Update app.py
Browse files
app.py
CHANGED
@@ -4,84 +4,172 @@ import requests
|
|
4 |
import pandas as pd
|
5 |
import json
|
6 |
import time
|
|
|
7 |
from typing import Dict, List, Any, Optional
|
8 |
|
9 |
# Config
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
-
MODEL_NAME = "
|
12 |
SPACE_ID = os.getenv("SPACE_ID", "sirine1712/Final_Assignment_Template")
|
13 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
14 |
|
15 |
-
class
|
16 |
-
"""
|
17 |
|
18 |
def __init__(self, model: str = MODEL_NAME):
|
19 |
self.model = model
|
20 |
self.api_url = f"https://api-inference.huggingface.co/models/{model}"
|
21 |
-
self.headers =
|
22 |
-
|
23 |
-
def
|
24 |
-
"""
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
def
|
43 |
-
"""
|
44 |
-
if not
|
45 |
return "Unable to generate answer"
|
46 |
-
|
47 |
-
#
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
if
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
import re
|
65 |
-
numbers = re.findall(r'-?\d+\.?\d*', answer)
|
66 |
if numbers:
|
67 |
-
return numbers[
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
def __call__(self, question: str) -> str:
|
77 |
"""Main method to process questions"""
|
78 |
-
print(f"
|
|
|
|
|
|
|
|
|
79 |
|
80 |
try:
|
81 |
-
#
|
82 |
-
|
|
|
|
|
|
|
83 |
|
84 |
-
# Make API call with
|
85 |
max_retries = 3
|
86 |
for attempt in range(max_retries):
|
87 |
try:
|
@@ -89,66 +177,101 @@ class HuggingFaceAPIAgent:
|
|
89 |
self.api_url,
|
90 |
headers=self.headers,
|
91 |
json={
|
92 |
-
"inputs":
|
93 |
"parameters": {
|
94 |
-
"
|
95 |
-
"temperature": 0.
|
96 |
-
"do_sample":
|
97 |
-
"
|
98 |
}
|
99 |
},
|
100 |
-
timeout=
|
101 |
)
|
102 |
|
103 |
-
if response.status_code ==
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
continue
|
107 |
|
108 |
response.raise_for_status()
|
109 |
-
|
110 |
|
111 |
-
# Extract generated text
|
112 |
-
if isinstance(
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
116 |
else:
|
117 |
-
raw_answer = str(
|
118 |
|
119 |
-
#
|
120 |
-
final_answer = self.
|
121 |
-
print(f"✅
|
122 |
return final_answer
|
123 |
|
124 |
except requests.exceptions.RequestException as e:
|
125 |
if attempt == max_retries - 1:
|
126 |
-
|
127 |
print(f"⚠️ Request failed (attempt {attempt + 1}), retrying...")
|
128 |
-
time.sleep(
|
129 |
|
130 |
except Exception as e:
|
131 |
-
error_msg = f"
|
132 |
print(f"❌ {error_msg}")
|
133 |
return error_msg
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
136 |
"""Main function to run agent on all questions and submit results"""
|
137 |
if not profile:
|
138 |
return "❌ Please log in with your Hugging Face account first.", None
|
139 |
|
|
|
|
|
|
|
|
|
|
|
140 |
username = profile.username or "anonymous"
|
141 |
agent_code = f"https://huggingface.co/spaces/{SPACE_ID}/tree/main"
|
142 |
|
143 |
-
print(f"🚀 Starting
|
|
|
144 |
|
145 |
# Initialize the agent
|
146 |
-
agent =
|
147 |
|
148 |
# Fetch questions from GAIA API
|
149 |
try:
|
150 |
print("📥 Fetching questions from GAIA API...")
