File size: 105,218 Bytes
cf7a8a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>

<meta charset="utf-8">
<meta name="generator" content="quarto-1.6.40">

<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">


<title>Advanced RAG – Open-Source AI Cookbook</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
  width: 0.8em;
  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
  vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
  { counter-reset: source-line 0; }
pre.numberSource code > span
  { position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
  { content: counter(source-line);
    position: relative; left: -1em; text-align: right; vertical-align: baseline;
    border: none; display: inline-block;
    -webkit-touch-callout: none; -webkit-user-select: none;
    -khtml-user-select: none; -moz-user-select: none;
    -ms-user-select: none; user-select: none;
    padding: 0 4px; width: 4em;
  }
pre.numberSource { margin-left: 3em;  padding-left: 4px; }
div.sourceCode
  {   }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
</style>


<script src="../site_libs/quarto-nav/quarto-nav.js"></script>
<script src="../site_libs/quarto-nav/headroom.min.js"></script>
<script src="../site_libs/clipboard/clipboard.min.js"></script>
<script src="../site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="../site_libs/quarto-search/fuse.min.js"></script>
<script src="../site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="../">
<script src="../site_libs/quarto-html/quarto.js"></script>
<script src="../site_libs/quarto-html/popper.min.js"></script>
<script src="../site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="../site_libs/quarto-html/anchor.min.js"></script>
<link href="../site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="../site_libs/quarto-html/quarto-syntax-highlighting-549806ee2085284f45b00abea8c6df48.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="../site_libs/bootstrap/bootstrap.min.js"></script>
<link href="../site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="../site_libs/bootstrap/bootstrap-2be10d9e998f81ff6e49e26833438aa5.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
  "location": "sidebar",
  "copy-button": false,
  "collapse-after": 3,
  "panel-placement": "start",
  "type": "textbox",
  "limit": 50,
  "keyboard-shortcut": [
    "f",
    "/",
    "s"
  ],
  "show-item-context": false,
  "language": {
    "search-no-results-text": "No results",
    "search-matching-documents-text": "matching documents",
    "search-copy-link-title": "Copy link to search",
    "search-hide-matches-text": "Hide additional matches",
    "search-more-match-text": "more match in this document",
    "search-more-matches-text": "more matches in this document",
    "search-clear-button-title": "Clear",
    "search-text-placeholder": "",
    "search-detached-cancel-button-title": "Cancel",
    "search-submit-button-title": "Submit",
    "search-label": "Search"
  }
}</script>


<link rel="stylesheet" href="../styles.css">
</head>

<body class="nav-sidebar docked">

<div id="quarto-search-results"></div>
  <header id="quarto-header" class="headroom fixed-top">
  <nav class="quarto-secondary-nav">
    <div class="container-fluid d-flex">
      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
        <i class="bi bi-layout-text-sidebar-reverse"></i>
      </button>
        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item">Open-Source AI Cookbook</li><li class="breadcrumb-item"><a href="../notebooks/rag_zephyr_langchain.html">RAG Techniques</a></li><li class="breadcrumb-item"><a href="../notebooks/advanced_rag.html">Advanced RAG</a></li></ol></nav>
        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
        </a>
      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
        <i class="bi bi-search"></i>
      </button>
    </div>
  </nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
<!-- sidebar -->
  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation docked overflow-auto">
    <div class="pt-lg-2 mt-2 text-left sidebar-header">
    <div class="sidebar-title mb-0 py-0">
      <a href="../">Open-Source AI Cookbook</a> 
    </div>
      </div>
        <div class="mt-2 flex-shrink-0 align-items-center">
        <div class="sidebar-search">
        <div id="quarto-search" class="" title="Search"></div>
        </div>
        </div>
    <div class="sidebar-menu-container"> 
    <ul class="list-unstyled mt-1">
        <li class="sidebar-item sidebar-item-section">
      <div class="sidebar-item-container"> 
            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
 <span class="menu-text">About</span></a>
          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="Toggle section">
            <i class="bi bi-chevron-right ms-2"></i>
          </a> 
      </div>
      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../index.html" class="sidebar-item-text sidebar-link">
 <span class="menu-text">About Quarto</span></a>
  </div>
</li>
      </ul>
  </li>
        <li class="sidebar-item sidebar-item-section">
      <div class="sidebar-item-container"> 
            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true">
 <span class="menu-text">Open-Source AI Cookbook</span></a>
          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="Toggle section">
            <i class="bi bi-chevron-right ms-2"></i>
          </a> 
