Update app.py
Browse files
app.py
CHANGED
@@ -3,194 +3,212 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
|
12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
-
class BasicAgent:
|
14 |
-
def __init__(self):
|
15 |
-
print("BasicAgent initialized.")
|
16 |
-
def __call__(self, question: str) -> str:
|
17 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
-
fixed_answer = "This is a default answer."
|
19 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
-
return fixed_answer
|
21 |
-
|
22 |
-
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
24 |
-
|
25 |
-
and
|
26 |
"""
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
api_url = DEFAULT_API_URL
|
38 |
-
questions_url = f"{api_url}/questions"
|
39 |
-
submit_url = f"{api_url}/submit"
|
40 |
-
|
41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
-
try:
|
43 |
-
agent = BasicAgent()
|
44 |
-
except Exception as e:
|
45 |
-
print(f"Error instantiating agent: {e}")
|
46 |
-
return f"Error initializing agent: {e}", None
|
47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
-
print(agent_code)
|
50 |
-
|
51 |
-
# 2. Fetch Questions
|
52 |
-
print(f"Fetching questions from: {questions_url}")
|
53 |
-
try:
|
54 |
-
response = requests.get(questions_url, timeout=15)
|
55 |
-
response.raise_for_status()
|
56 |
-
questions_data = response.json()
|
57 |
-
if not questions_data:
|
58 |
-
print("Fetched questions list is empty.")
|
59 |
-
return "Fetched questions list is empty or invalid format.", None
|
60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
61 |
-
except requests.exceptions.RequestException as e:
|
62 |
-
print(f"Error fetching questions: {e}")
|
63 |
-
return f"Error fetching questions: {e}", None
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
print(f"Response text: {response.text[:500]}")
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
-
except Exception as e:
|
69 |
-
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
-
|
72 |
-
# 3. Run your Agent
|
73 |
-
results_log = []
|
74 |
-
answers_payload = []
|
75 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
-
for item in questions_data:
|
77 |
-
task_id = item.get("task_id")
|
78 |
-
question_text = item.get("question")
|
79 |
-
if not task_id or question_text is None:
|
80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
-
continue
|
82 |
try:
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
print("Agent did not produce any answers to submit.")
|
92 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
-
|
94 |
-
# 4. Prepare Submission
|
95 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
-
print(status_update)
|
98 |
-
|
99 |
-
# 5. Submit
|
100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
-
try:
|
102 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
103 |
-
response.raise_for_status()
|
104 |
-
result_data = response.json()
|
105 |
-
final_status = (
|
106 |
-
f"Submission Successful!\n"
|
107 |
-
f"User: {result_data.get('username')}\n"
|
108 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
109 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
110 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
111 |
-
)
|
112 |
-
print("Submission successful.")
|
113 |
-
results_df = pd.DataFrame(results_log)
|
114 |
-
return final_status, results_df
|
115 |
-
except requests.exceptions.HTTPError as e:
|
116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
try:
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
-
except requests.exceptions.RequestException as e:
|
132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
133 |
-
print(status_message)
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
-
except Exception as e:
|
137 |
-
status_message = f"An unexpected error occurred during submission: {e}"
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
-
|
142 |
-
|
143 |
-
# --- Build Gradio Interface using Blocks ---
|
144 |
-
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
146 |
-
gr.Markdown(
|
147 |
"""
|
148 |
-
|
149 |
-
|
150 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
151 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
-
---
|
155 |
-
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
"""
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
import json
|
7 |
+
import re
|
8 |
+
from typing import Dict, List, Any, Optional
|
9 |
+
import asyncio
|
10 |
+
from datetime import datetime
|
11 |
+
import tempfile
|
12 |
+
import base64
|
13 |
+
from io import BytesIO
|
14 |
+
from PIL import Image
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
# Additional imports for enhanced capabilities
|
18 |
+
try:
|
19 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
20 |
+
import torch
|
21 |
+
except ImportError:
|
22 |
+
print("Warning: transformers not available. Install with: pip install transformers torch")
|
23 |
+
|
24 |
+
try:
|
25 |
+
from sentence_transformers import SentenceTransformer
|
26 |
+
except ImportError:
|
27 |
+
print("Warning: sentence-transformers not available. Install with: pip install sentence-transformers")
|
28 |
+
|
29 |
+
try:
|
30 |
+
import wikipediaapi
|
31 |
+
except ImportError:
|
32 |
+
print("Warning: wikipedia-api not available. Install with: pip install wikipedia-api")
|
33 |
|
|
|
34 |
# --- Constants ---
|
35 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
36 |
|
37 |
+
class EnhancedGAIAAgent:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
"""
|
39 |
+
Enhanced agent for GAIA benchmark with multi-modal capabilities,
|
40 |
+
web search, RAG, and multiple reasoning strategies.