|
151 |
-
questions_response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=
|
152 |
questions_response.raise_for_status()
|
153 |
questions = questions_response.json()
|
154 |
print(f"✅ Retrieved {len(questions)} questions")
|
@@ -160,31 +283,47 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
160 |
# Process each question
|
161 |
answers = []
|
162 |
log_entries = []
|
|
|
163 |
|
164 |
for i, q in enumerate(questions, 1):
|
165 |
-
print(f"\n
|
|
|
166 |
print(f"Task ID: {q.get('task_id', 'Unknown')}")
|
|
|
167 |
|
168 |
try:
|
169 |
# Get answer from agent
|
170 |
answer = agent(q["question"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
except Exception as e:
|
172 |
answer = f"Error: {str(e)}"
|
173 |
-
|
|
|
174 |
|
175 |
# Prepare submission format
|
176 |
answers.append({
|
177 |
"task_id": q["task_id"],
|
178 |
-
"submitted_answer": answer
|
179 |
})
|
180 |
|
181 |
# Log for display
|
182 |
log_entries.append({
|
183 |
"Task ID": q["task_id"],
|
184 |
-
"Question": q["question"][:
|
185 |
-
"
|
186 |
-
"Status":
|
187 |
})
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
# Submit answers to GAIA scoring API
|
190 |
try:
|
@@ -198,35 +337,40 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
198 |
submit_response = requests.post(
|
199 |
f"{DEFAULT_API_URL}/submit",
|
200 |
json=submission_data,
|
201 |
-
timeout=
|
202 |
)
|
203 |
submit_response.raise_for_status()
|
204 |
result = submit_response.json()
|
205 |
|
206 |
print(f"✅ Submission successful!")
|
207 |
-
print(f"Score: {result.get('score', 'N/A')}%")
|
208 |
|
209 |
except Exception as e:
|
210 |
error_msg = f"❌ Submission failed: {str(e)}"
|
211 |
print(error_msg)
|
212 |
return error_msg, pd.DataFrame(log_entries)
|
213 |
|
214 |
-
# Format
|
215 |
score = result.get('score', 'N/A')
|
216 |
correct_count = result.get('correct_count', 'N/A')
|
217 |
total_attempted = result.get('total_attempted', 'N/A')
|
218 |
message = result.get('message', 'No additional message')
|
219 |
|
220 |
-
success_message = f"""✅ **
|
221 |
|
222 |
**📊 Results:**
|
223 |
- **Score:** {score}%
|
224 |
- **Correct Answers:** {correct_count}/{total_attempted}
|
225 |
-
- **
|
|
|
226 |
|
227 |
-
|
228 |
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
230 |
"""
|
231 |
|
232 |
print(success_message)
|
@@ -236,62 +380,85 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
236 |
def create_interface():
|
237 |
"""Create the Gradio interface"""
|
238 |
with gr.Blocks(
|
239 |
-
title="
|
240 |
-
theme=gr.themes.Soft()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
) as demo:
|
242 |
|
243 |
gr.Markdown("""
|
244 |
-
#
|
245 |
|
246 |
-
|
247 |
|
248 |
-
|
249 |
|
250 |
-
**
|
251 |
-
1.
|
252 |
-
2.
|
253 |
-
3. Wait for the agent to process all questions and submit results
|
254 |
""")
|
255 |
|
256 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
gr.Markdown("### 🔐 Authentication")
|
258 |
-
gr.LoginButton(value="Login with Hugging Face")
|
259 |
|
260 |
-
#
|
261 |
-
gr.Markdown("###
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
)
|
268 |
|
269 |
-
# Results
|
270 |
gr.Markdown("### 📊 Results")
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
277 |
|
278 |
-
gr.Markdown("### 📝
|
279 |
results_table = gr.DataFrame(
|
280 |
-
label="
|
281 |
-
headers=["Task ID", "Question", "
|
282 |
-
wrap=True
|
|
|
283 |
)
|
284 |
|
285 |
# Event handlers
|
286 |
run_button.click(
|
287 |
fn=run_and_submit_all,
|
288 |
-
outputs=[status_output, results_table]
|
|
|
289 |
)
|
290 |
|
291 |
# Footer
|
292 |
gr.Markdown("""
|
293 |
---
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
295 |
""")
|
296 |
|
297 |
