Spaces:
Build error
Build error
File size: 13,188 Bytes
169e11c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import configparser
import csv
import os
import os.path as osp
import pickle
import numpy as np
import pycocotools.mask as rletools
import torch
from PIL import Image
class MOTObjDetect(torch.utils.data.Dataset):
""" Data class for the Multiple Object Tracking Dataset
"""
def __init__(self, root, transforms=None, vis_threshold=0.25,
split_seqs=None, frame_range_start=0.0, frame_range_end=1.0):
self.root = root
self.transforms = transforms
self._vis_threshold = vis_threshold
self._classes = ('background', 'pedestrian')
self._img_paths = []
self._split_seqs = split_seqs
self.mots_gts = {}
for f in sorted(os.listdir(root)):
path = os.path.join(root, f)
if not os.path.isdir(path):
continue
if split_seqs is not None and f not in split_seqs:
continue
config_file = os.path.join(path, 'seqinfo.ini')
assert os.path.exists(config_file), \
'Path does not exist: {}'.format(config_file)
config = configparser.ConfigParser()
config.read(config_file)
seq_len = int(config['Sequence']['seqLength'])
im_ext = config['Sequence']['imExt']
im_dir = config['Sequence']['imDir']
img_dir = os.path.join(path, im_dir)
start_frame = int(frame_range_start * seq_len)
end_frame = int(frame_range_end * seq_len)
# for i in range(seq_len):
for i in range(start_frame, end_frame):
img_path = os.path.join(img_dir, f"{i + 1:06d}{im_ext}")
assert os.path.exists(
img_path), f'Path does not exist: {img_path}'
self._img_paths.append(img_path)
# print(len(self._img_paths))
if self.has_masks:
gt_file = os.path.join(
os.path.dirname(img_dir), 'gt', 'gt.txt')
self.mots_gts[gt_file] = load_mots_gt(gt_file)
def __str__(self):
if self._split_seqs is None:
return self.root
return f"{self.root}/{self._split_seqs}"
@property
def num_classes(self):
return len(self._classes)
def _get_annotation(self, idx):
"""
"""
if 'test' in self.root:
num_objs = 0
boxes = torch.zeros((num_objs, 4), dtype=torch.float32)
return {'boxes': boxes,
'labels': torch.ones((num_objs,), dtype=torch.int64),
'image_id': torch.tensor([idx]),
'area': (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]),
'iscrowd': torch.zeros((num_objs,), dtype=torch.int64),
'visibilities': torch.zeros((num_objs), dtype=torch.float32)}
img_path = self._img_paths[idx]
file_index = int(os.path.basename(img_path).split('.')[0])
gt_file = os.path.join(os.path.dirname(
os.path.dirname(img_path)), 'gt', 'gt.txt')
assert os.path.exists(gt_file), \
'GT file does not exist: {}'.format(gt_file)
bounding_boxes = []
if self.has_masks:
mask_objects_per_frame = self.mots_gts[gt_file][file_index]
masks = []
for mask_object in mask_objects_per_frame:
# class_id = 1 is car
# class_id = 2 is pedestrian
# class_id = 10 IGNORE
if mask_object.class_id in [1, 10] or not rletools.area(mask_object.mask):
continue
bbox = rletools.toBbox(mask_object.mask)
x1, y1, w, h = [int(c) for c in bbox]
bb = {}
bb['bb_left'] = x1
bb['bb_top'] = y1
bb['bb_width'] = w
bb['bb_height'] = h
# print(bb, rletools.area(mask_object.mask))
bb['visibility'] = 1.0
bb['track_id'] = mask_object.track_id
masks.append(rletools.decode(mask_object.mask))
bounding_boxes.append(bb)
else:
with open(gt_file, "r") as inf:
reader = csv.reader(inf, delimiter=',')
for row in reader:
visibility = float(row[8])
if int(row[0]) == file_index and int(row[6]) == 1 and int(row[7]) == 1 and visibility and visibility >= self._vis_threshold:
bb = {}
bb['bb_left'] = int(row[2])
bb['bb_top'] = int(row[3])
bb['bb_width'] = int(row[4])
bb['bb_height'] = int(row[5])
bb['visibility'] = float(row[8])
bb['track_id'] = int(row[1])
bounding_boxes.append(bb)
num_objs = len(bounding_boxes)
boxes = torch.zeros((num_objs, 4), dtype=torch.float32)
visibilities = torch.zeros((num_objs), dtype=torch.float32)
track_ids = torch.zeros((num_objs), dtype=torch.long)
for i, bb in enumerate(bounding_boxes):
# Make pixel indexes 0-based, should already be 0-based (or not)
x1 = bb['bb_left'] # - 1
y1 = bb['bb_top'] # - 1
# This -1 accounts for the width (width of 1 x1=x2)
x2 = x1 + bb['bb_width'] # - 1
y2 = y1 + bb['bb_height'] # - 1
boxes[i, 0] = x1
boxes[i, 1] = y1
boxes[i, 2] = x2
boxes[i, 3] = y2
visibilities[i] = bb['visibility']
track_ids[i] = bb['track_id']
annos = {'boxes': boxes,
'labels': torch.ones((num_objs,), dtype=torch.int64),
'image_id': torch.tensor([idx]),
'area': (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]),
'iscrowd': torch.zeros((num_objs,), dtype=torch.int64),
'visibilities': visibilities,
'track_ids': track_ids, }
if self.has_masks:
# annos['masks'] = torch.tensor(masks, dtype=torch.uint8)
annos['masks'] = torch.from_numpy(np.stack(masks))
