sirine1712 commited on
Commit
4c15dab
·
verified ·
1 Parent(s): 086b10b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +198 -180
app.py CHANGED
@@ -3,194 +3,212 @@ import gradio as gr
3
  import requests
4
  import inspect
5
  import pandas as pd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
24
- Fetches all questions, runs the BasicAgent on them, submits all answers,
25
- and displays the results.
26
  """
27
- # --- Determine HF Space Runtime URL and Repo URL ---
28
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
-
30
- if profile:
31
- username= f"{profile.username}"
32
- print(f"User logged in: {username}")
33
- else:
34
- print("User not logged in.")
35
- return "Please Login to Hugging Face with the button.", None
36
-
37
- api_url = DEFAULT_API_URL
38
- questions_url = f"{api_url}/questions"
39
- submit_url = f"{api_url}/submit"
40
-
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
- try:
43
- agent = BasicAgent()
44
- except Exception as e:
45
- print(f"Error instantiating agent: {e}")
46
- return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
- agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
- print(agent_code)
50
-
51
- # 2. Fetch Questions
52
- print(f"Fetching questions from: {questions_url}")
53
- try:
54
- response = requests.get(questions_url, timeout=15)
55
- response.raise_for_status()
56
- questions_data = response.json()
57
- if not questions_data:
58
- print("Fetched questions list is empty.")
59
- return "Fetched questions list is empty or invalid format.", None
60
- print(f"Fetched {len(questions_data)} questions.")
61
- except requests.exceptions.RequestException as e:
62
- print(f"Error fetching questions: {e}")
63
- return f"Error fetching questions: {e}", None
64
- except requests.exceptions.JSONDecodeError as e:
65
- print(f"Error decoding JSON response from questions endpoint: {e}")
66
- print(f"Response text: {response.text[:500]}")
67
- return f"Error decoding server response for questions: {e}", None
68
- except Exception as e:
69
- print(f"An unexpected error occurred fetching questions: {e}")
70
- return f"An unexpected error occurred fetching questions: {e}", None
71
-
72
- # 3. Run your Agent
73
- results_log = []
74
- answers_payload = []
75
- print(f"Running agent on {len(questions_data)} questions...")
76
- for item in questions_data:
77
- task_id = item.get("task_id")
78
- question_text = item.get("question")
79
- if not task_id or question_text is None:
80
- print(f"Skipping item with missing task_id or question: {item}")
81
- continue
82
  try:
83
- submitted_answer = agent(question_text)
84
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  except Exception as e:
87
- print(f"Error running agent on task {task_id}: {e}")
88
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
-
90
- if not answers_payload:
91
- print("Agent did not produce any answers to submit.")
92
- return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
-
94
- # 4. Prepare Submission
95
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
- print(status_update)
98
-
99
- # 5. Submit
100
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
- try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
- response.raise_for_status()
104
- result_data = response.json()
105
- final_status = (
106
- f"Submission Successful!\n"
107
- f"User: {result_data.get('username')}\n"
108
- f"Overall Score: {result_data.get('score', 'N/A')}% "
109
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
- f"Message: {result_data.get('message', 'No message received.')}"
111
- )
112
- print("Submission successful.")
113
- results_df = pd.DataFrame(results_log)
114
- return final_status, results_df
115
- except requests.exceptions.HTTPError as e:
116
- error_detail = f"Server responded with status {e.response.status_code}."
117
  try:
118
- error_json = e.response.json()
119
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
- except requests.exceptions.JSONDecodeError:
121
- error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
- print(status_message)
124
- results_df = pd.DataFrame(results_log)
125
- return status_message, results_df
126
- except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
- print(status_message)
129
- results_df = pd.DataFrame(results_log)
130
- return status_message, results_df
131
- except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
- print(status_message)
134
- results_df = pd.DataFrame(results_log)
135
- return status_message, results_df
136
- except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
- print(status_message)
139
- results_df = pd.DataFrame(results_log)
140
- return status_message, results_df
141
-
142
-
143
- # --- Build Gradio Interface using Blocks ---
144
- with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
- gr.Markdown(
147
  """
148
- **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
- )
160
-
161
- gr.LoginButton()
162
-
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
173
-
174
- if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
176
- # Check for SPACE_HOST and SPACE_ID at startup for information
177
- space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
- if space_host_startup:
181
- print(f"✅ SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
- else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
- print(f"✅ SPACE_ID found: {space_id_startup}")
188
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
- else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
- demo.launch(debug=True, share=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  import requests
4
  import inspect
5
  import pandas as pd
6
+ import json
7
+ import re
8
+ from typing import Dict, List, Any, Optional
9
+ import asyncio
10
+ from datetime import datetime
11
+ import tempfile
12
+ import base64
13
+ from io import BytesIO
14
+ from PIL import Image
15
+ import numpy as np
16
+
17
+ # Additional imports for enhanced capabilities
18
+ try:
19
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
20
+ import torch
21
+ except ImportError:
22
+ print("Warning: transformers not available. Install with: pip install transformers torch")
23
+
24
+ try:
25
+ from sentence_transformers import SentenceTransformer
26
+ except ImportError:
27
+ print("Warning: sentence-transformers not available. Install with: pip install sentence-transformers")
28
+
29
+ try:
30
+ import wikipediaapi
31
+ except ImportError:
32
+ print("Warning: wikipedia-api not available. Install with: pip install wikipedia-api")
33
 