return demo
|
|
|
4 |
import pandas as pd
|
5 |
import json
|
6 |
import time
|
7 |
+
import re
|
8 |
from typing import Dict, List, Any, Optional
|
9 |
|
10 |
# Config
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
12 |
+
MODEL_NAME = "google/flan-t5-large" # Free model that works well
|
13 |
SPACE_ID = os.getenv("SPACE_ID", "sirine1712/Final_Assignment_Template")
|
14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
|
16 |
+
class GAIAAgent:
|
17 |
+
"""Specialized agent for GAIA benchmark questions with proper auth handling"""
|
18 |
|
19 |
def __init__(self, model: str = MODEL_NAME):
|
20 |
self.model = model
|
21 |
self.api_url = f"https://api-inference.huggingface.co/models/{model}"
|
22 |
+
self.headers = self._get_headers()
|
23 |
+
|
24 |
+
def _get_headers(self) -> dict:
|
25 |
+
"""Get proper headers with authentication"""
|
26 |
+
if not HF_TOKEN:
|
27 |
+
print("⚠️ WARNING: HF_TOKEN not found in environment variables")
|
28 |
+
return {"Content-Type": "application/json"}
|
29 |
+
|
30 |
+
return {
|
31 |
+
"Authorization": f"Bearer {HF_TOKEN}",
|
32 |
+
"Content-Type": "application/json"
|
33 |
+
}
|
34 |
+
|
35 |
+
def _test_api_access(self) -> bool:
|
36 |
+
"""Test if we can access the HF API"""
|
37 |
+
try:
|
38 |
+
test_response = requests.post(
|
39 |
+
self.api_url,
|
40 |
+
headers=self.headers,
|
41 |
+
json={"inputs": "Test connection"},
|
42 |
+
timeout=10
|
43 |
+
)
|
44 |
+
if test_response.status_code == 401:
|
45 |
+
print("❌ Authentication failed - check HF_TOKEN")
|
46 |
+
return False
|
47 |
+
elif test_response.status_code == 503:
|
48 |
+
print("⏳ Model is loading...")
|
49 |
+
return True
|
50 |
+
else:
|
51 |
+
print("✅ API access confirmed")
|
52 |
+
return True
|
53 |
+
except Exception as e:
|
54 |
+
print(f"❌ API test failed: {e}")
|
55 |
+
return False
|
56 |
+
|
57 |
+
def classify_question_type(self, question: str) -> str:
|
58 |
+
"""Classify question type for better processing"""
|
59 |
+
question_lower = question.lower()
|
60 |
+
|
61 |
+
# Mathematical/computational questions
|
62 |
+
if any(word in question_lower for word in [
|
63 |
+
'calculate', 'compute', 'sum', 'multiply', 'divide', 'subtract',
|
64 |
+
'average', 'mean', 'percentage', 'ratio', 'equation', 'formula',
|
65 |
+
'math', 'arithmetic', 'algebra', '+', '-', '*', '/', '='
|
66 |
+
]):
|
67 |
+
return "mathematical"
|
68 |
+
|
69 |
+
# Factual/knowledge questions
|
70 |
+
elif any(word in question_lower for word in [
|
71 |
+
'who is', 'what is', 'when was', 'where is', 'which',
|
72 |
+
'born', 'died', 'founded', 'invented', 'discovered',
|
73 |
+
'capital', 'president', 'author', 'wrote', 'directed'
|
74 |
+
]):
|
75 |
+
return "factual"
|
76 |
+
|
77 |
+
# Counting/quantitative questions
|
78 |
+
elif any(word in question_lower for word in [
|
79 |
+
'how many', 'count', 'number of', 'total', 'quantity'
|
80 |
+
]):
|
81 |
+
return "counting"
|
82 |
+
|
83 |
+
# Date/time questions
|
84 |
+
elif any(word in question_lower for word in [
|
85 |
+
'year', 'date', 'century', 'decade', 'month', 'day',
|
86 |
+
'age', 'old', 'recent', 'latest', 'first time', 'last time'
|
87 |
+
]):
|
88 |
+
return "temporal"
|
89 |
+
|
90 |
+
else:
|
91 |
+
return "general"
|
92 |
+
|
93 |
+
def format_prompt_by_type(self, question: str, question_type: str) -> str:
|
94 |
+
"""Format prompt based on question type for T5 model"""
|
95 |
+
|
96 |
+
if question_type == "mathematical":
|
97 |
+
return f"solve: {question}"
|
98 |
+
|
99 |
+
elif question_type == "factual":
|
100 |
+
return f"question: {question}"
|
101 |
+
|
102 |
+
elif question_type == "counting":
|
103 |
+
return f"count: {question}"
