Spaces:
Build error
Build error
Matteo Sirri
commited on
Commit
·
e0452e0
1
Parent(s):
feca2a9
fix: add model
Browse files- app.py +17 -16
- configs/__init__.py +0 -0
- configs/path_cfg.py +0 -19
- model_split3_FT_MOT17.pth +3 -0
app.py
CHANGED
@@ -3,9 +3,8 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
import logging
|
5 |
import torchvision
|
6 |
-
from torchvision.models.detection.faster_rcnn import
|
7 |
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
|
8 |
-
from configs.path_cfg import OUTPUT_DIR
|
9 |
from src.detection.graph_utils import add_bbox
|
10 |
from src.detection.vision import presets
|
11 |
logging.getLogger('PIL').setLevel(logging.CRITICAL)
|
@@ -13,48 +12,50 @@ logging.getLogger('PIL').setLevel(logging.CRITICAL)
|
|
13 |
|
14 |
def load_model(baseline: bool = False):
|
15 |
if baseline:
|
16 |
-
model =
|
17 |
weights="DEFAULT")
|
18 |
else:
|
19 |
-
model =
|
20 |
in_features = model.roi_heads.box_predictor.cls_score.in_features
|
21 |
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 2)
|
22 |
-
checkpoint = torch.load(
|
23 |
-
|
24 |
model.load_state_dict(checkpoint["model"])
|
|
|
|
|
25 |
model.eval()
|
26 |
return model
|
27 |
|
28 |
|
29 |
-
def
|
30 |
model = load_model(baseline=True)
|
31 |
transformEval = presets.DetectionPresetEval()
|
32 |
image_tensor = transformEval(image, None)[0]
|
33 |
prediction = model([image_tensor])[0]
|
34 |
-
image_w_bbox = add_bbox(image_tensor, prediction, 0.
|
35 |
torchvision.io.write_png(image_w_bbox, "custom_out.png")
|
36 |
return "custom_out.png"
|
37 |
|
38 |
|
39 |
-
def
|
40 |
model = load_model(baseline=True)
|
41 |
transformEval = presets.DetectionPresetEval()
|
42 |
image_tensor = transformEval(image, None)[0]
|
43 |
prediction = model([image_tensor])[0]
|
44 |
-
image_w_bbox = add_bbox(image_tensor, prediction, 0.
|
45 |
torchvision.io.write_png(image_w_bbox, "baseline_out.png")
|
46 |
return "baseline_out.png"
|
47 |
|
48 |
|
49 |
-
title = "
|
50 |
-
description = "
|
51 |
examples = "/input_examples"
|
52 |
|
53 |
-
io_baseline = gr.Interface(
|
54 |
-
type="file", shape=(1920, 1080), label="Baseline
|
55 |
|
56 |
-
io_custom = gr.Interface(
|
57 |
-
type="file", shape=(1920, 1080), label="Faster
|
58 |
|
59 |
gr.Parallel(io_baseline, io_custom, title=title,
|
60 |
description=description, examples=examples).launch(enable_queue=True)
|
|
|
3 |
import torch
|
4 |
import logging
|
5 |
import torchvision
|
6 |
+
from torchvision.models.detection.faster_rcnn import fasterrcnn_resnet50_fpn
|
7 |
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
|
|
|
8 |
from src.detection.graph_utils import add_bbox
|
9 |
from src.detection.vision import presets
|
10 |
logging.getLogger('PIL').setLevel(logging.CRITICAL)
|
|
|
12 |
|
13 |
def load_model(baseline: bool = False):
|
14 |
if baseline:
|
15 |
+
model = fasterrcnn_resnet50_fpn(
|
16 |
weights="DEFAULT")
|
17 |
else:
|
18 |
+
model = fasterrcnn_resnet50_fpn()
|
19 |
in_features = model.roi_heads.box_predictor.cls_score.in_features
|
20 |
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 2)
|
21 |
+
checkpoint = torch.load(
|
22 |
+
"model_split_3_FT_MOT17.pth", map_location="cpu")
|
23 |
model.load_state_dict(checkpoint["model"])
|
24 |
+
device = torch.device('cuda:0')
|
25 |
+
model.to(device)
|
26 |
model.eval()
|
27 |
return model
|
28 |
|
29 |
|
30 |
+
def frcnn_motsynth(image):
|
31 |
model = load_model(baseline=True)
|
32 |
transformEval = presets.DetectionPresetEval()
|
33 |
image_tensor = transformEval(image, None)[0]
|
34 |
prediction = model([image_tensor])[0]
|
35 |
+
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
|
36 |
torchvision.io.write_png(image_w_bbox, "custom_out.png")
|
37 |
return "custom_out.png"
|
38 |
|
39 |
|
40 |
+
def frcnn_coco(image):
|
41 |
model = load_model(baseline=True)
|
42 |
transformEval = presets.DetectionPresetEval()
|
43 |
image_tensor = transformEval(image, None)[0]
|
44 |
prediction = model([image_tensor])[0]
|
45 |
+
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
|
46 |
torchvision.io.write_png(image_w_bbox, "baseline_out.png")
|
47 |
return "baseline_out.png"
|
48 |
|
49 |
|
50 |
+
title = "Domain shift adaption on pedestrian detection with Faster R-CNN"
|
51 |
+
description = ""
|
52 |
examples = "/input_examples"
|
53 |
|
54 |
+
io_baseline = gr.Interface(frcnn_coco, gr.Image(type="pil"), gr.Image(
|
55 |
+
type="file", shape=(1920, 1080), label="Baseline Model trained on COCO + FT on MOT17"))
|
56 |
|
57 |
+
io_custom = gr.Interface(frcnn_motsynth, gr.Image(type="pil"), gr.Image(
|
58 |
+
type="file", shape=(1920, 1080), label="Faster R-CNN trained on MOTSynth + FT on MOT17"))
|
59 |
|
60 |
gr.Parallel(io_baseline, io_custom, title=title,
|
61 |
description=description, examples=examples).launch(enable_queue=True)
|
configs/__init__.py
DELETED
File without changes
|
configs/path_cfg.py
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import os
|
4 |
-
|
5 |
-
IN_COLAB = False
|
6 |
-
if 'COLAB_GPU' in os.environ:
|
7 |
-
IN_COLAB=True
|
8 |
-
|
9 |
-
cwd = os.getcwd()
|
10 |
-
|
11 |
-
if(IN_COLAB):
|
12 |
-
MOTSYNTH_ROOT = '/content/gdrive/MyDrive/CVCS/storage/MOTSynth'
|
13 |
-
MOTCHA_ROOT = '/content/gdrive/MyDrive/CVCS/storage/MOTChallenge'
|
14 |
-
OUTPUT_DIR = '/content/gdrive/MyDrive/CVCS/storage/motsynth_output'
|
15 |
-
else:
|
16 |
-
# windows config
|
17 |
-
MOTSYNTH_ROOT = cwd + '\storage\MOTSynth'
|
18 |
-
MOTCHA_ROOT = cwd + '\storage\MOTChallenge'
|
19 |
-
OUTPUT_DIR = cwd + '\storage\motsynth_output'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model_split3_FT_MOT17.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53116b936ee59ca7cd9f29ef99bc8bf1dc591b6e8955f6c380b083454535923d
|
3 |
+
size 330056867
|