Update app.py
Browse files
app.py
CHANGED
@@ -1,214 +1,154 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
-
import
|
7 |
-
import
|
8 |
-
|
9 |
-
import asyncio
|
10 |
-
from datetime import datetime
|
11 |
-
import tempfile
|
12 |
-
import base64
|
13 |
-
from io import BytesIO
|
14 |
-
from PIL import Image
|
15 |
-
import numpy as np
|
16 |
-
|
17 |
-
# Additional imports for enhanced capabilities
|
18 |
-
try:
|
19 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
20 |
-
import torch
|
21 |
-
except ImportError:
|
22 |
-
print("Warning: transformers not available. Install with: pip install transformers torch")
|
23 |
-
|
24 |
-
try:
|
25 |
-
from sentence_transformers import SentenceTransformer
|
26 |
-
except ImportError:
|
27 |
-
print("Warning: sentence-transformers not available. Install with: pip install sentence-transformers")
|
28 |
-
|
29 |
-
try:
|
30 |
-
import wikipediaapi
|
31 |
-
except ImportError:
|
32 |
-
print("Warning: wikipedia-api not available. Install with: pip install wikipedia-api")
|
33 |
|
34 |
# --- Constants ---
|
35 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
web
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def __init__(self):
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
"
|
|
|
|
|
|
|
52 |
try:
|
53 |
-
|
54 |
-
self.text_model = None # Will lazy load when needed
|
55 |
-
|
56 |
-
# Embedding model for RAG
|
57 |
-
try:
|
58 |
-
self.embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
59 |
-
print("β
Embedding model loaded")
|
60 |
-
except:
|
61 |
-
self.embedder = None
|
62 |
-
print("β οΈ Embedding model not available")
|
63 |
-
|
64 |
-
# Vision model for image analysis
|
65 |
-
try:
|
66 |
-
self.vision_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
67 |
-
print("β
Vision model loaded")
|
68 |
-
except:
|
69 |
-
self.vision_model = None
|
70 |
-
print("β οΈ Vision model not available")
|
71 |
-
|
72 |
except Exception as e:
|
73 |
-
print(f"
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
calculations = {
|
115 |
-
'numbers_found': [float(n) for n in numbers if n],
|
116 |
-
'sum': sum(float(n) for n in numbers if n),
|
117 |
-
'count': len(numbers)
|
118 |
-
}
|
119 |
-
return calculations
|
120 |
-
|
121 |
-
def analyze_image(self, image_path: str) -> str:
|
122 |
-
"""Analyze image content"""
|
123 |
-
if not self.vision_model:
|
124 |
-
return "Image analysis not available"
|
125 |
-
|
126 |
try:
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
except Exception as e:
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
# Combine search results
|
183 |
-
combined_info = ""
|
184 |
-
for result in search_results:
|
185 |
-
combined_info += f"{result['content']}\n"
|
186 |
-
|
187 |
-
# Use RAG to get most relevant information
|
188 |
-
relevant_info = self.rag_retrieval(question, combined_info)
|
189 |
-
|
190 |
-
return f"Based on available information: {relevant_info}"
|
191 |
-
|
192 |
-
def multi_step_reasoning(self, question: str) -> str:
|
193 |
-
"""Handle complex multi-step questions"""
|
194 |
-
steps = []
|
195 |
-
|
196 |
-
# Step 1: Identify question type
|
197 |
-
question_lower = question.lower()
|
198 |
-
|
199 |
-
if any(word in question_lower for word in ['calculate', 'compute', 'math', 'number']):
|
200 |
-
steps.append("Identified as mathematical question")
|
201 |
-
result = self.mathematical_reasoning(question)
|
202 |
-
elif any(word in question_lower for word in ['when', 'where', 'who', 'what', 'how']):
|
203 |
-
steps.append("Identified as factual question")
|
204 |
-
result = self.factual_qa(question)
|
205 |
-
else:
|
206 |
-
steps.append("Using general reasoning")
|
207 |
-
result = self.general_reasoning(question)
|
208 |
-
|
209 |
-
return result
|
210 |
-
|
211 |
-
def general_reasoning(self, question: str) -> str:
|
212 |
-
"""General reasoning for questions that don't fit other categories"""
|
213 |
-
# Try to extract key entities and concepts
|
214 |
-
key
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
+
from smolagents import ToolCallingAgent, tool
|
6 |
+
import duckduckgo_search
|
7 |
+
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
+
# --- Tools ---
|
13 |
+
@tool
|
14 |
+
def duck_search(query: str) -> str:
|
15 |
+
"""Searches the web using DuckDuckGo and returns a short summary."""
|
16 |
+
try:
|
17 |
+
results = duckduckgo_search.ddg(query, max_results=3)
|
18 |
+
if results:
|
19 |
+
return "\n".join([f"{r['title']}: {r['body']}" for r in results])
|
20 |
+
else:
|
21 |
+
return "No results found."
|
22 |
+
except Exception as e:
|
23 |
+
return f"Search error: {e}"
|
24 |
+
|
25 |
+
@tool
|
26 |
+
def calculator(expression: str) -> str:
|
27 |
+
"""Safely evaluates basic math expressions."""
