import os.path as osp from tkinter.ttk import Style import gradio as gr import torch import logging import torchvision from torchvision.models.detection.faster_rcnn import fasterrcnn_resnet50_fpn_v2 from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from configs.path_cfg import MOTCHA_ROOT, OUTPUT_DIR from src.detection.graph_utils import add_bbox from src.detection.vision import presets logging.getLogger('PIL').setLevel(logging.CRITICAL) def load_model(baseline: bool = False): if baseline: model = fasterrcnn_resnet50_fpn_v2( weights="DEFAULT") else: model = fasterrcnn_resnet50_fpn_v2() in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 2) checkpoint = torch.load(osp.join(OUTPUT_DIR, "detection_logs", "fasterrcnn_training", "checkpoint.pth"), map_location="cpu") model.load_state_dict(checkpoint["model"]) model.eval() return model def detect_with_resnet50Model_finetuning_motsynth(image): model = load_model() transformEval = presets.DetectionPresetEval() image_tensor = transformEval(image, None)[0] prediction = model([image_tensor])[0] image_w_bbox = add_bbox(image_tensor, prediction, 0.85) torchvision.io.write_png(image_w_bbox, "custom_out.png") return "custom_out.png" def detect_with_resnet50Model_baseline(image): model = load_model(baseline=True) transformEval = presets.DetectionPresetEval() image_tensor = transformEval(image, None)[0] prediction = model([image_tensor])[0] image_w_bbox = add_bbox(image_tensor, prediction, 0.85) torchvision.io.write_png(image_w_bbox, "baseline_out.png") return "baseline_out.png" title = "Performance comparision of Faster R-CNN for people detection with syntetic data" description = "
Performance comparision of Faster R-CNN models for people detecion using MOTSynth and MOT17" examples = [[osp.join(MOTCHA_ROOT, "MOT17", "train", "MOT17-09-DPM", "img1", "000001.jpg")]] io_baseline = gr.Interface(detect_with_resnet50Model_baseline, gr.Image(type="pil"), gr.Image( type="file", shape=(1920, 1080), label="FasterR-CNN_Resnet50_COCO")) io_custom = gr.Interface(detect_with_resnet50Model_finetuning_motsynth, gr.Image(type="pil"), gr.Image( type="file", shape=(1920, 1080), label="FasterR-CNN_Resnet50_FinteTuning_MOTSynth")) gr.Parallel(io_baseline, io_custom, title=title, description=description, examples=examples).launch(enable_queue=True)