File size: 15,331 Bytes
169e11c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
from typing import List
from configs.path_cfg import MOTSYNTH_ROOT, MOTCHA_ROOT, OUTPUT_DIR
import datetime
import os.path as osp
import os
import time
import coloredlogs
import logging
from torchinfo import summary
import torch
import torch.utils.data
from src.detection.vision.mot_data import MOTObjDetect
from src.detection.model_factory import ModelFactory
from src.detection.graph_utils import save_train_loss_plot
import src.detection.vision.presets as presets
import src.detection.vision.utils as utils
from src.detection.vision.engine import train_one_epoch, evaluate
from src.detection.vision.group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
from src.detection.mot_dataset import get_mot_dataset
import torchvision

from torchvision.models.detection.faster_rcnn import fasterrcnn_resnet50_fpn_v2
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
coloredlogs.install(level='DEBUG')
logger = logging.getLogger(__name__)


def get_args_parser(add_help=True):
    import argparse

    parser = argparse.ArgumentParser(
        description="PyTorch Detection Training", add_help=add_help)

    # Output directory used to save model, plots and summary
    parser.add_argument("--output-dir", default='fasterrcnn_training',
                        type=str, help="Path to save outputs (default: fasterrcnn_training)")

    # Dataset params
    parser.add_argument("--train-dataset", default="motsynth_split1",
                        type=str, help="Dataset name. Please select one of the following:  motsynth_split1, motsynth_split2, motsynth_split3, motsynth_split4, MOT17 (default: motsynth_split1)")
    parser.add_argument("--val-dataset", default="MOT17",
                        type=str, help="Dataset name. Please select one of the following: MOT17 (default: MOT17)")

    # Transforms params
    parser.add_argument(
        "--data-augmentation", default="hflip", type=str, help="Data augmentation policy (default: hflip)"
    )

    # Data Loaders params
    parser.add_argument(
        "-b", "--batch-size", default=3, type=int, help="Images per gpu (default: 3)"
    )
    parser.add_argument(
        "-j", "--workers", default=0, type=int, metavar="N", help="Number of data loading workers (default: 0)"
    )
    parser.add_argument("--aspect-ratio-group-factor", default=3,
                        type=int, help="Aspect ration group factor (default:3)")

    # Model param
    parser.add_argument(
        "--model", default="fasterrcnn_resnet50_fpn", type=str, help="Model name (default: fasterrcnn_resnet50_fpn)")
    parser.add_argument(
        "--weights", default="DEFAULT", type=str, help="Model weights (default: DEFAULT)"
    )
    parser.add_argument(
        "--backbone", default='resnet50', type=str, help="Type of backbone (default: resnet50)"
    )
    parser.add_argument(
        "--trainable-backbone-layers", default=3, type=int, help="Number of trainable layers of backbone (default: 3)"
    )
    parser.add_argument(
        "--backbone-weights", default="DEFAULT", type=str, help="Backbone weights (default: DEFAULT)"
    )

    # Device param
    parser.add_argument("--device", default="cuda", type=str,
                        help="device (default: cuda)")

    # Test mode param
    parser.add_argument(
        "--test-only",
        dest="test_only",
        help="Only test the model",
        action="store_true",
    )
    parser.add_argument(
        "--model-eval", type=str, help="model path for test only mode"
    )

    # Optimizer params
    parser.add_argument(
        "--lr",
        default=0.0025,
        type=float,
        help="Learning rate (default: 0.0025)",
    )
    parser.add_argument("--momentum", default=0.9,
                        type=float, metavar="M", help="Momentum (default: 0.9")
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=1e-4,
        type=float,
        metavar="W",
        help="Weight decay (default: 1e-4)",
        dest="weight_decay",
    )

    # Lr Scheduler params
    parser.add_argument(
        "--lr-scheduler", default="multisteplr", type=str, help="Name of lr scheduler (default: multisteplr)"
    )
    parser.add_argument(
        "--lr-steps",
        default=[16, 22],
        nargs="+",
        type=int,
        help="Decrease lr every step-size epochs (multisteplr scheduler only)",
    )
    parser.add_argument(
        "--lr-gamma", default=0.1, type=float, help="Decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
    )

    # Mixed precision training params
    parser.add_argument("--amp", action="store_true",
                        help="Use torch.cuda.amp for mixed precision training")

    # Resume training params
    parser.add_argument("--resume", default="", type=str,
                        help="path of checkpoint")

