05-FRCNN']
return get_MOT17_dataset(split, split_seqs, transforms)
else:
logger.error(
"Please, provide a valid dataset as argument. Select one of the following: motsynth_split1, motsynth_split2, motsynth_split3, motsynth_split4, MOT17.")
raise ValueError(ds_name)
def create_data_loader(dataset, split: str, batch_size, workers, aspect_ratio_group_factor=-1):
data_loader = None
if split == "train":
# random sampling on training dataset
train_sampler = torch.utils.data.RandomSampler(dataset)
if aspect_ratio_group_factor >= 0:
group_ids = create_aspect_ratio_groups(
dataset, k=aspect_ratio_group_factor)
train_batch_sampler = GroupedBatchSampler(
train_sampler, group_ids, batch_size)
else:
train_batch_sampler = torch.utils.data.BatchSampler(
train_sampler, batch_size, drop_last=True)
data_loader = torch.utils.data.DataLoader(
dataset, batch_sampler=train_batch_sampler, num_workers=workers, collate_fn=utils.collate_fn
)
elif split == "test":
# sequential sampling on eval dataset
test_sampler = torch.utils.data.SequentialSampler(dataset)
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, sampler=test_sampler, num_workers=workers, collate_fn=utils.collate_fn
)
return data_loader
def create_optimizer(model, lr, momentum, weight_decay):
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
params, lr=lr, momentum=momentum, weight_decay=weight_decay)
return optimizer
def create_lr_scheduler(optimizer, lr_scheduler_type, lr_steps, lr_gamma, epochs):
if lr_scheduler_type == "multisteplr":
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=lr_steps, gamma=lr_gamma)
logger.debug(
f"lr_scheduler: {lr_scheduler_type}, milestones: {lr_steps}, gamma: {lr_gamma}")
elif lr_scheduler_type == "cosineannealinglr":
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, T_max=epochs)
logger.debug(
f"lr_scheduler: {lr_scheduler_type}, T_max: {epochs}")
else:
raise RuntimeError(
f"Invalid lr scheduler '{lr_scheduler_type}'. Only MultiStepLR and CosineAnnealingLR are supported."
)
return lr_scheduler
def resume_training(model, optimizer, lr_scheduler, scaler, args):
checkpoint = torch.load(args.resume, map_location="cpu")
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
args.start_epoch = checkpoint["epoch"] + 1
if args.amp:
scaler.load_state_dict(checkpoint["scaler"])
def save_model_checkpoint(model, optimizer, lr_scheduler, epoch, scaler, output_dir, args):
if output_dir:
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"args": args,
"epoch": epoch,
}
if args.amp:
checkpoint["scaler"] = scaler.state_dict()
utils.save_on_master(checkpoint, os.path.join(
output_dir, f"model_{epoch}.pth"))
utils.save_on_master(checkpoint, os.path.join(
output_dir, "checkpoint.pth"))
def save_plots(losses_dict, batch_loss_dict, output_dir):
if not losses_dict:
for name, metric in batch_loss_dict.items():
losses_dict[name] = []
for name, metric in batch_loss_dict.items():
losses_dict[name].extend(metric)
save_train_loss_plot(losses_dict, output_dir)
def save_model_summary(model, output_dir, batch_size):
with open(osp.join(output_dir, "summary.txt"), 'w', encoding="utf-8") as f:
print(summary(model,
# (batch_size, color_channels, height, width)
input_size=(batch_size, 3, 1080, 1920),
verbose=0,
col_names=["input_size", "output_size",
"num_params", "kernel_size", "trainable"],
col_width=20,
row_settings=["var_names"]), file=f)
def save_args(output_dir, args):
with open(osp.join(output_dir, "args.txt"), 'w', encoding="utf-8") as f:
print(args, file=f)
def save_evaluate_summary(stats, output_dir):