      </div>
      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
          <li class="sidebar-item sidebar-item-section">
      <div class="sidebar-item-container"> 
            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true">
 <span class="menu-text">RAG Techniques</span></a>
          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="Toggle section">
            <i class="bi bi-chevron-right ms-2"></i>
          </a> 
      </div>
      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth2 show">  
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../notebooks/rag_zephyr_langchain.html" class="sidebar-item-text sidebar-link">
 <span class="menu-text">RAG Zephyr &amp; LangChain</span></a>
  </div>
</li>
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../notebooks/advanced_rag.html" class="sidebar-item-text sidebar-link active">
 <span class="menu-text">Advanced RAG</span></a>
  </div>
</li>
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../notebooks/rag_evaluation.html" class="sidebar-item-text sidebar-link">
 <span class="menu-text">RAG Evaluation</span></a>
  </div>
</li>
      </ul>
  </li>
          <li class="sidebar-item sidebar-item-section">
      <div class="sidebar-item-container"> 
            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true">
 <span class="menu-text">Additional Techniques</span></a>
          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="Toggle section">
            <i class="bi bi-chevron-right ms-2"></i>
          </a> 
      </div>
      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth2 show">  
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../notebooks/automatic_embedding.html" class="sidebar-item-text sidebar-link">
 <span class="menu-text">Automatic Embedding</span></a>
  </div>
</li>
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../notebooks/faiss.html" class="sidebar-item-text sidebar-link">
 <span class="menu-text">FAISS for Efficient Search</span></a>
  </div>
</li>
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../notebooks/single_gpu.html" class="sidebar-item-text sidebar-link">
 <span class="menu-text">Single GPU Optimization</span></a>
  </div>
</li>
      </ul>
  </li>
      </ul>
  </li>
    </ul>
    </div>
</nav>
<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
<!-- margin-sidebar -->
    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
        <nav id="TOC" role="doc-toc" class="toc-active">
    <h2 id="toc-title">On this page</h2>
   
  <ul>
  <li><a href="#load-your-knowledge-base" id="toc-load-your-knowledge-base" class="nav-link active" data-scroll-target="#load-your-knowledge-base">Load your knowledge base</a></li>
  <li><a href="#retriever---embeddings" id="toc-retriever---embeddings" class="nav-link" data-scroll-target="#retriever---embeddings">1. Retriever - embeddings 🗂️</a>
  <ul class="collapse">
  <li><a href="#split-the-documents-into-chunks" id="toc-split-the-documents-into-chunks" class="nav-link" data-scroll-target="#split-the-documents-into-chunks">1.1 Split the documents into chunks</a></li>
  <li><a href="#building-the-vector-database" id="toc-building-the-vector-database" class="nav-link" data-scroll-target="#building-the-vector-database">1.2 Building the vector database</a></li>
  </ul></li>
  <li><a href="#reader---llm" id="toc-reader---llm" class="nav-link" data-scroll-target="#reader---llm">2. Reader - LLM 💬</a>
  <ul class="collapse">
  <li><a href="#reader-model" id="toc-reader-model" class="nav-link" data-scroll-target="#reader-model">2.1. Reader model</a></li>
  <li><a href="#prompt" id="toc-prompt" class="nav-link" data-scroll-target="#prompt">2.2. Prompt</a></li>
  <li><a href="#reranking" id="toc-reranking" class="nav-link" data-scroll-target="#reranking">2.3. Reranking</a></li>
  </ul></li>
  <li><a href="#assembling-it-all" id="toc-assembling-it-all" class="nav-link" data-scroll-target="#assembling-it-all">3. Assembling it all!</a></li>
  <li><a href="#to-go-further" id="toc-to-go-further" class="nav-link" data-scroll-target="#to-go-further">To go further 🗺️</a>
  <ul class="collapse">
  <li><a href="#setting-up-an-evaluation-pipeline" id="toc-setting-up-an-evaluation-pipeline" class="nav-link" data-scroll-target="#setting-up-an-evaluation-pipeline">Setting up an evaluation pipeline</a></li>
  <li><a href="#improving-the-retriever" id="toc-improving-the-retriever" class="nav-link" data-scroll-target="#improving-the-retriever">Improving the retriever</a></li>
  <li><a href="#improving-the-reader" id="toc-improving-the-reader" class="nav-link" data-scroll-target="#improving-the-reader">Improving the reader</a></li>
  </ul></li>
  </ul>
</nav>
    </div>
<!-- main -->
<main class="content" id="quarto-document-content">

<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item">Open-Source AI Cookbook</li><li class="breadcrumb-item"><a href="../notebooks/rag_zephyr_langchain.html">RAG Techniques</a></li><li class="breadcrumb-item"><a href="../notebooks/advanced_rag.html">Advanced RAG</a></li></ol></nav>
<div class="quarto-title">
<h1 class="title">Advanced RAG</h1>
</div>



<div class="quarto-title-meta">

    
  
    
  </div>
  


</header>


<p>This notebook demonstrates how you can build an advanced RAG (Retrieval Augmented Generation) for answering a user’s question about a specific knowledge base (here, the HuggingFace documentation), using LangChain.</p>