    # training param
    parser.add_argument("--start_epoch", default=0,
                        type=int, help="start epoch")
    parser.add_argument("--epochs", default=30, type=int,
                        metavar="N", help="number of total epochs to run")
    parser.add_argument("--print-freq", default=20,
                        type=int, help="print frequency")

    return parser


def get_transform(train, data_augmentation):
    if train:
        return presets.DetectionPresetTrain(data_augmentation)
    else:
        return presets.DetectionPresetEval()


def get_motsynth_dataset(ds_name: str, transforms):
    data_path = osp.join(MOTSYNTH_ROOT, 'comb_annotations', f"{ds_name}.json")
    dataset = get_mot_dataset(MOTSYNTH_ROOT, data_path, transforms=transforms)
    return dataset


def get_MOT17_dataset(split: str, split_seqs: List, transforms):
    data_path = osp.join(MOTCHA_ROOT, "MOT17", "train")
    dataset = MOTObjDetect(
        data_path, transforms=transforms, split_seqs=split_seqs)
    return dataset


def create_dataset(ds_name: str, transforms, split=None):
    if (ds_name.startswith("motsynth")):
        return get_motsynth_dataset(ds_name, transforms)

    elif (ds_name.startswith("MOT17")):
        if split == "train":
            split_seqs = ['MOT17-02-FRCNN', 'MOT17-04-FRCNN',
                          'MOT17-11-FRCNN', 'MOT17-13-FRCNN']
        elif split == "test":
            split_seqs = ['MOT17-09-FRCNN', 'MOT17-10-FRCNN', 'MOT17-05-FRCNN']
        return get_MOT17_dataset(split, split_seqs, transforms)

    else:
        logger.error(
            "Please, provide a valid dataset as argument. Select one of the following:  motsynth_split1, motsynth_split2, motsynth_split3, motsynth_split4, MOT17.")
        raise ValueError(ds_name)


def create_data_loader(dataset, split: str, batch_size, workers, aspect_ratio_group_factor=-1):
    data_loader = None
    if split == "train":
        # random sampling on training dataset
        train_sampler = torch.utils.data.RandomSampler(dataset)
        if aspect_ratio_group_factor >= 0:
            group_ids = create_aspect_ratio_groups(
                dataset, k=aspect_ratio_group_factor)
            train_batch_sampler = GroupedBatchSampler(
                train_sampler, group_ids, batch_size)
        else:
            train_batch_sampler = torch.utils.data.BatchSampler(
                train_sampler, batch_size, drop_last=True)
        data_loader = torch.utils.data.DataLoader(
            dataset, batch_sampler=train_batch_sampler, num_workers=workers, collate_fn=utils.collate_fn
        )
    elif split == "test":
        # sequential sampling on eval dataset
        test_sampler = torch.utils.data.SequentialSampler(dataset)
        data_loader = torch.utils.data.DataLoader(
            dataset, batch_size=1, sampler=test_sampler, num_workers=workers, collate_fn=utils.collate_fn
        )
    return data_loader


def create_optimizer(model, lr, momentum, weight_decay):
    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(
        params, lr=lr, momentum=momentum, weight_decay=weight_decay)
    return optimizer


def create_lr_scheduler(optimizer, lr_scheduler_type, lr_steps, lr_gamma, epochs):
    if lr_scheduler_type == "multisteplr":
        lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
            optimizer, milestones=lr_steps, gamma=lr_gamma)
        logger.debug(
            f"lr_scheduler: {lr_scheduler_type}, milestones: {lr_steps}, gamma: {lr_gamma}")

    elif lr_scheduler_type == "cosineannealinglr":
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            optimizer, T_max=epochs)
        logger.debug(
            f"lr_scheduler: {lr_scheduler_type}, T_max: {epochs}")
    else:
        raise RuntimeError(
            f"Invalid lr scheduler '{lr_scheduler_type}'. Only MultiStepLR and CosineAnnealingLR are supported."
        )
    return lr_scheduler


def resume_training(model, optimizer, lr_scheduler, scaler, args):
    checkpoint = torch.load(args.resume, map_location="cpu")

    model.load_state_dict(checkpoint["model"])
    optimizer.load_state_dict(checkpoint["optimizer"])
    lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
    args.start_epoch = checkpoint["epoch"] + 1
    if args.amp:
        scaler.load_state_dict(checkpoint["scaler"])


def save_model_checkpoint(model, optimizer, lr_scheduler, epoch, scaler, output_dir, args):
    if output_dir:
        checkpoint = {
            "model": model.state_dict(),
            "optimizer": optimizer.state_dict(),
            "lr_scheduler": lr_scheduler.state_dict(),
            "args": args,
            "epoch": epoch,
        }
        if args.amp:
            checkpoint["scaler"] = scaler.state_dict()
        utils.save_on_master(checkpoint, os.path.join(
            output_dir, f"model_{epoch}.pth"))
        utils.save_on_master(checkpoint, os.path.join(
            output_dir, "checkpoint.pth"))


def save_plots(losses_dict, batch_loss_dict, output_dir):
    if not losses_dict:
        for name, metric in batch_loss_dict.items():
            losses_dict[name] = []

    for name, metric in batch_loss_dict.items():
        losses_dict[name].extend(metric)
    save_train_loss_plot(losses_dict, output_dir)


