Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -43,11 +43,38 @@ def get_image(url) -> PIL.Image:
|
|
43 |
response = requests.get(url)
|
44 |
image = PIL.Image.open(BytesIO(response.content))
|
45 |
return image
|
|
|
|
|
46 |
|
47 |
|
48 |
model = load_model()
|
49 |
labels = load_labels()
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def predict(image: PIL.Image.Image, score_threshold: float) -> tuple[dict[str, float], dict[str, float], str]:
|
53 |
_, height, width, _ = model.input_shape
|
@@ -104,7 +131,7 @@ with gr.Blocks(css="style.css") as demo:
|
|
104 |
fn=predict,
|
105 |
inputs=[url, score_threshold],
|
106 |
outputs=[result, result_json, result_text],
|
107 |
-
api_name="
|
108 |
)
|
109 |
|
110 |
if __name__ == "__main__":
|
|
|
43 |
response = requests.get(url)
|
44 |
image = PIL.Image.open(BytesIO(response.content))
|
45 |
return image
|
46 |
+
|
47 |
+
|
48 |
|
49 |
|
50 |
model = load_model()
|
51 |
labels = load_labels()
|
52 |
|
53 |
+
def predictx(url: str, score_threshold: float) -> tuple[dict[str, float], dict[str, float], str]:
|
54 |
+
_, height, width, _ = model.input_shape
|
55 |
+
response = requests.get(url)
|
56 |
+
image = PIL.Image.open(BytesIO(response.content))
|
57 |
+
|
58 |
+
image = np.asarray(image)
|
59 |
+
image = tf.image.resize(image, size=(height, width), method=tf.image.ResizeMethod.AREA, preserve_aspect_ratio=True)
|
60 |
+
image = image.numpy()
|
61 |
+
image = dd.image.transform_and_pad_image(image, width, height)
|
62 |
+
image = image / 255.0
|
63 |
+
probs = model.predict(image[None, ...])[0]
|
64 |
+
probs = probs.astype(float)
|
65 |
+
|
66 |
+
indices = np.argsort(probs)[::-1]
|
67 |
+
result_all = dict()
|
68 |
+
result_threshold = dict()
|
69 |
+
for index in indices:
|
70 |
+
label = labels[index]
|
71 |
+
prob = probs[index]
|
72 |
+
result_all[label] = prob
|
73 |
+
if prob < score_threshold:
|
74 |
+
break
|
75 |
+
result_threshold[label] = prob
|
76 |
+
result_text = ", ".join(result_all.keys())
|
77 |
+
return result_threshold, result_all, result_text
|
78 |
|
79 |
def predict(image: PIL.Image.Image, score_threshold: float) -> tuple[dict[str, float], dict[str, float], str]:
|
80 |
_, height, width, _ = model.input_shape
|
|
|
131 |
fn=predict,
|
132 |
inputs=[url, score_threshold],
|
133 |
outputs=[result, result_json, result_text],
|
134 |
+
api_name="predictx",
|
135 |
)
|
136 |
|
137 |
if __name__ == "__main__":
|