<p>For an introduction to RAG, you can check <a href="../notebooks/rag_zephyr_langchain.html">this other cookbook</a>!</p>
<p>RAG systems are complex, with many moving parts: here a RAG diagram, where we noted in blue all possibilities for system enhancement:</p>
<p><img src="https://huggingface.co/datasets/huggingface/cookbook-images/resolve/main/RAG_workflow.png" height="700"></p>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note
</div>
</div>
<div class="callout-body-container callout-body">
<p>💡 As you can see, there are many steps to tune in this architecture: tuning the system properly will yield significant performance gains.</p>
</div>
</div>
<p>In this notebook, we will take a look into many of these blue notes to see how to tune your RAG system and get the best performance.</p>
<p><strong>Let’s dig into the model building!</strong> First, we install the required model dependancies.</p>
<div id="7d75abe1" class="cell" data-execution_count="1">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="op">!</span>pip install <span class="op">-</span>q torch transformers transformers accelerate bitsandbytes langchain sentence<span class="op">-</span>transformers faiss<span class="op">-</span>gpu openpyxl pacmap</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="2a33957c" class="cell" data-execution_count="2">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="op">%</span>reload_ext dotenv</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="op">%</span>dotenv</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="d3507708" class="cell" data-execution_count="3">
<div class="sourceCode cell-code" id="annotated-cell-3"><pre class="sourceCode python code-annotation-code code-with-copy code-annotated"><code class="sourceCode python"><span id="annotated-cell-3-1"><a href="#annotated-cell-3-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> tqdm.notebook <span class="im">import</span> tqdm</span>
<span id="annotated-cell-3-2"><a href="#annotated-cell-3-2" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> pandas <span class="im">as</span> pd</span>
<span id="annotated-cell-3-3"><a href="#annotated-cell-3-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> typing <span class="im">import</span> Optional, List, Tuple</span>
<span id="annotated-cell-3-4"><a href="#annotated-cell-3-4" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> datasets <span class="im">import</span> Dataset</span>
<span id="annotated-cell-3-5"><a href="#annotated-cell-3-5" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> matplotlib.pyplot <span class="im">as</span> plt</span>
<span id="annotated-cell-3-6"><a href="#annotated-cell-3-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-3-7"><a href="#annotated-cell-3-7" aria-hidden="true" tabindex="-1"></a>pd.set_option(</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-3" data-target-annotation="1">1</button><span id="annotated-cell-3-8" class="code-annotation-target"><a href="#annotated-cell-3-8" aria-hidden="true" tabindex="-1"></a>    <span class="st">"display.max_colwidth"</span>, <span class="va">None</span></span>
<span id="annotated-cell-3-9"><a href="#annotated-cell-3-9" aria-hidden="true" tabindex="-1"></a>) </span><div class="code-annotation-gutter-bg"></div><div class="code-annotation-gutter"></div></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-annotation">
<dl class="code-annotation-container-hidden code-annotation-container-grid">
<dt data-target-cell="annotated-cell-3" data-target-annotation="1">1</dt>
<dd>
<span data-code-cell="annotated-cell-3" data-code-lines="8" data-code-annotation="1">This will be helpful when visualizing retriever outputs</span>
</dd>
</dl>
</div>
</div>
<section id="load-your-knowledge-base" class="level3">
<h3 class="anchored" data-anchor-id="load-your-knowledge-base">Load your knowledge base</h3>
<div id="acfee5b8" class="cell" data-execution_count="4">
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> datasets</span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>ds <span class="op">=</span> datasets.load_dataset(<span class="st">"m-ric/huggingface_doc"</span>, split<span class="op">=</span><span class="st">"train"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="40339fbc" class="cell" data-execution_count="5">
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain.docstore.document <span class="im">import</span> Document <span class="im">as</span> LangchainDocument</span>
<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a>RAW_KNOWLEDGE_BASE <span class="op">=</span> [</span>
<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a>    LangchainDocument(page_content<span class="op">=</span>doc[<span class="st">"text"</span>], metadata<span class="op">=</span>{<span class="st">"source"</span>: doc[<span class="st">"source"</span>]})</span>
<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a>    <span class="cf">for</span> doc <span class="kw">in</span> tqdm(ds)</span>
<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a>]</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="retriever---embeddings" class="level1">
<h1>1. Retriever - embeddings 🗂️</h1>
<p>The <strong>retriever acts like an internal search engine</strong>: given the user query, it returns a few relevant snippets from your knowledge base.</p>
<p>These snippets will then be fed to the Reader Model to help it generate its answer.</p>