def save_model_summary(model, output_dir, batch_size):
    with open(osp.join(output_dir, "summary.txt"), 'w', encoding="utf-8") as f:
        print(summary(model,
                      # (batch_size, color_channels, height, width)
                      input_size=(batch_size, 3, 1080, 1920),
                      verbose=0,
                      col_names=["input_size", "output_size",
                                 "num_params", "kernel_size", "trainable"],
                      col_width=20,
                      row_settings=["var_names"]), file=f)


def save_args(output_dir, args):
    with open(osp.join(output_dir, "args.txt"), 'w', encoding="utf-8") as f:
        print(args, file=f)


def save_evaluate_summary(stats, output_dir):
    metrics = ["AP", "AP50", "AP75", "APs", "APm", "APl"]
    # the standard metrics
    results = {
        metric: float(stats[idx] *
                      100 if stats[idx] >= 0 else "nan")
        for idx, metric in enumerate(metrics)
    }
    with open(osp.join(output_dir, "evaluate.txt"), 'w', encoding="utf-8") as f:
        print(results, file=f)


def main(args):

    output_dir = None
    if args.output_dir:
        output_dir = osp.join(
            OUTPUT_DIR, 'detection_logs', args.output_dir)
        utils.mkdir(output_dir)
    output_plots_dir = osp.join(output_dir, "plots")
    utils.mkdir(output_plots_dir)

    logger.debug("COMMAND LINE ARGUMENTS")
    logger.debug(args)
    save_args(output_dir, args)

    device = torch.device(args.device)
    logger.debug(f"DEVICE: {device}")

    logger.debug("CREATE DATASETS")
    ds_train_name = args.train_dataset
    ds_val_name = args.val_dataset
    data_augmentation = args.data_augmentation

    dataset_train = create_dataset(
        ds_train_name, get_transform(True, data_augmentation), "train")
    dataset_test = create_dataset(
        ds_val_name, get_transform(False, data_augmentation), "test")

    logger.debug("CREATE DATA LOADERS")
    batch_size = args.batch_size
    workers = args.workers
    aspect_ratio_group_factor = args.aspect_ratio_group_factor
    data_loader_train = create_data_loader(
        dataset_train, "train", batch_size, workers, aspect_ratio_group_factor)
    data_loader_test = create_data_loader(
        dataset_test, "test", batch_size, workers)

    if args.test_only:
        logger.debug("TEST ONLY")
        model = fasterrcnn_resnet50_fpn_v2()
        in_features = model.roi_heads.box_predictor.cls_score.in_features
        model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 2)
        checkpoint = torch.load(args.model_eval, map_location="cuda")
        model.load_state_dict(checkpoint["model"])
        model.to(device)
        coco_evaluator = evaluate(model, data_loader_test,
                                  device=device, iou_types=['bbox'])
        save_evaluate_summary(
            coco_evaluator.coco_eval['bbox'].stats, output_dir)
        return

    logger.debug("CREATE MODEL")
    model_name = args.model
    weights = args.weights
    backbone = args.backbone
    backbone_weights = args.backbone_weights
    trainable_backbone_layers = args.trainable_backbone_layers
    model = ModelFactory.get_model(
        model_name, weights, backbone, backbone_weights, trainable_backbone_layers)
    save_model_summary(model, output_dir, batch_size)

    logger.debug("CREATE OPTIMIZER")
    lr = args.lr
    momentum = args.momentum
    weight_decay = args.weight_decay
    optimizer = create_optimizer(
        model, lr, momentum, weight_decay)

    logger.debug("CREATE LR SCHEDULER")
    epochs = args.epochs
    lr_scheduler_type = args.lr_scheduler.lower()
    lr_steps = args.lr_steps
    lr_gamma = args.lr_gamma
    lr_scheduler = create_lr_scheduler(
        optimizer, lr_scheduler_type, lr_steps, lr_gamma, epochs)

    logger.debug("CONFIGURE SCALER FOR amp")
    scaler = torch.cuda.amp.GradScaler() if args.amp else None

    if args.resume:
        logger.debug("RESUME TRAINING")
        resume_training(model, optimizer, lr_scheduler,
                        scaler, args)

    logger.debug("START TRAINING")
    print_freq = args.print_freq
    start_epoch = args.start_epoch
    losses_dict = {}
    start_time = time.time()
    for epoch in range(start_epoch, epochs):
        _, batch_loss_dict = train_one_epoch(model, optimizer, data_loader_train, device,
                                             epoch, print_freq, scaler)
        lr_scheduler.step()
        save_plots(losses_dict, batch_loss_dict,
                   output_dir=output_plots_dir)

        coco_evaluator = evaluate(model, data_loader_test,
                                  device=device, iou_types=['bbox'])
        save_evaluate_summary(
            coco_evaluator.coco_eval['bbox'].stats, output_dir)

    save_model_checkpoint(
        model, optimizer, lr_scheduler, epoch, scaler, output_dir, args)
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    logger.debug(f"TRAINING TIME: {total_time_str}")


if __name__ == "__main__":
    args = get_args_parser().parse_args()
    main(args)