|
41 |
"""
|
42 |
+
|
43 |
+
def __init__(self):
|
44 |
+
print("EnhancedGAIAAgent initializing...")
|
45 |
+
self.setup_models()
|
46 |
+
self.setup_tools()
|
47 |
+
self.knowledge_base = {}
|
48 |
+
print("EnhancedGAIAAgent initialized successfully.")
|
49 |
+
|
50 |
+
def setup_models(self):
|
51 |
+
"""Initialize models for different tasks"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
try:
|
53 |
+
# Text generation model for reasoning
|
54 |
+
self.text_model = None # Will lazy load when needed
|
55 |
+
|
56 |
+
# Embedding model for RAG
|
57 |
+
try:
|
58 |
+
self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
59 |
+
print("✅ Embedding model loaded")
|
60 |
+
except:
|
61 |
+
self.embedder = None
|
62 |
+
print("⚠️ Embedding model not available")
|
63 |
+
|
64 |
+
# Vision model for image analysis
|
65 |
+
try:
|
66 |
+
self.vision_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
67 |
+
print("✅ Vision model loaded")
|
68 |
+
except:
|
69 |
+
self.vision_model = None
|
70 |
+
print("⚠️ Vision model not available")
|
71 |
+
|
72 |
except Exception as e:
|
73 |
+
print(f"Model setup error: {e}")
|
74 |
+
|
75 |
+
def setup_tools(self):
|
76 |
+
"""Initialize tools for web search and knowledge retrieval"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
try:
|
78 |
+
self.wiki = wikipediaapi.Wikipedia(
|
79 |
+
language='en',
|
80 |
+
extract_format=wikipediaapi.ExtractFormat.WIKI,
|
81 |
+
user_agent='GAIA-Agent/1.0'
|
82 |
+
)
|
83 |
+
print("✅ Wikipedia API initialized")
|
84 |
+
except:
|
85 |
+
self.wiki = None
|
86 |
+
print("⚠️ Wikipedia API not available")
|
87 |
+
|
88 |
+
def web_search(self, query: str, max_results: int = 3) -> List[Dict]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
"""
|
90 |
+
Simulate web search using multiple sources
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
"""
|
92 |
+
results = []
|
93 |
+
|
94 |
+
# Wikipedia search
|
95 |
+
if self.wiki:
|
96 |
+
try:
|
97 |
+
page = self.wiki.page(query)
|
98 |
+
if page.exists():
|
99 |
+
results.append({
|
100 |
+
'title': page.title,
|
101 |
+
'content': page.text[:1000],
|
102 |
+
'source': 'Wikipedia',
|
103 |
+
'url': page.fullurl
|
104 |
+
})
|
105 |
+
except:
|
106 |
+
pass
|
107 |
+
|
108 |
+
# Add more search sources here (DuckDuckGo, etc.)
|
109 |
+
return results[:max_results]
|
110 |
+
|
111 |
+
def extract_numbers_and_calculations(self, text: str) -> Dict:
|
112 |
+
"""Extract numbers and perform calculations from text"""
|
113 |
+
numbers = re.findall(r'-?\d+\.?\d*', text)
|
114 |
+
calculations = {
|
115 |
+
'numbers_found': [float(n) for n in numbers if n],
|
116 |
+
'sum': sum(float(n) for n in numbers if n),
|
117 |
+
'count': len(numbers)
|
118 |
+
}
|
119 |
+
return calculations
|
120 |
+
|
121 |
+
def analyze_image(self, image_path: str) -> str:
|
122 |
+
"""Analyze image content"""
|
123 |
+
if not self.vision_model:
|
124 |
+
return "Image analysis not available"
|
125 |
+
|
126 |
+
try:
|
127 |
+
image = Image.open(image_path)
|
128 |
+
result = self.vision_model(image)
|
129 |
+
return result[0]['generated_text'] if result else "Could not analyze image"
|
130 |
+
except Exception as e:
|
131 |
+
return f"Image analysis error: {e}"
|
132 |
+
|
133 |
+
def rag_retrieval(self, query: str, context: str) -> str:
|
134 |
+
"""Simple RAG-like retrieval and generation"""
|
135 |
+
if not self.embedder:
|
136 |
+
return context[:500] # Return truncated context
|
137 |
+
|
138 |
+
try:
|
139 |
+
# Split context into chunks
|
140 |
+
chunks = [context[i:i+200] for i in range(0, len(context), 200)]
|
141 |
+
|
142 |
+
# Find most relevant chunk
|
143 |
+
query_embedding = self.embedder.encode([query])
|
144 |
+
chunk_embeddings = self.embedder.encode(chunks)
|
145 |
+
|
146 |
+
similarities = np.dot(query_embedding, chunk_embeddings.T)[0]
|
147 |
+
best_chunk_idx = np.argmax(similarities)
|
148 |
+
|
149 |
+
return chunks[best_chunk_idx]
|
150 |
+
except:
|
151 |
+
return context[:500]
|
152 |
+
|
153 |
+
def mathematical_reasoning(self, question: str) -> str:
|
154 |
+
"""Handle mathematical questions"""
|
155 |
+
# Extract mathematical expressions
|
156 |
+
math_patterns = [
|
157 |
+
r'(\d+(?:\.\d+)?)\s*[\+\-\*\/]\s*(\d+(?:\.\d+)?)',
|
158 |
+
r'(\d+)\s*percent|(\d+)%',
|
159 |
+
r'(\d+)\s*degrees?',
|
160 |
+
]
|
161 |
+
|
162 |
+
for pattern in math_patterns:
|
163 |
+
matches = re.findall(pattern, question)
|
164 |
+
if matches:
|
165 |
+
# Simple calculation handling
|
166 |
+
try:
|
167 |
+
nums = self.extract_numbers_and_calculations(question)
|
168 |
+
if nums['numbers_found']:
|
169 |
+
return f"Based on the numbers found: {nums['numbers_found']}, the sum is {nums['sum']}"
|
170 |
+
except:
|
171 |
+
pass
|
172 |
+
|
173 |
+
return "Mathematical reasoning applied but no clear calculation found."
|
174 |
+
|
175 |
+
def factual_qa(self, question: str) -> str:
|
176 |
+
"""Handle factual questions using web search"""
|
177 |
+
search_results = self.web_search(question)
|
178 |
+
|
179 |
+
if not search_results:
|
180 |
+
return "I couldn't find relevant information to answer this question."
|
181 |
+
|
182 |
+
# Combine search results
|
183 |
+
combined_info = ""
|
184 |
+
for result in search_results:
|
185 |
+
combined_info += f"{result['content']}\n"
|
186 |
+
|
187 |
+
# Use RAG to get most relevant information
|
188 |
+
relevant_info = self.rag_retrieval(question, combined_info)
|
189 |
+
|
190 |
+
return f"Based on available information: {relevant_info}"
|
191 |
+
|
192 |
+
def multi_step_reasoning(self, question: str) -> str:
|
193 |
+
"""Handle complex multi-step questions"""
|
194 |
+
steps = []
|
195 |
+
|
196 |
+
# Step 1: Identify question type
|
197 |
+
question_lower = question.lower()
|
198 |
+
|
199 |
+
if any(word in question_lower for word in ['calculate', 'compute', 'math', 'number']):
|
200 |
+
steps.append("Identified as mathematical question")
|
201 |
+
result = self.mathematical_reasoning(question)
|
202 |
+
elif any(word in question_lower for word in ['when', 'where', 'who', 'what', 'how']):
|
203 |
+
steps.append("Identified as factual question")
|
204 |
+
result = self.factual_qa(question)
|
205 |
+
else:
|
206 |
+
steps.append("Using general reasoning")
|
207 |
+
result = self.general_reasoning(question)
|
208 |
+
|
209 |
+
return result
|
210 |
+
|
211 |
+
def general_reasoning(self, question: str) -> str:
|
212 |
+
"""General reasoning for questions that don't fit other categories"""
|
213 |
+
# Try to extract key entities and concepts
|
214 |
+
key
|