<p>So <strong>our objective here is, given a user question, to find the most snippets from our knowledge base to answer that question.</strong></p>
<p>This is a wide objective, it leaves open some questions. How many snippets should we retrieve? This parameter will be named <code>top_k</code>.</p>
<p>How long should these snippets be? This is called the <code>chunk size</code>. There’s no one-size-fits-all answers, but here are a few elements: - 🔀 Your <code>chunk size</code> is allowed to vary from one snippet to the other. - Since there will always be some noise in your retrieval, increasing the <code>top_k</code> increases the chance to get relevant elements in your retrieved snippets. 🎯 Shooting more arrows increases your probability to hit your target. - Meanwhile, the summed length of your retrieved documents should not be too high: for instance, for most current models 16k tokens will probably drown your Reader model in information due to <a href="https://huggingface.co/papers/2307.03172">Lost-in-the-middle phenomenon</a>. 🎯 Give your reader model only the most relevant insights, not a huge pile of books!</p>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note
</div>
</div>
<div class="callout-body-container callout-body">
<p>In this notebook, we use Langchain library since <strong>it offers a huge variety of options for vector databases and allows us to keep document metadata throughout the processing</strong>.</p>
</div>
</div>
<section id="split-the-documents-into-chunks" class="level3">
<h3 class="anchored" data-anchor-id="split-the-documents-into-chunks">1.1 Split the documents into chunks</h3>
<ul>
<li>In this part, <strong>we split the documents from our knowledge base into smaller chunks</strong> which will be the snippets on which the reader LLM will base its answer.</li>
<li>The goal is to prepare a collection of <strong>semantically relevant snippets</strong>. So their size should be adapted to precise ideas: too small will truncate ideas, too large will dilute them.</li>
</ul>
<div class="callout callout-style-default callout-tip callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Tip
</div>
</div>
<div class="callout-body-container callout-body">
<p>💡 Many options exist for text splitting: splitting on words, on sentence boundaries, recursive chunking that processes documents in a tree-like way to preserve structure information… To learn more about chunking, I recommend you read <a href="https://github.com/FullStackRetrieval-com/RetrievalTutorials/blob/main/5_Levels_Of_Text_Splitting.ipynb">this great notebook</a> by Greg Kamradt.</p>
</div>
</div>
<ul>
<li><strong>Recursive chunking</strong> breaks down the text into smaller parts step by step using a given list of separators sorted from the most important to the least important separator. If the first split doesn’t give the right size or shape chunks, the method repeats itself on the new chunks using a different separator. For instance with the list of separators <code>["\n\n", "\n", ".", ""]</code>:
<ul>
<li>The method will first break down the document wherever there is a double line break <code>"\n\n"</code>.</li>
<li>Resulting documents will be split again on simple line breaks <code>"\n"</code>, then on sentence ends <code>"."</code>.</li>
<li>And finally, if some chunks are still too big, they will be split whenever they overflow the maximum size.</li>
</ul></li>
<li>With this method, the global structure is well preserved, at the expense of getting slight variations in chunk size.</li>
</ul>
<blockquote class="blockquote">
<p><a href="https://huggingface.co/spaces/A-Roucher/chunk_visualizer">This space</a> lets you visualize how different splitting options affect the chunks you get.</p>
</blockquote>
<p>🔬 Let’s experiment a bit with chunk sizes, beginning with an arbitrary size, and see how splits work. We use Langchain’s implementation of recursive chunking with <code>RecursiveCharacterTextSplitter</code>. - Parameter <code>chunk_size</code> controls the length of individual chunks: this length is counted by default as the number of characters in the chunk. - Parameter <code>chunk_overlap</code> lets adjacent chunks get a bit of overlap on each other. This reduces the probability that an idea could be cut in half by the split between two adjacent chunks. We ~arbitrarily set this to 1/10th of the chunk size, you could try different values!</p>
<div id="7a7ac95d" class="cell" data-execution_count="6">
<div class="sourceCode cell-code" id="annotated-cell-6"><pre class="sourceCode python code-annotation-code code-with-copy code-annotated"><code class="sourceCode python"><span id="annotated-cell-6-1"><a href="#annotated-cell-6-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain.text_splitter <span class="im">import</span> RecursiveCharacterTextSplitter</span>
<span id="annotated-cell-6-2"><a href="#annotated-cell-6-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-6-3"><a href="#annotated-cell-6-3" aria-hidden="true" tabindex="-1"></a><span class="co"># We use a hierarchical list of separators specifically tailored for splitting Markdown documents</span></span>
<span id="annotated-cell-6-4"><a href="#annotated-cell-6-4" aria-hidden="true" tabindex="-1"></a><span class="co"># This list is taken from LangChain's MarkdownTextSplitter class.</span></span>