metrics = ["AP", "AP50", "AP75", "APs", "APm", "APl"]
# the standard metrics
results = {
metric: float(stats[idx] *
100 if stats[idx] >= 0 else "nan")
for idx, metric in enumerate(metrics)
}
with open(osp.join(output_dir, "evaluate.txt"), 'w', encoding="utf-8") as f:
print(results, file=f)
def main(args):
output_dir = None
if args.output_dir:
output_dir = osp.join(
OUTPUT_DIR, 'detection_logs', args.output_dir)
utils.mkdir(output_dir)
output_plots_dir = osp.join(output_dir, "plots")
utils.mkdir(output_plots_dir)
logger.debug("COMMAND LINE ARGUMENTS")
logger.debug(args)
save_args(output_dir, args)
device = torch.device(args.device)
logger.debug(f"DEVICE: {device}")
logger.debug("CREATE DATASETS")
ds_train_name = args.train_dataset
ds_val_name = args.val_dataset
data_augmentation = args.data_augmentation
dataset_train = create_dataset(
ds_train_name, get_transform(True, data_augmentation), "train")
dataset_test = create_dataset(
ds_val_name, get_transform(False, data_augmentation), "test")
logger.debug("CREATE DATA LOADERS")
batch_size = args.batch_size
workers = args.workers
aspect_ratio_group_factor = args.aspect_ratio_group_factor
data_loader_train = create_data_loader(
dataset_train, "train", batch_size, workers, aspect_ratio_group_factor)
data_loader_test = create_data_loader(
dataset_test, "test", batch_size, workers)
if args.test_only:
logger.debug("TEST ONLY")
model = fasterrcnn_resnet50_fpn_v2()
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 2)
checkpoint = torch.load(args.model_eval, map_location="cuda")
model.load_state_dict(checkpoint["model"])
model.to(device)
coco_evaluator = evaluate(model, data_loader_test,
device=device, iou_types=['bbox'])
save_evaluate_summary(
coco_evaluator.coco_eval['bbox'].stats, output_dir)
return
logger.debug("CREATE MODEL")
model_name = args.model
weights = args.weights
backbone = args.backbone
backbone_weights = args.backbone_weights
trainable_backbone_layers = args.trainable_backbone_layers
model = ModelFactory.get_model(
model_name, weights, backbone, backbone_weights, trainable_backbone_layers)
save_model_summary(model, output_dir, batch_size)
logger.debug("CREATE OPTIMIZER")
lr = args.lr
momentum = args.momentum
weight_decay = args.weight_decay
optimizer = create_optimizer(
model, lr, momentum, weight_decay)
logger.debug("CREATE LR SCHEDULER")
epochs = args.epochs
lr_scheduler_type = args.lr_scheduler.lower()
lr_steps = args.lr_steps
lr_gamma = args.lr_gamma
lr_scheduler = create_lr_scheduler(
optimizer, lr_scheduler_type, lr_steps, lr_gamma, epochs)
logger.debug("CONFIGURE SCALER FOR amp")
scaler = torch.cuda.amp.GradScaler() if args.amp else None
if args.resume:
logger.debug("RESUME TRAINING")
resume_training(model, optimizer, lr_scheduler,
scaler, args)
logger.debug("START TRAINING")
print_freq = args.print_freq
start_epoch = args.start_epoch
losses_dict = {}
start_time = time.time()
for epoch in range(start_epoch, epochs):
_, batch_loss_dict = train_one_epoch(model, optimizer, data_loader_train, device,
epoch, print_freq, scaler)
lr_scheduler.step()
save_plots(losses_dict, batch_loss_dict,
output_dir=output_plots_dir)
coco_evaluator = evaluate(model, data_loader_test,
device=device, iou_types=['bbox'])
save_evaluate_summary(
coco_evaluator.coco_eval['bbox'].stats, output_dir)
save_model_checkpoint(
model, optimizer, lr_scheduler, epoch, scaler, output_dir, args)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.debug(f"TRAINING TIME: {total_time_str}")
if __name__ == "__main__":
args = get_args_parser().parse_args()
main(args)
|