|
104 |
+
|
105 |
+
elif question_type == "temporal":
|
106 |
+
return f"when: {question}"
|
107 |
+
|
108 |
+
else:
|
109 |
+
return f"answer: {question}"
|
110 |
|
111 |
+
def extract_clean_answer(self, raw_response: str, question: str, question_type: str) -> str:
|
112 |
+
"""Extract and clean the answer from model response"""
|
113 |
+
if not raw_response or len(raw_response.strip()) == 0:
|
114 |
return "Unable to generate answer"
|
115 |
+
|
116 |
+
# Clean the response
|
117 |
+
response = raw_response.strip()
|
118 |
+
|
119 |
+
# For T5 models, often the response is already clean
|
120 |
+
# Remove common artifacts
|
121 |
+
response = re.sub(r'^(answer:|solution:|result:)\s*', '', response, flags=re.IGNORECASE)
|
122 |
+
|
123 |
+
# Extract specific patterns based on question type
|
124 |
+
if question_type == "mathematical":
|
125 |
+
# Try to extract numerical answer
|
126 |
+
numbers = re.findall(r'-?\d+\.?\d*', response)
|
127 |
+
if numbers:
|
128 |
+
return str(numbers[-1]) # Return the last number found
|
129 |
+
|
130 |
+
elif question_type == "counting":
|
131 |
+
# Extract the first number found
|
132 |
+
numbers = re.findall(r'\d+', response)
|
|
|
|
|
133 |
if numbers:
|
134 |
+
return str(numbers[0])
|
135 |
|
136 |
+
elif question_type == "temporal":
|
137 |
+
# Look for years, dates
|
138 |
+
years = re.findall(r'\b(19|20)\d{2}\b', response)
|
139 |
+
if years:
|
140 |
+
return str(years[0])
|
141 |
|
142 |
+
dates = re.findall(r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b', response)
|
143 |
+
if dates:
|
144 |
+
return str(dates[0])
|
145 |
+
|
146 |
+
# Clean up the response length
|
147 |
+
sentences = response.split('.')
|
148 |
+
if len(sentences) > 0 and len(sentences[0]) > 5:
|
149 |
+
clean_answer = sentences[0].strip()
|
150 |
+
if len(clean_answer) > 100:
|
151 |
+
clean_answer = clean_answer[:100] + "..."
|
152 |
+
return clean_answer
|
153 |
+
|
154 |
+
# Fallback: return first 100 characters
|
155 |
+
return response[:100] + "..." if len(response) > 100 else response
|
156 |
|
157 |
def __call__(self, question: str) -> str:
|
158 |
"""Main method to process questions"""
|
159 |
+
print(f"🔍 Processing: {question[:60]}...")
|
160 |
+
|
161 |
+
# Check API access first
|
162 |
+
if not self._test_api_access():
|
163 |
+
return "API authentication failed - check HF_TOKEN"
|
164 |
|
165 |
try:
|
166 |
+
# Classify and format the question
|
167 |
+
question_type = self.classify_question_type(question)
|
168 |
+
formatted_prompt = self.format_prompt_by_type(question, question_type)
|
169 |
+
|
170 |
+
print(f"📝 Question type: {question_type}")
|
171 |
|
172 |
+
# Make API call with retries
|
173 |
max_retries = 3
|
174 |
for attempt in range(max_retries):
|
175 |
try:
|
|
|
177 |
self.api_url,
|
178 |
headers=self.headers,
|
179 |
json={
|
180 |
+
"inputs": formatted_prompt,
|
181 |
"parameters": {
|
182 |
+
"max_new_tokens": 100,
|
183 |
+
"temperature": 0.1, # Very low temperature for precise answers
|
184 |
+
"do_sample": False, # Deterministic output
|
185 |
+
"return_full_text": False
|
186 |
}
|
187 |
},
|
188 |
+
timeout=20
|
189 |
)
|
190 |
|
191 |
+
if response.status_code == 401:
|
192 |
+
return "Authentication error - invalid HF_TOKEN"
|
193 |
+
|
194 |
+
elif response.status_code == 503: # Model loading
|
195 |
+
wait_time = 15 + (attempt * 10)
|
196 |
+
print(f"⏳ Model loading, waiting {wait_time}s... (attempt {attempt + 1})")
|
197 |
+
time.sleep(wait_time)
|
198 |
+
continue
|
199 |
+
|
200 |
+
elif response.status_code == 429: # Rate limit
|
201 |
+
wait_time = 5 + (attempt * 5)
|
202 |
+
print(f"⏳ Rate limited, waiting {wait_time}s...")