<span id="annotated-cell-6-5"><a href="#annotated-cell-6-5" aria-hidden="true" tabindex="-1"></a>MARKDOWN_SEPARATORS <span class="op">=</span> [</span>
<span id="annotated-cell-6-6"><a href="#annotated-cell-6-6" aria-hidden="true" tabindex="-1"></a>    <span class="st">"</span><span class="ch">\n</span><span class="st">#{1,6} "</span>,</span>
<span id="annotated-cell-6-7"><a href="#annotated-cell-6-7" aria-hidden="true" tabindex="-1"></a>    <span class="st">"```</span><span class="ch">\n</span><span class="st">"</span>,</span>
<span id="annotated-cell-6-8"><a href="#annotated-cell-6-8" aria-hidden="true" tabindex="-1"></a>    <span class="st">"</span><span class="ch">\n\\</span><span class="st">*</span><span class="ch">\\</span><span class="st">*</span><span class="ch">\\</span><span class="st">*+</span><span class="ch">\n</span><span class="st">"</span>,</span>
<span id="annotated-cell-6-9"><a href="#annotated-cell-6-9" aria-hidden="true" tabindex="-1"></a>    <span class="st">"</span><span class="ch">\n</span><span class="st">---+</span><span class="ch">\n</span><span class="st">"</span>,</span>
<span id="annotated-cell-6-10"><a href="#annotated-cell-6-10" aria-hidden="true" tabindex="-1"></a>    <span class="st">"</span><span class="ch">\n</span><span class="st">___+</span><span class="ch">\n</span><span class="st">"</span>,</span>
<span id="annotated-cell-6-11"><a href="#annotated-cell-6-11" aria-hidden="true" tabindex="-1"></a>    <span class="st">"</span><span class="ch">\n\n</span><span class="st">"</span>,</span>
<span id="annotated-cell-6-12"><a href="#annotated-cell-6-12" aria-hidden="true" tabindex="-1"></a>    <span class="st">"</span><span class="ch">\n</span><span class="st">"</span>,</span>
<span id="annotated-cell-6-13"><a href="#annotated-cell-6-13" aria-hidden="true" tabindex="-1"></a>    <span class="st">" "</span>,</span>
<span id="annotated-cell-6-14"><a href="#annotated-cell-6-14" aria-hidden="true" tabindex="-1"></a>    <span class="st">""</span>,</span>
<span id="annotated-cell-6-15"><a href="#annotated-cell-6-15" aria-hidden="true" tabindex="-1"></a>]</span>
<span id="annotated-cell-6-16"><a href="#annotated-cell-6-16" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-6-17"><a href="#annotated-cell-6-17" aria-hidden="true" tabindex="-1"></a>text_splitter <span class="op">=</span> RecursiveCharacterTextSplitter(</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-6" data-target-annotation="1">1</button><span id="annotated-cell-6-18" class="code-annotation-target"><a href="#annotated-cell-6-18" aria-hidden="true" tabindex="-1"></a>    chunk_size<span class="op">=</span><span class="dv">1000</span>,</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-6" data-target-annotation="2">2</button><span id="annotated-cell-6-19" class="code-annotation-target"><a href="#annotated-cell-6-19" aria-hidden="true" tabindex="-1"></a>    chunk_overlap<span class="op">=</span><span class="dv">100</span>,</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-6" data-target-annotation="3">3</button><span id="annotated-cell-6-20" class="code-annotation-target"><a href="#annotated-cell-6-20" aria-hidden="true" tabindex="-1"></a>    add_start_index<span class="op">=</span><span class="va">True</span>,</span>
<button class="code-annotation-anchor" data-target-cell="annotated-cell-6" data-target-annotation="4">4</button><span id="annotated-cell-6-21" class="code-annotation-target"><a href="#annotated-cell-6-21" aria-hidden="true" tabindex="-1"></a>    strip_whitespace<span class="op">=</span><span class="va">True</span>,</span>
<span id="annotated-cell-6-22"><a href="#annotated-cell-6-22" aria-hidden="true" tabindex="-1"></a>    separators<span class="op">=</span>MARKDOWN_SEPARATORS,</span>
<span id="annotated-cell-6-23"><a href="#annotated-cell-6-23" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="annotated-cell-6-24"><a href="#annotated-cell-6-24" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-6-25"><a href="#annotated-cell-6-25" aria-hidden="true" tabindex="-1"></a>docs_processed <span class="op">=</span> []</span>
<span id="annotated-cell-6-26"><a href="#annotated-cell-6-26" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> doc <span class="kw">in</span> RAW_KNOWLEDGE_BASE:</span>
<span id="annotated-cell-6-27"><a href="#annotated-cell-6-27" aria-hidden="true" tabindex="-1"></a>    docs_processed <span class="op">+=</span> text_splitter.split_documents([doc])</span><div class="code-annotation-gutter-bg"></div><div class="code-annotation-gutter"></div></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-annotation">
<dl class="code-annotation-container-hidden code-annotation-container-grid">
<dt data-target-cell="annotated-cell-6" data-target-annotation="1">1</dt>
<dd>
<span data-code-cell="annotated-cell-6" data-code-lines="18" data-code-annotation="1">The maximum number of characters in a chunk: we selected this value arbitrally</span>
</dd>
<dt data-target-cell="annotated-cell-6" data-target-annotation="2">2</dt>
<dd>
<span data-code-cell="annotated-cell-6" data-code-lines="19" data-code-annotation="2">The number of characters to overlap between chunks</span>
</dd>
<dt data-target-cell="annotated-cell-6" data-target-annotation="3">3</dt>
<dd>
<span data-code-cell="annotated-cell-6" data-code-lines="20" data-code-annotation="3">If <code>True</code>, includes chunk’s start index in metadata</span>
</dd>
<dt data-target-cell="annotated-cell-6" data-target-annotation="4">4</dt>