 
34
  # --- Constants ---
35
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
36
 
37
+ class EnhancedGAIAAgent:
 
 
 
 
 
 
 
 
 
 
 
38
  """
39
+ Enhanced agent for GAIA benchmark with multi-modal capabilities,
40
+ web search, RAG, and multiple reasoning strategies.
41
  """
42
+
43
+ def __init__(self):
44
+ print("EnhancedGAIAAgent initializing...")
45
+ self.setup_models()
46
+ self.setup_tools()
47
+ self.knowledge_base = {}
48
+ print("EnhancedGAIAAgent initialized successfully.")
49
+
50
+ def setup_models(self):
51
+ """Initialize models for different tasks"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  try:
53
+ # Text generation model for reasoning
54
+ self.text_model = None # Will lazy load when needed
55
+
56
+ # Embedding model for RAG
57
+ try:
58
+ self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
59
+ print("✅ Embedding model loaded")
60
+ except:
61
+ self.embedder = None
62
+ print("⚠️ Embedding model not available")
63
+
64
+ # Vision model for image analysis
65
+ try:
66
+ self.vision_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
67
+ print("✅ Vision model loaded")
68
+ except:
69
+ self.vision_model = None
70
+ print("⚠️ Vision model not available")
71
+
72
  except Exception as e:
73
+ print(f"Model setup error: {e}")
74
+
75
+ def setup_tools(self):
76
+ """Initialize tools for web search and knowledge retrieval"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  try:
78
+ self.wiki = wikipediaapi.Wikipedia(
79
+ language='en',
80
+ extract_format=wikipediaapi.ExtractFormat.WIKI,
81
+ user_agent='GAIA-Agent/1.0'
82
+ )
83
+ print("✅ Wikipedia API initialized")
84
+ except:
85
+ self.wiki = None
86
+ print("⚠️ Wikipedia API not available")
87
+
88
+ def web_search(self, query: str, max_results: int = 3) -> List[Dict]:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
  """
90
+ Simulate web search using multiple sources
 
 
 
 
 
 
 
 
 