|
203 |
+
time.sleep(wait_time)
|
204 |
continue
|
205 |
|
206 |
response.raise_for_status()
|
207 |
+
result = response.json()
|
208 |
|
209 |
+
# Extract the generated text
|
210 |
+
if isinstance(result, list) and len(result) > 0:
|
211 |
+
if 'generated_text' in result[0]:
|
212 |
+
raw_answer = result[0]['generated_text']
|
213 |
+
else:
|
214 |
+
raw_answer = str(result[0])
|
215 |
+
elif isinstance(result, dict):
|
216 |
+
raw_answer = result.get('generated_text', str(result))
|
217 |
else:
|
218 |
+
raw_answer = str(result)
|
219 |
|
220 |
+
# Clean and extract the final answer
|
221 |
+
final_answer = self.extract_clean_answer(raw_answer, question, question_type)
|
222 |
+
print(f"✅ Answer: {final_answer}")
|
223 |
return final_answer
|
224 |
|
225 |
except requests.exceptions.RequestException as e:
|
226 |
if attempt == max_retries - 1:
|
227 |
+
return f"Request failed after {max_retries} attempts: {str(e)}"
|
228 |
print(f"⚠️ Request failed (attempt {attempt + 1}), retrying...")
|
229 |
+
time.sleep(3)
|
230 |
|
231 |
except Exception as e:
|
232 |
+
error_msg = f"Processing error: {str(e)}"
|
233 |
print(f"❌ {error_msg}")
|
234 |
return error_msg
|
235 |
|
236 |
+
def check_environment():
|
237 |
+
"""Check if environment is properly configured"""
|
238 |
+
issues = []
|
239 |
+
|
240 |
+
if not HF_TOKEN:
|
241 |
+
issues.append("❌ HF_TOKEN not found in environment variables")
|
242 |
+
else:
|
243 |
+
issues.append("✅ HF_TOKEN found")
|
244 |
+
|
245 |
+
if not SPACE_ID:
|
246 |
+
issues.append("❌ SPACE_ID not configured")
|
247 |
+
else:
|
248 |
+
issues.append(f"✅ SPACE_ID: {SPACE_ID}")
|
249 |
+
|
250 |
+
return "\n".join(issues)
|
251 |
+
|
252 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
253 |
"""Main function to run agent on all questions and submit results"""
|
254 |
if not profile:
|
255 |
return "❌ Please log in with your Hugging Face account first.", None
|
256 |
|
257 |
+
# Check environment
|
258 |
+
env_status = check_environment()
|
259 |
+
if "❌" in env_status:
|
260 |
+
return f"Environment check failed:\n{env_status}", None
|
261 |
+
|
262 |
username = profile.username or "anonymous"
|
263 |
agent_code = f"https://huggingface.co/spaces/{SPACE_ID}/tree/main"
|
264 |
|
265 |
+
print(f"🚀 Starting GAIA evaluation for user: {username}")
|
266 |
+
print(f"🔧 Environment status:\n{env_status}")
|
267 |
|
268 |
# Initialize the agent
|
269 |
+
agent = GAIAAgent()
|
270 |
|
271 |
# Fetch questions from GAIA API
|
272 |
try:
|
273 |
print("📥 Fetching questions from GAIA API...")