<dd>
<span data-code-cell="annotated-cell-6" data-code-lines="21" data-code-annotation="4">If <code>True</code>, strips whitespace from the start and end of every document</span>
</dd>
</dl>
</div>
</div>
<p>We also have to keep in mind that when embedding documents, we will use an embedding model that has accepts a certain maximum sequence length <code>max_seq_length</code>.</p>
<p>So we should make sure that our chunk sizes are below this limit, because any longer chunk will be truncated before processing, thus losing relevancy.</p>
<div id="174a0a05" class="cell" data-execution_count="7">
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> sentence_transformers <span class="im">import</span> SentenceTransformer</span>
<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="co"># To get the value of the max sequence_length, we will query the underlying `SentenceTransformer` object used in the RecursiveCharacterTextSplitter.</span></span>
<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(</span>
<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a>    <span class="ss">f"Model's maximum sequence length: </span><span class="sc">{</span>SentenceTransformer(<span class="st">'thenlper/gte-small'</span>)<span class="sc">.</span>max_seq_length<span class="sc">}</span><span class="ss">"</span></span>
<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb5-7"><a href="#cb5-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb5-8"><a href="#cb5-8" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> transformers <span class="im">import</span> AutoTokenizer</span>
<span id="cb5-9"><a href="#cb5-9" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb5-10"><a href="#cb5-10" aria-hidden="true" tabindex="-1"></a>tokenizer <span class="op">=</span> AutoTokenizer.from_pretrained(<span class="st">"thenlper/gte-small"</span>)</span>
<span id="cb5-11"><a href="#cb5-11" aria-hidden="true" tabindex="-1"></a>lengths <span class="op">=</span> [<span class="bu">len</span>(tokenizer.encode(doc.page_content)) <span class="cf">for</span> doc <span class="kw">in</span> tqdm(docs_processed)]</span>
<span id="cb5-12"><a href="#cb5-12" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb5-13"><a href="#cb5-13" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot the distrubution of document lengths, counted as the number of tokens</span></span>
<span id="cb5-14"><a href="#cb5-14" aria-hidden="true" tabindex="-1"></a>fig <span class="op">=</span> pd.Series(lengths).hist()</span>
<span id="cb5-15"><a href="#cb5-15" aria-hidden="true" tabindex="-1"></a>plt.title(<span class="st">"Distribution of document lengths in the knowledge base (in count of tokens)"</span>)</span>
<span id="cb5-16"><a href="#cb5-16" aria-hidden="true" tabindex="-1"></a>plt.show()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>👀 As you can see, <strong>the chunk lengths are not aligned with our limit of 512 tokens</strong>, and some documents are above the limit, thus some part of them will be lost in truncation! - So we should change the <code>RecursiveCharacterTextSplitter</code> class to count length in number of tokens instead of number of characters. - Then we can choose a specific chunk size, here we would choose a lower threshold than 512: - smaller documents could allow the split to focus more on specific ideas. - But too small chunks would split sentences in half, thus losing meaning again: the proper tuning is a matter of balance.</p>
<div id="2fa8715e" class="cell" data-execution_count="8">
<div class="sourceCode cell-code" id="cb6"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain.text_splitter <span class="im">import</span> RecursiveCharacterTextSplitter</span>
<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> transformers <span class="im">import</span> AutoTokenizer</span>
<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a>EMBEDDING_MODEL_NAME <span class="op">=</span> <span class="st">"thenlper/gte-small"</span></span>
<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="kw">def</span> split_documents(</span>
<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a>    chunk_size: <span class="bu">int</span>,</span>
<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a>    knowledge_base: List[LangchainDocument],</span>
<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a>    tokenizer_name: Optional[<span class="bu">str</span>] <span class="op">=</span> EMBEDDING_MODEL_NAME,</span>
<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a>) <span class="op">-&gt;</span> List[LangchainDocument]:</span>
<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a>    <span class="co">"""</span></span>
<span id="cb6-13"><a href="#cb6-13" aria-hidden="true" tabindex="-1"></a><span class="co">    Split documents into chunks of maximum size `chunk_size` tokens and return a list of documents.</span></span>
<span id="cb6-14"><a href="#cb6-14" aria-hidden="true" tabindex="-1"></a><span class="co">    """</span></span>
<span id="cb6-15"><a href="#cb6-15" aria-hidden="true" tabindex="-1"></a>    text_splitter <span class="op">=</span> RecursiveCharacterTextSplitter.from_huggingface_tokenizer(</span>
<span id="cb6-16"><a href="#cb6-16" aria-hidden="true" tabindex="-1"></a>        AutoTokenizer.from_pretrained(tokenizer_name),</span>
<span id="cb6-17"><a href="#cb6-17" aria-hidden="true" tabindex="-1"></a>        chunk_size<span class="op">=</span>chunk_size,</span>