return annos
@property
def has_masks(self):
return '/MOTS20/' in self.root
def __getitem__(self, idx):
# load images ad masks
img_path = self._img_paths[idx]
# mask_path = os.path.join(self.root, "PedMasks", self.masks[idx])
img = Image.open(img_path).convert("RGB")
target = self._get_annotation(idx)
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
def __len__(self):
return len(self._img_paths)
def write_results_files(self, results, output_dir):
"""Write the detections in the format for MOT17Det sumbission
all_boxes[image] = N x 5 array of detections in (x1, y1, x2, y2, score)
Each file contains these lines:
<frame>, <id>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, <x>, <y>, <z>
Files to sumbit:
./MOT17-01.txt
./MOT17-02.txt
./MOT17-03.txt
./MOT17-04.txt
./MOT17-05.txt
./MOT17-06.txt
./MOT17-07.txt
./MOT17-08.txt
./MOT17-09.txt
./MOT17-10.txt
./MOT17-11.txt
./MOT17-12.txt
./MOT17-13.txt
./MOT17-14.txt
"""
#format_str = "{}, -1, {}, {}, {}, {}, {}, -1, -1, -1"
files = {}
for image_id, res in results.items():
path = self._img_paths[image_id]
img1, name = osp.split(path)
# get image number out of name
frame = int(name.split('.')[0])
# smth like /train/MOT17-09-FRCNN or /train/MOT17-09
tmp = osp.dirname(img1)
# get the folder name of the sequence and split it
tmp = osp.basename(tmp).split('-')
# Now get the output name of the file
out = tmp[0]+'-'+tmp[1]+'.txt'
outfile = osp.join(output_dir, out)
# check if out in keys and create empty list if not
if outfile not in files.keys():
files[outfile] = []
if 'masks' in res:
delimiter = ' '
# print(torch.unique(res['masks'][0]))
# > 0.5 #res['masks'].bool()
masks = res['masks'].squeeze(dim=1)
index_map = torch.arange(masks.size(0))[:, None, None]
index_map = index_map.expand_as(masks)
masks = torch.logical_and(
# remove background
masks > 0.5,
# remove overlapp by largest probablity
index_map == masks.argmax(dim=0)
)
for res_i in range(len(masks)):
track_id = -1
if 'track_ids' in res:
track_id = res['track_ids'][res_i].item()
mask = masks[res_i]
mask = np.asfortranarray(mask)
rle_mask = rletools.encode(mask)
files[outfile].append(
[frame,
track_id,
2, # class pedestrian
mask.shape[0],
mask.shape[1],
rle_mask['counts'].decode(encoding='UTF-8')])
else:
delimiter = ','
for res_i in range(len(res['boxes'])):
track_id = -1
if 'track_ids' in res:
track_id = res['track_ids'][res_i].item()
box = res['boxes'][res_i]
score = res['scores'][res_i]
x1 = box[0].item()
y1 = box[1].item()
x2 = box[2].item()
y2 = box[3].item()
out = [frame, track_id, x1, y1, x2 - x1,
y2 - y1, score.item(), -1, -1, -1]
if 'keypoints' in res:
out.extend(res['keypoints'][res_i]
[:, :2].flatten().tolist())
out.extend(res['keypoints_scores']
[res_i].flatten().tolist())
files[outfile].append(out)
for k, v in files.items():
with open(k, "w") as of:
writer = csv.writer(of, delimiter=delimiter)
for d in v:
writer.writerow(d)
class SegmentedObject:
"""
Helper class for segmentation objects.
"""
def __init__(self, mask: dict, class_id: int, track_id: int, full_bbox=None) -> None:
self.mask = mask
self.class_id = class_id
self.track_id = track_id
self.full_bbox = full_bbox
def load_mots_gt(path: str) -> dict:
"""Load MOTS ground truth from path."""
objects_per_frame = {}
track_ids_per_frame = {} # Check that no frame contains two objects with same id
combined_mask_per_frame = {} # Check that no frame contains overlapping masks
with open(path, "r") as gt_file:
for line in gt_file:
line = line.strip()
fields = line.split(" ")
frame = int(fields[0])
if frame not in objects_per_frame:
objects_per_frame[frame] = []
# if frame not in track_ids_per_frame:
# track_ids_per_frame[frame] = set()
# if int(fields[1]) in track_ids_per_frame[frame]:
# assert False, f"Multiple objects with track id {fields[1]} in frame {fields[0]}"
# else:
# track_ids_per_frame[frame].add(int(fields[1]))
class_id = int(fields[2])
if not (class_id == 1 or class_id == 2 or class_id == 10):
assert False, "Unknown object class " + fields[2]
mask = {
'size': [int(fields[3]), int(fields[4])],
'counts': fields[5].encode(encoding='UTF-8')}
if frame not in combined_mask_per_frame:
combined_mask_per_frame[frame] = mask
elif rletools.area(rletools.merge([
combined_mask_per_frame[frame], mask],
intersect=True)):
assert False, "Objects with overlapping masks in frame " + \
fields[0]
else:
combined_mask_per_frame[frame] = rletools.merge(
[combined_mask_per_frame[frame], mask],
intersect=False)
full_bbox = None
if len(fields) == 10:
full_bbox = [int(fields[6]), int(fields[7]),
int(fields[8]), int(fields[9])]
objects_per_frame[frame].append(SegmentedObject(
mask,
class_id,
int(fields[1]),
full_bbox
))
return objects_per_frame
|