|
28 |
+
try:
|
29 |
+
result = eval(expression, {"__builtins__": {}}, math.__dict__)
|
30 |
+
return str(result)
|
31 |
+
except Exception as e:
|
32 |
+
return f"Calculation error: {e}"
|
33 |
+
|
34 |
+
# --- Agent Definition ---
|
35 |
+
class WebSearchAgent:
|
36 |
def __init__(self):
|
37 |
+
self.agent = ToolCallingAgent(
|
38 |
+
name="GAIAWebToolAgent",
|
39 |
+
description="An agent that answers questions using reasoning and tools like web search and calculator.",
|
40 |
+
tools=[duck_search, calculator],
|
41 |
+
step_limit=5,
|
42 |
+
system_prompt="You're a helpful agent tasked with answering general questions using reasoning and external tools if needed. Prioritize factual accuracy, logic, and concise answers."
|
43 |
+
)
|
44 |
+
print("β
WebSearchAgent initialized.")
|
45 |
+
|
46 |
+
def __call__(self, question: str) -> str:
|
47 |
+
print(f"π Agent received: {question}")
|
48 |
try:
|
49 |
+
return self.agent.run(question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
except Exception as e:
|
51 |
+
print(f"β Error: {e}")
|
52 |
+
return f"Error: {e}"
|
53 |
+
|
54 |
+
# --- Main Evaluation Logic ---
|
55 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
56 |
+
space_id = os.getenv("SPACE_ID")
|
57 |
+
if profile:
|
58 |
+
username = profile.username
|
59 |
+
print(f"User logged in: {username}")
|
60 |
+
else:
|
61 |
+
return "Please login to Hugging Face first.", None
|
62 |
+
|
63 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
64 |
+
api_url = DEFAULT_API_URL
|
65 |
+
questions_url = f"{api_url}/questions"
|
66 |
+
submit_url = f"{api_url}/submit"
|
67 |
+
|
68 |
+
try:
|
69 |
+
agent = WebSearchAgent()
|
70 |
+
except Exception as e:
|
71 |
+
return f"Agent init error: {e}", None
|
72 |
+
|
73 |
+
try:
|
74 |
+
print("π₯ Fetching questions...")
|
75 |
+
response = requests.get(questions_url, timeout=15)
|
76 |
+
response.raise_for_status()
|
77 |
+
questions_data = response.json()
|
78 |
+
if not questions_data:
|
79 |
+
return "Fetched questions list is empty or invalid format.", None
|
80 |
+
print(f"β
Fetched {len(questions_data)} questions.")
|
81 |
+
except Exception as e:
|
82 |
+
return f"Error fetching questions: {e}", None
|
83 |
+
|
84 |
+
answers_payload = []
|
85 |
+
results_log = []
|
86 |
+
print("π Running agent on questions...")
|
87 |
+
for item in questions_data:
|
88 |
+
task_id = item.get("task_id")
|
89 |
+
question_text = item.get("question")
|
90 |
+
if not task_id or not question_text:
|
91 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
try:
|
93 |
+
submitted_answer = agent(question_text)
|
94 |
+
answers_payload.append({
|
95 |
+
"task_id": task_id,
|
96 |
+
"submitted_answer": submitted_answer
|
97 |
+
})
|
98 |
+
results_log.append({
|
99 |
+
"Task ID": task_id,
|
100 |
+
"Question": question_text,
|
101 |
+
"Submitted Answer": submitted_answer
|
102 |
+
})
|
103 |
except Exception as e:
|
104 |
+
error_msg = f"Agent error: {e}"
|
105 |
+
print(error_msg)
|
106 |
+
results_log.append({
|
107 |
+
"Task ID": task_id,
|
108 |
+
"Question": question_text,
|
109 |
+
"Submitted Answer": error_msg
|
110 |
+
})
|
111 |
+
|
112 |
+
if not answers_payload:
|
113 |
+
return "No answers to submit.", pd.DataFrame(results_log)
|
114 |
+
|
115 |
+
print("π€ Submitting answers...")
|
116 |
+
submission_data = {
|
117 |
+
"username": username.strip(),
|
118 |
+
"agent_code": agent_code,
|
119 |
+
"answers": answers_payload
|
120 |
+
}
|
121 |
+
|
122 |
+
try:
|
123 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
124 |
+
response.raise_for_status()
|
125 |
+
result = response.json()
|
126 |
+
final_status = (
|
127 |
+
f"β
Submission Successful!\n"
|
128 |
+
f"User: {result.get('username')}\n"
|
129 |
+
f"Score: {result.get('score', 'N/A')}% "
|
130 |
+
f"({result.get('correct_count', '?')}/{result.get('total_attempted', '?')} correct)\n"
|
131 |
+
f"Message: {result.get('message', 'No message.')}"
|
132 |
+
)
|
133 |
+
return final_status, pd.DataFrame(results_log)
|
134 |
+
except Exception as e:
|
135 |
+
return f"Submission error: {e}", pd.DataFrame(results_log)
|
136 |
+
|
137 |
+
# --- Gradio UI ---
|
138 |
+
with gr.Blocks() as demo:
|
139 |
+
gr.Markdown("# π§ GAIA Agent with Web Search & Calculator")
|
140 |
+
gr.Markdown("""
|
141 |
+
1. Log in to Hugging Face.
|
142 |
+
2. Click **Run Evaluation** to fetch, run, and submit.
|
143 |
+
3. Your agent uses web search (DuckDuckGo) and math tools.
|
144 |
+
""")
|
145 |
+
gr.LoginButton()
|
146 |
+
run_button = gr.Button("π Run Evaluation & Submit All Answers")
|
147 |
+
status_output = gr.Textbox(label="Status", lines=5)
|
148 |
+
results_table = gr.DataFrame(label="Answer Log")
|
149 |
+
|
150 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
151 |
+
|
152 |
+
if __name__ == "__main__":
|
153 |
+
print("π Launching App...")
|
154 |
+
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|