<span id="cb6-18"><a href="#cb6-18" aria-hidden="true" tabindex="-1"></a>        chunk_overlap<span class="op">=</span><span class="bu">int</span>(chunk_size <span class="op">/</span> <span class="dv">10</span>),</span>
<span id="cb6-19"><a href="#cb6-19" aria-hidden="true" tabindex="-1"></a>        add_start_index<span class="op">=</span><span class="va">True</span>,</span>
<span id="cb6-20"><a href="#cb6-20" aria-hidden="true" tabindex="-1"></a>        strip_whitespace<span class="op">=</span><span class="va">True</span>,</span>
<span id="cb6-21"><a href="#cb6-21" aria-hidden="true" tabindex="-1"></a>        separators<span class="op">=</span>MARKDOWN_SEPARATORS,</span>
<span id="cb6-22"><a href="#cb6-22" aria-hidden="true" tabindex="-1"></a>    )</span>
<span id="cb6-23"><a href="#cb6-23" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-24"><a href="#cb6-24" aria-hidden="true" tabindex="-1"></a>    docs_processed <span class="op">=</span> []</span>
<span id="cb6-25"><a href="#cb6-25" aria-hidden="true" tabindex="-1"></a>    <span class="cf">for</span> doc <span class="kw">in</span> knowledge_base:</span>
<span id="cb6-26"><a href="#cb6-26" aria-hidden="true" tabindex="-1"></a>        docs_processed <span class="op">+=</span> text_splitter.split_documents([doc])</span>
<span id="cb6-27"><a href="#cb6-27" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-28"><a href="#cb6-28" aria-hidden="true" tabindex="-1"></a>    <span class="co"># Remove duplicates</span></span>
<span id="cb6-29"><a href="#cb6-29" aria-hidden="true" tabindex="-1"></a>    unique_texts <span class="op">=</span> {}</span>
<span id="cb6-30"><a href="#cb6-30" aria-hidden="true" tabindex="-1"></a>    docs_processed_unique <span class="op">=</span> []</span>
<span id="cb6-31"><a href="#cb6-31" aria-hidden="true" tabindex="-1"></a>    <span class="cf">for</span> doc <span class="kw">in</span> docs_processed:</span>
<span id="cb6-32"><a href="#cb6-32" aria-hidden="true" tabindex="-1"></a>        <span class="cf">if</span> doc.page_content <span class="kw">not</span> <span class="kw">in</span> unique_texts:</span>
<span id="cb6-33"><a href="#cb6-33" aria-hidden="true" tabindex="-1"></a>            unique_texts[doc.page_content] <span class="op">=</span> <span class="va">True</span></span>
<span id="cb6-34"><a href="#cb6-34" aria-hidden="true" tabindex="-1"></a>            docs_processed_unique.append(doc)</span>
<span id="cb6-35"><a href="#cb6-35" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-36"><a href="#cb6-36" aria-hidden="true" tabindex="-1"></a>    <span class="cf">return</span> docs_processed_unique</span>
<span id="cb6-37"><a href="#cb6-37" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-38"><a href="#cb6-38" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-39"><a href="#cb6-39" aria-hidden="true" tabindex="-1"></a>docs_processed <span class="op">=</span> split_documents(</span>
<span id="cb6-40"><a href="#cb6-40" aria-hidden="true" tabindex="-1"></a>    <span class="dv">512</span>,  <span class="co"># We choose a chunk size adapted to our model</span></span>
<span id="cb6-41"><a href="#cb6-41" aria-hidden="true" tabindex="-1"></a>    RAW_KNOWLEDGE_BASE,</span>
<span id="cb6-42"><a href="#cb6-42" aria-hidden="true" tabindex="-1"></a>    tokenizer_name<span class="op">=</span>EMBEDDING_MODEL_NAME,</span>
<span id="cb6-43"><a href="#cb6-43" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb6-44"><a href="#cb6-44" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-45"><a href="#cb6-45" aria-hidden="true" tabindex="-1"></a><span class="co"># Let's visualize the chunk sizes we would have in tokens from a common model</span></span>
<span id="cb6-46"><a href="#cb6-46" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> transformers <span class="im">import</span> AutoTokenizer</span>
<span id="cb6-47"><a href="#cb6-47" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb6-48"><a href="#cb6-48" aria-hidden="true" tabindex="-1"></a>tokenizer <span class="op">=</span> AutoTokenizer.from_pretrained(EMBEDDING_MODEL_NAME)</span>
<span id="cb6-49"><a href="#cb6-49" aria-hidden="true" tabindex="-1"></a>lengths <span class="op">=</span> [<span class="bu">len</span>(tokenizer.encode(doc.page_content)) <span class="cf">for</span> doc <span class="kw">in</span> tqdm(docs_processed)]</span>
<span id="cb6-50"><a href="#cb6-50" aria-hidden="true" tabindex="-1"></a>fig <span class="op">=</span> pd.Series(lengths).hist()</span>
<span id="cb6-51"><a href="#cb6-51" aria-hidden="true" tabindex="-1"></a>plt.title(<span class="st">"Distribution of document lengths in the knowledge base (in count of tokens)"</span>)</span>
<span id="cb6-52"><a href="#cb6-52" aria-hidden="true" tabindex="-1"></a>plt.show()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>➡️ Now the chunk length distribution looks better!</p>
</section>
<section id="building-the-vector-database" class="level3">
<h3 class="anchored" data-anchor-id="building-the-vector-database">1.2 Building the vector database</h3>
<p>We want to compute the embeddings for all the chunks of our knowledge base: to learn more on sentence embeddings, we recommend reading <a href="https://osanseviero.github.io/hackerllama/blog/posts/sentence_embeddings/">this guide</a>.</p>
<section id="how-does-retrieval-work" class="level4">