91
  """
92
+ results = []
93
+
94
+ # Wikipedia search
95
+ if self.wiki:
96
+ try:
97
+ page = self.wiki.page(query)
98
+ if page.exists():
99
+ results.append({
100
+ 'title': page.title,
101
+ 'content': page.text[:1000],
102
+ 'source': 'Wikipedia',
103
+ 'url': page.fullurl
104
+ })
105
+ except:
106
+ pass
107
+
108
+ # Add more search sources here (DuckDuckGo, etc.)
109
+ return results[:max_results]
110
+
111
+ def extract_numbers_and_calculations(self, text: str) -> Dict:
112
+ """Extract numbers and perform calculations from text"""
113
+ numbers = re.findall(r'-?\d+\.?\d*', text)
114
+ calculations = {
115
+ 'numbers_found': [float(n) for n in numbers if n],
116
+ 'sum': sum(float(n) for n in numbers if n),
117
+ 'count': len(numbers)
118
+ }
119
+ return calculations
120
+
121
+ def analyze_image(self, image_path: str) -> str:
122
+ """Analyze image content"""
123
+ if not self.vision_model:
124
+ return "Image analysis not available"
125
+
126
+ try:
127
+ image = Image.open(image_path)
128
+ result = self.vision_model(image)
129
+ return result[0]['generated_text'] if result else "Could not analyze image"
130
+ except Exception as e:
131
+ return f"Image analysis error: {e}"
132
+
133
+ def rag_retrieval(self, query: str, context: str) -> str:
134
+ """Simple RAG-like retrieval and generation"""
135
+ if not self.embedder:
136
+ return context[:500] # Return truncated context
137
+
138
+ try:
139
+ # Split context into chunks
140
+ chunks = [context[i:i+200] for i in range(0, len(context), 200)]
141
+
142
+ # Find most relevant chunk
143
+ query_embedding = self.embedder.encode([query])
144
+ chunk_embeddings = self.embedder.encode(chunks)
145
+
146
+ similarities = np.dot(query_embedding, chunk_embeddings.T)[0]
147
+ best_chunk_idx = np.argmax(similarities)
148
+
149
+ return chunks[best_chunk_idx]
150
+ except:
151
+ return context[:500]
152
+
153
+ def mathematical_reasoning(self, question: str) -> str:
154
+ """Handle mathematical questions"""
155
+ # Extract mathematical expressions
156
+ math_patterns = [
157
+ r'(\d+(?:\.\d+)?)\s*[\+\-\*\/]\s*(\d+(?:\.\d+)?)',
158
+ r'(\d+)\s*percent|(\d+)%',
159
+ r'(\d+)\s*degrees?',
160
+ ]
161
+
162
+ for pattern in math_patterns:
163
+ matches = re.findall(pattern, question)
164
+ if matches:
165
+ # Simple calculation handling
166
+ try:
167
+ nums = self.extract_numbers_and_calculations(question)
168
+ if nums['numbers_found']:
169
+ return f"Based on the numbers found: {nums['numbers_found']}, the sum is {nums['sum']}"
170
+ except:
171
+ pass
172
+
173
+ return "Mathematical reasoning applied but no clear calculation found."
174
+
175
+ def factual_qa(self, question: str) -> str:
176
+ """Handle factual questions using web search"""
177
+ search_results = self.web_search(question)
178
+
179
+ if not search_results:
180
+ return "I couldn't find relevant information to answer this question."
181
+
182
+ # Combine search results
183
+ combined_info = ""
184
+ for result in search_results:
185
+ combined_info += f"{result['content']}\n"
186
+
187
+ # Use RAG to get most relevant information
188
+ relevant_info = self.rag_retrieval(question, combined_info)
189
+
190
+ return f"Based on available information: {relevant_info}"
191
+
192
+ def multi_step_reasoning(self, question: str) -> str:
193
+ """Handle complex multi-step questions"""
194
+ steps = []
195
+
196
+ # Step 1: Identify question type
197
+ question_lower = question.lower()
198
+
199
+ if any(word in question_lower for word in ['calculate', 'compute', 'math', 'number']):
200
+ steps.append("Identified as mathematical question")
201
+ result = self.mathematical_reasoning(question)
202
+ elif any(word in question_lower for word in ['when', 'where', 'who', 'what', 'how']):
203
+ steps.append("Identified as factual question")
204
+ result = self.factual_qa(question)
205
+ else:
206
+ steps.append("Using general reasoning")
207
+ result = self.general_reasoning(question)
208
+
209
+ return result
210
+
211
+ def general_reasoning(self, question: str) -> str:
212
+ """General reasoning for questions that don't fit other categories"""
213
+ # Try to extract key entities and concepts
214
+ key