Spaces:
Build error
Build error
Matteo Sirri
commited on
Commit
·
0888435
1
Parent(s):
dadda42
fix: fix type
Browse files- app.py +5 -7
- app.py.7d07da4a5b8438bc3eb3c4039d0839bb.tmp +68 -0
app.py
CHANGED
@@ -38,9 +38,8 @@ def frcnn_motsynth(image):
|
|
38 |
image_tensor = image_tensor.to(device)
|
39 |
prediction = model([image_tensor])[0]
|
40 |
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
|
41 |
-
|
42 |
-
|
43 |
-
return output
|
44 |
|
45 |
|
46 |
def frcnn_coco(image):
|
@@ -50,9 +49,8 @@ def frcnn_coco(image):
|
|
50 |
image_tensor = image_tensor.to(device)
|
51 |
prediction = model([image_tensor])[0]
|
52 |
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
|
53 |
-
|
54 |
-
|
55 |
-
return output
|
56 |
|
57 |
|
58 |
title = "Domain shift adaption on pedestrian detection with Faster R-CNN"
|
@@ -61,7 +59,7 @@ examples = ["001.jpg", "002.jpg", "003.jpg",
|
|
61 |
"004.jpg", "005.jpg", "006.jpg", "007.jpg", ]
|
62 |
|
63 |
io_baseline = gr.Interface(frcnn_coco, gr.Image(type="pil"), gr.Image(
|
64 |
-
type="
|
65 |
|
66 |
io_custom = gr.Interface(frcnn_motsynth, gr.Image(type="pil"), gr.Image(
|
67 |
type="pil", label="Faster R-CNN trained on MOTSynth + FT on MOT17"))
|
|
|
38 |
image_tensor = image_tensor.to(device)
|
39 |
prediction = model([image_tensor])[0]
|
40 |
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
|
41 |
+
torchvision.io.write_png(image_w_bbox, "custom_out.png")
|
42 |
+
return "custom_out.png"
|
|
|
43 |
|
44 |
|
45 |
def frcnn_coco(image):
|
|
|
49 |
image_tensor = image_tensor.to(device)
|
50 |
prediction = model([image_tensor])[0]
|
51 |
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
|
52 |
+
torchvision.io.write_png(image_w_bbox, "baseline_out.png")
|
53 |
+
return "baseline_out.png"
|
|
|
54 |
|
55 |
|
56 |
title = "Domain shift adaption on pedestrian detection with Faster R-CNN"
|
|
|
59 |
"004.jpg", "005.jpg", "006.jpg", "007.jpg", ]
|
60 |
|
61 |
io_baseline = gr.Interface(frcnn_coco, gr.Image(type="pil"), gr.Image(
|
62 |
+
type="file", label="Baseline Model trained on COCO + FT on MOT17"))
|
63 |
|
64 |
io_custom = gr.Interface(frcnn_motsynth, gr.Image(type="pil"), gr.Image(
|
65 |
type="pil", label="Faster R-CNN trained on MOTSynth + FT on MOT17"))
|
app.py.7d07da4a5b8438bc3eb3c4039d0839bb.tmp
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path as osp
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import logging
|
6 |
+
import torchvision
|
7 |
+
from torchvision.models.detection.faster_rcnn import fasterrcnn_resnet50_fpn
|
8 |
+
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
|
9 |
+
from src.detection.graph_utils import add_bbox
|
10 |
+
from src.detection.vision import presets
|
11 |
+
import torchvision.transforms as T
|
12 |
+
|
13 |
+
logging.getLogger('PIL').setLevel(logging.CRITICAL)
|
14 |
+
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
+
|
18 |
+
def load_model(baseline: bool = False):
|
19 |
+
if baseline:
|
20 |
+
model = fasterrcnn_resnet50_fpn(
|
21 |
+
weights="DEFAULT")
|
22 |
+
else:
|
23 |
+
model = fasterrcnn_resnet50_fpn()
|
24 |
+
in_features = model.roi_heads.box_predictor.cls_score.in_features
|
25 |
+
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 2)
|
26 |
+
checkpoint = torch.load(
|
27 |
+
osp.join(os.getcwd(), "model_split3_FT_MOT17.pth"), map_location="cpu")
|
28 |
+
model.load_state_dict(checkpoint["model"])
|
29 |
+
model.to(device)
|
30 |
+
model.eval()
|
31 |
+
return model
|
32 |
+
|
33 |
+
|
34 |
+
def frcnn_motsynth(image):
|
35 |
+
model = load_model()
|
36 |
+
transformEval = presets.DetectionPresetEval()
|
37 |
+
image_tensor = transformEval(image, None)[0]
|
38 |
+
image_tensor = image_tensor.to(device)
|
39 |
+
prediction = model([image_tensor])[0]
|
40 |
+
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
|
41 |
+
torchvision.io.write_png(image_w_bbox, "custom_out.png")
|
42 |
+
return "custom_out.png"
|
43 |
+
|
44 |
+
|
45 |
+
def frcnn_coco(image):
|
46 |
+
model = load_model(baseline=True)
|
47 |
+
transformEval = presets.DetectionPresetEval()
|
48 |
+
image_tensor = transformEval(image, None)[0]
|
49 |
+
image_tensor = image_tensor.to(device)
|
50 |
+
prediction = model([image_tensor])[0]
|
51 |
+
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
|
52 |
+
torchvision.io.write_png(image_w_bbox, "baseline_out.png")
|
53 |
+
return "baseline_out.png"
|
54 |
+
|
55 |
+
|
56 |
+
title = "Domain shift adaption on pedestrian detection with Faster R-CNN"
|
57 |
+
description = '<p style="text-align:center">School in AI: Deep Learning, Vision and Language for Industry - second edition final project work by Matteo Sirri.</p> '
|
58 |
+
examples = ["001.jpg", "002.jpg", "003.jpg",
|
59 |
+
"004.jpg", "005.jpg", "006.jpg", "007.jpg", ]
|
60 |
+
|
61 |
+
io_baseline = gr.Interface(frcnn_coco, gr.Image(type="pil"), gr.Image(
|
62 |
+
type="file", label="Baseline Model trained on COCO + FT on MOT17"))
|
63 |
+
|
64 |
+
io_custom = gr.Interface(frcnn_motsynth, gr.Image(type="pil"), gr.Image(
|
65 |
+
type="file", label="Faster R-CNN trained on MOTSynth + FT on MOT17"))
|
66 |
+
|
67 |
+
gr.Parallel(io_baseline, io_custom, title=title,
|
68 |
+
description=description, examples=examples).launch(enable_queue=True)
|