|
274 |
+
questions_response = requests.get(f"{DEFAULT_API_URL}/questions", timeout=30)
|
275 |
questions_response.raise_for_status()
|
276 |
questions = questions_response.json()
|
277 |
print(f"✅ Retrieved {len(questions)} questions")
|
|
|
283 |
# Process each question
|
284 |
answers = []
|
285 |
log_entries = []
|
286 |
+
successful_answers = 0
|
287 |
|
288 |
for i, q in enumerate(questions, 1):
|
289 |
+
print(f"\n{'='*60}")
|
290 |
+
print(f"🔄 Question {i}/{len(questions)}")
|
291 |
print(f"Task ID: {q.get('task_id', 'Unknown')}")
|
292 |
+
print(f"Question: {q['question']}")
|
293 |
|
294 |
try:
|
295 |
# Get answer from agent
|
296 |
answer = agent(q["question"])
|
297 |
+
|
298 |
+
if not answer.startswith(("Error:", "Authentication error", "API authentication failed")):
|
299 |
+
successful_answers += 1
|
300 |
+
status = "✅ Success"
|
301 |
+
else:
|
302 |
+
status = "❌ Failed"
|
303 |
+
|
304 |
except Exception as e:
|
305 |
answer = f"Error: {str(e)}"
|
306 |
+
status = "❌ Exception"
|
307 |
+
print(f"❌ Exception processing question: {e}")
|
308 |
|
309 |
# Prepare submission format
|
310 |
answers.append({
|
311 |
"task_id": q["task_id"],
|
312 |
+
"submitted_answer": str(answer)
|
313 |
})
|
314 |
|
315 |
# Log for display
|
316 |
log_entries.append({
|
317 |
"Task ID": q["task_id"],
|
318 |
+
"Question": q["question"][:80] + "..." if len(q["question"]) > 80 else q["question"],
|
319 |
+
"Answer": str(answer)[:60] + "..." if len(str(answer)) > 60 else str(answer),
|
320 |
+
"Status": status
|
321 |
})
|
322 |
+
|
323 |
+
print(f"Answer: {answer}")
|
324 |
+
print(f"Status: {status}")
|
325 |
+
|
326 |
+
print(f"\n📊 Processing complete: {successful_answers}/{len(questions)} successful")
|
327 |
|
328 |
# Submit answers to GAIA scoring API
|
329 |
try:
|
|
|
337 |
submit_response = requests.post(
|
338 |
f"{DEFAULT_API_URL}/submit",
|
339 |
json=submission_data,
|
340 |
+
timeout=60
|
341 |
)
|
342 |
submit_response.raise_for_status()
|
343 |
result = submit_response.json()
|
344 |
|
345 |
print(f"✅ Submission successful!")
|
|
|
346 |
|
347 |
except Exception as e:
|
348 |
error_msg = f"❌ Submission failed: {str(e)}"
|
349 |
print(error_msg)
|
350 |
return error_msg, pd.DataFrame(log_entries)
|
351 |
|
352 |
+
# Format results
|
353 |
score = result.get('score', 'N/A')
|
354 |
correct_count = result.get('correct_count', 'N/A')
|
355 |
total_attempted = result.get('total_attempted', 'N/A')
|
356 |
message = result.get('message', 'No additional message')
|
357 |
|
358 |
+
success_message = f"""✅ **GAIA Evaluation Complete!**
|
359 |
|
360 |
**📊 Results:**
|
361 |
- **Score:** {score}%
|
362 |
- **Correct Answers:** {correct_count}/{total_attempted}
|
363 |
+
- **Questions Processed:** {len(questions)}
|
364 |
+
- **Successful API Calls:** {successful_answers}/{len(questions)}
|
365 |
|
366 |
+
**🎯 Target Progress:** {"✅ TARGET ACHIEVED!" if isinstance(score, (int, float)) and score >= 30.0 else f"Need {30.0 - (score if isinstance(score, (int, float)) else 0):.1f}% more to reach 30%"}
|
367 |
|
368 |
+
**📝 System Message:** {message}
|
369 |
+
|
370 |
+
**💡 Tips for improvement:**
|
371 |
+
- Ensure HF_TOKEN has proper permissions
|
372 |
+
- Try running again if API calls failed
|
373 |
+
- Check question types that performed poorly
|
374 |
"""
|
375 |
|
376 |
print(success_message)
|
|
|
380 |
def create_interface():
|
381 |
"""Create the Gradio interface"""
|
382 |
with gr.Blocks(
|
383 |
+
title="🎯 GAIA Challenge Agent",
|
384 |
+
theme=gr.themes.Soft(),
|
385 |
+
css="""
|
386 |
+
.status-box {
|
387 |
+
background: #f8f9fa;
|
388 |
+
border-left: 4px solid #007bff;
|
389 |
+
padding: 15px;
|
390 |
+
}
|
391 |
+
"""
|
392 |
) as demo:
|
393 |
|
394 |
gr.Markdown("""
|
395 |
+
# 🎯 GAIA Challenge Agent
|
396 |
|
397 |
+
**Goal:** Achieve 30% accuracy on the GAIA benchmark
|
398 |
|
399 |
+
This agent uses Google's FLAN-T5-Large model with specialized question processing to tackle GAIA's challenging questions.
