Matteo Sirri commited on
Commit
d32b68f
·
1 Parent(s): 2e9a1fa

fix: fix path

Browse files
Files changed (4) hide show
  1. .gitattributes +2 -0
  2. app.py +5 -7
  3. example1.jpg +3 -0
  4. example2.jpg +3 -0
.gitattributes CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.jpg filter=lfs diff=lfs merge=lfs -text
36
+ *.png filter=lfs diff=lfs merge=lfs -text
app.py CHANGED
@@ -28,7 +28,7 @@ def load_model(baseline: bool = False):
28
 
29
 
30
  def detect_with_resnet50Model_finetuning_motsynth(image):
31
- model = load_model()
32
  transformEval = presets.DetectionPresetEval()
33
  image_tensor = transformEval(image, None)[0]
34
  prediction = model([image_tensor])[0]
@@ -48,16 +48,14 @@ def detect_with_resnet50Model_baseline(image):
48
 
49
 
50
  title = "Performance comparision of Faster R-CNN for people detection with syntetic data"
51
- description = "<p style='text-align: center'>Performance comparision of Faster R-CNN models for people detecion using MOTSynth and MOT17"
52
- examples = [[osp.join(MOTCHA_ROOT, "MOT17", "train",
53
- "MOT17-09-DPM", "img1", "000001.jpg")]]
54
-
55
 
56
  io_baseline = gr.Interface(detect_with_resnet50Model_baseline, gr.Image(type="pil"), gr.Image(
57
- type="file", shape=(1920, 1080), label="FasterR-CNN_Resnet50_COCO"))
58
 
59
  io_custom = gr.Interface(detect_with_resnet50Model_finetuning_motsynth, gr.Image(type="pil"), gr.Image(
60
- type="file", shape=(1920, 1080), label="FasterR-CNN_Resnet50_FinteTuning_MOTSynth"))
61
 
62
  gr.Parallel(io_baseline, io_custom, title=title,
63
  description=description, examples=examples).launch(enable_queue=True)
 
28
 
29
 
30
  def detect_with_resnet50Model_finetuning_motsynth(image):
31
+ model = load_model(baseline=True)
32
  transformEval = presets.DetectionPresetEval()
33
  image_tensor = transformEval(image, None)[0]
34
  prediction = model([image_tensor])[0]
 
48
 
49
 
50
  title = "Performance comparision of Faster R-CNN for people detection with syntetic data"
51
+ description = "<p style='text-align: center'>Performance comparision of Faster RCNN models for people detection using MOTSynth and MOT17"
52
+ examples = ["example1.jpg", "example2.jpg"]
 
 
53
 
54
  io_baseline = gr.Interface(detect_with_resnet50Model_baseline, gr.Image(type="pil"), gr.Image(
55
+ type="file", shape=(1920, 1080), label="Baseline Faster RCNN Model pretrained on COCO dataset"))
56
 
57
  io_custom = gr.Interface(detect_with_resnet50Model_finetuning_motsynth, gr.Image(type="pil"), gr.Image(
58
+ type="file", shape=(1920, 1080), label="Faster RCNN Model pretrained on COCO dataset + FT on MOTSynth"))
59
 
60
  gr.Parallel(io_baseline, io_custom, title=title,
61
  description=description, examples=examples).launch(enable_queue=True)
example1.jpg ADDED

Git LFS Details

  • SHA256: e4b1c40c44d53489f191e1099156ad57d3963d8c434615750fba0065a8a572af
  • Pointer size: 131 Bytes
  • Size of remote file: 202 kB
example2.jpg ADDED

Git LFS Details

  • SHA256: 3f0b26a54c2ed59191c7d913ab365c91bb7464542583f8464b08114197337537
  • Pointer size: 131 Bytes
  • Size of remote file: 159 kB