Spaces:
Build error
Build error
import bisect | |
import copy | |
import math | |
from collections import defaultdict | |
from itertools import repeat, chain | |
import numpy as np | |
import torch | |
import torch.utils.data | |
import torchvision | |
from PIL import Image | |
from torch.utils.data.sampler import BatchSampler, Sampler | |
from torch.utils.model_zoo import tqdm | |
def _repeat_to_at_least(iterable, n): | |
repeat_times = math.ceil(n / len(iterable)) | |
repeated = chain.from_iterable(repeat(iterable, repeat_times)) | |
return list(repeated) | |
class GroupedBatchSampler(BatchSampler): | |
""" | |
Wraps another sampler to yield a mini-batch of indices. | |
It enforces that the batch only contain elements from the same group. | |
It also tries to provide mini-batches which follows an ordering which is | |
as close as possible to the ordering from the original sampler. | |
Args: | |
sampler (Sampler): Base sampler. | |
group_ids (list[int]): If the sampler produces indices in range [0, N), | |
`group_ids` must be a list of `N` ints which contains the group id of each sample. | |
The group ids must be a continuous set of integers starting from | |
0, i.e. they must be in the range [0, num_groups). | |
batch_size (int): Size of mini-batch. | |
""" | |
def __init__(self, sampler, group_ids, batch_size): | |
if not isinstance(sampler, Sampler): | |
raise ValueError(f"sampler should be an instance of torch.utils.data.Sampler, but got sampler={sampler}") | |
self.sampler = sampler | |
self.group_ids = group_ids | |
self.batch_size = batch_size | |
def __iter__(self): | |
buffer_per_group = defaultdict(list) | |
samples_per_group = defaultdict(list) | |
num_batches = 0 | |
for idx in self.sampler: | |
group_id = self.group_ids[idx] | |
buffer_per_group[group_id].append(idx) | |
samples_per_group[group_id].append(idx) | |
if len(buffer_per_group[group_id]) == self.batch_size: | |
yield buffer_per_group[group_id] | |
num_batches += 1 | |
del buffer_per_group[group_id] | |
assert len(buffer_per_group[group_id]) < self.batch_size | |
# now we have run out of elements that satisfy | |
# the group criteria, let's return the remaining | |
# elements so that the size of the sampler is | |
# deterministic | |
expected_num_batches = len(self) | |
num_remaining = expected_num_batches - num_batches | |
if num_remaining > 0: | |
# for the remaining batches, take first the buffers with largest number | |
# of elements | |
for group_id, _ in sorted(buffer_per_group.items(), key=lambda x: len(x[1]), reverse=True): | |
remaining = self.batch_size - len(buffer_per_group[group_id]) | |
samples_from_group_id = _repeat_to_at_least(samples_per_group[group_id], remaining) | |
buffer_per_group[group_id].extend(samples_from_group_id[:remaining]) | |
assert len(buffer_per_group[group_id]) == self.batch_size | |
yield buffer_per_group[group_id] | |
num_remaining -= 1 | |
if num_remaining == 0: | |
break | |
assert num_remaining == 0 | |
def __len__(self): | |
return len(self.sampler) // self.batch_size | |
def _compute_aspect_ratios_slow(dataset, indices=None): | |
print( | |
"Your dataset doesn't support the fast path for " | |
"computing the aspect ratios, so will iterate over " | |
"the full dataset and load every image instead. " | |
"This might take some time..." | |
) | |
if indices is None: | |
indices = range(len(dataset)) | |
class SubsetSampler(Sampler): | |
def __init__(self, indices): | |
self.indices = indices | |
def __iter__(self): | |
return iter(self.indices) | |
def __len__(self): | |
return len(self.indices) | |
sampler = SubsetSampler(indices) | |
data_loader = torch.utils.data.DataLoader( | |
dataset, | |
batch_size=1, | |
sampler=sampler, | |
num_workers=14, # you might want to increase it for faster processing | |
collate_fn=lambda x: x[0], | |
) | |
aspect_ratios = [] | |
with tqdm(total=len(dataset)) as pbar: | |
for _i, (img, _) in enumerate(data_loader): | |
pbar.update(1) | |
height, width = img.shape[-2:] | |
aspect_ratio = float(width) / float(height) | |
aspect_ratios.append(aspect_ratio) | |
return aspect_ratios | |
def _compute_aspect_ratios_custom_dataset(dataset, indices=None): | |
if indices is None: | |
indices = range(len(dataset)) | |
aspect_ratios = [] | |
for i in indices: | |
height, width = dataset.get_height_and_width(i) | |
aspect_ratio = float(width) / float(height) | |
aspect_ratios.append(aspect_ratio) | |
return aspect_ratios | |
def _compute_aspect_ratios_coco_dataset(dataset, indices=None): | |
if indices is None: | |
indices = range(len(dataset)) | |
aspect_ratios = [] | |
for i in indices: | |
img_info = dataset.coco.imgs[dataset.ids[i]] | |
aspect_ratio = float(img_info["width"]) / float(img_info["height"]) | |
aspect_ratios.append(aspect_ratio) | |
return aspect_ratios | |
def _compute_aspect_ratios_voc_dataset(dataset, indices=None): | |
if indices is None: | |
indices = range(len(dataset)) | |
aspect_ratios = [] | |
for i in indices: | |
# this doesn't load the data into memory, because PIL loads it lazily | |
width, height = Image.open(dataset.images[i]).size | |
aspect_ratio = float(width) / float(height) | |
aspect_ratios.append(aspect_ratio) | |
return aspect_ratios | |
def _compute_aspect_ratios_subset_dataset(dataset, indices=None): | |
if indices is None: | |
indices = range(len(dataset)) | |
ds_indices = [dataset.indices[i] for i in indices] | |
return compute_aspect_ratios(dataset.dataset, ds_indices) | |
def compute_aspect_ratios(dataset, indices=None): | |
if hasattr(dataset, "get_height_and_width"): | |
return _compute_aspect_ratios_custom_dataset(dataset, indices) | |
if isinstance(dataset, torchvision.datasets.CocoDetection): | |
return _compute_aspect_ratios_coco_dataset(dataset, indices) | |
if isinstance(dataset, torchvision.datasets.VOCDetection): | |
return _compute_aspect_ratios_voc_dataset(dataset, indices) | |
if isinstance(dataset, torch.utils.data.Subset): | |
return _compute_aspect_ratios_subset_dataset(dataset, indices) | |
# slow path | |
return _compute_aspect_ratios_slow(dataset, indices) | |
def _quantize(x, bins): | |
bins = copy.deepcopy(bins) | |
bins = sorted(bins) | |
quantized = list(map(lambda y: bisect.bisect_right(bins, y), x)) | |
return quantized | |
def create_aspect_ratio_groups(dataset, k=0): | |
aspect_ratios = compute_aspect_ratios(dataset) | |
bins = (2 ** np.linspace(-1, 1, 2 * k + 1)).tolist() if k > 0 else [1.0] | |
groups = _quantize(aspect_ratios, bins) | |
# count number of elements per group | |
counts = np.unique(groups, return_counts=True)[1] | |
fbins = [0] + bins + [np.inf] | |
print(f"Using {fbins} as bins for aspect ratio quantization") | |
print(f"Count of instances per bin: {counts}") | |
return groups | |