|
400 |
|
401 |
+
**Setup Required:**
|
402 |
+
1. Set `HF_TOKEN` in your Space secrets (Settings → Repository secrets)
|
403 |
+
2. Set `SPACE_ID` to your space name (e.g., "username/space-name")
|
|
|
404 |
""")
|
405 |
|
406 |
+
# Environment check
|
407 |
+
with gr.Accordion("🔧 Environment Check", open=False):
|
408 |
+
env_check = gr.Textbox(
|
409 |
+
value=check_environment(),
|
410 |
+
label="Environment Status",
|
411 |
+
lines=3,
|
412 |
+
interactive=False
|
413 |
+
)
|
414 |
+
|
415 |
+
# Authentication
|
416 |
gr.Markdown("### 🔐 Authentication")
|
417 |
+
gr.LoginButton(value="🔑 Login with Hugging Face")
|
418 |
|
419 |
+
# Main controls
|
420 |
+
gr.Markdown("### 🚀 Run Evaluation")
|
421 |
+
run_button = gr.Button(
|
422 |
+
"🎯 Start GAIA Evaluation",
|
423 |
+
variant="primary",
|
424 |
+
size="lg"
|
425 |
+
)
|
|
|
426 |
|
427 |
+
# Results
|
428 |
gr.Markdown("### 📊 Results")
|
429 |
+
with gr.Row():
|
430 |
+
status_output = gr.Textbox(
|
431 |
+
label="📋 Evaluation Results",
|
432 |
+
lines=12,
|
433 |
+
max_lines=20,
|
434 |
+
placeholder="Click 'Start GAIA Evaluation' to begin...",
|
435 |
+
elem_classes=["status-box"]
|
436 |
+
)
|
437 |
|
438 |
+
gr.Markdown("### 📝 Question Processing Log")
|
439 |
results_table = gr.DataFrame(
|
440 |
+
label="Detailed Processing Results",
|
441 |
+
headers=["Task ID", "Question", "Answer", "Status"],
|
442 |
+
wrap=True,
|
443 |
+
max_height=400
|
444 |
)
|
445 |
|
446 |
# Event handlers
|
447 |
run_button.click(
|
448 |
fn=run_and_submit_all,
|
449 |
+
outputs=[status_output, results_table],
|
450 |
+
show_progress=True
|
451 |
)
|
452 |
|
453 |
# Footer
|
454 |
gr.Markdown("""
|
455 |
---
|
456 |
+
**🔍 Troubleshooting:**
|
457 |
+
- **401 Error:** Check that HF_TOKEN is valid and set in Space secrets
|
458 |
+
- **503 Error:** Model is loading, wait and try again
|
459 |
+
- **0% Score:** Check answer format and question processing logic
|
460 |
+
|
461 |
+
**📚 Model:** google/flan-t5-large (instruction-tuned for better reasoning)
|
462 |
""")
|
463 |
|
464 |
return demo
|