<h4 class="anchored" data-anchor-id="how-does-retrieval-work">How does retrieval work ?</h4>
<p>Once the chunks are all embedded, we store them into a vector database. When the user types in a query, it gets embedded by the same model previously used, and a similarity search returns the closest documents from the vector database.</p>
<p>The technical challenge is thus, given a query vector, to quickly find the nearest neighbours of this vector in the vector database. To do this, we need to choose two things: a distance, and a search algorithm to find the nearest neighbors quickly within a database of thousands of records.</p>
<section id="nearest-neighbor-search-algorithm" class="level5">
<h5 class="anchored" data-anchor-id="nearest-neighbor-search-algorithm">Nearest Neighbor search algorithm</h5>
<p>There are plentiful choices for the nearest neighbor search algorithm: we go with Facebook’s <a href="https://github.com/facebookresearch/faiss">FAISS</a>, since FAISS is performant enough for most use cases, and it is well known thus widely implemented.</p>
</section>
<section id="distances" class="level5">
<h5 class="anchored" data-anchor-id="distances">Distances</h5>
<p>Regarding distances, you can find a good guide <a href="https://osanseviero.github.io/hackerllama/blog/posts/sentence_embeddings/#distance-between-embeddings">here</a>. In short:</p>
<ul>
<li><strong>Cosine similarity</strong> computes similarity between two vectors as the cosinus of their relative angle: it allows us to compare vector directions are regardless of their magnitude. Using it requires to normalize all vectors, to rescale them into unit norm.</li>
<li><strong>Dot product</strong> takes into account magnitude, with the sometimes undesirable effect that increasing a vector’s length will make it more similar to all others.</li>
<li><strong>Euclidean distance</strong> is the distance between the ends of vectors.</li>
</ul>
<p>You can try <a href="https://developers.google.com/machine-learning/clustering/similarity/check-your-understanding">this small exercise</a> to check your understanding of these concepts. But once vectors are normalized, <a href="https://platform.openai.com/docs/guides/embeddings/which-distance-function-should-i-use">the choice of a specific distance does not matter much</a>.</p>
<p>Our particular model works well with cosine similarity, so choose this distance, and we set it up both in the Embedding model, and in the <code>distance_strategy</code> argument of our FAISS index. With cosine similarity, we have to normalize our embeddings.</p>
<div class="callout callout-style-default callout-warning callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Warning
</div>
</div>
<div class="callout-body-container callout-body">
<p>🚨👇 The cell below takes a few minutes to run on A10G!</p>
</div>
</div>
<div id="938830be" class="cell" data-execution_count="9">
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain.vectorstores <span class="im">import</span> FAISS</span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain_community.embeddings <span class="im">import</span> HuggingFaceEmbeddings</span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> langchain_community.vectorstores.utils <span class="im">import</span> DistanceStrategy</span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>embedding_model <span class="op">=</span> HuggingFaceEmbeddings(</span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>    model_name<span class="op">=</span>EMBEDDING_MODEL_NAME,</span>
<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a>    multi_process<span class="op">=</span><span class="va">True</span>,</span>
<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a>    model_kwargs<span class="op">=</span>{<span class="st">"device"</span>: <span class="st">"cuda"</span>},</span>
<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a>    encode_kwargs<span class="op">=</span>{<span class="st">"normalize_embeddings"</span>: <span class="va">True</span>},  <span class="co"># set True for cosine similarity</span></span>
<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a>KNOWLEDGE_VECTOR_DATABASE <span class="op">=</span> FAISS.from_documents(</span>
<span id="cb7-13"><a href="#cb7-13" aria-hidden="true" tabindex="-1"></a>    docs_processed, embedding_model, distance_strategy<span class="op">=</span>DistanceStrategy.COSINE</span>
<span id="cb7-14"><a href="#cb7-14" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>👀 To visualize the search for the closest documents, let’s project our embeddings from 384 dimensions down to 2 dimensions using PaCMAP.</p>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note
</div>
</div>
<div class="callout-body-container callout-body">
<p>💡 We chose PaCMAP rather than other techniques such as t-SNE or UMAP, since <a href="https://www.nature.com/articles/s42003-022-03628-x#Abs1">it is efficient (preserves local and global structure), robust to initialization parameters and fast</a>.</p>
</div>
</div>
<div id="5ed5a830" class="cell" data-execution_count="10">
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a><span class="co"># embed a user query in the same space</span></span>
<span id="cb8-2"><a href="#cb8-2" aria-hidden="true" tabindex="-1"></a>user_query <span class="op">=</span> <span class="st">"How to create a pipeline object?"</span></span>
<span id="cb8-3"><a href="#cb8-3" aria-hidden="true" tabindex="-1"></a>query_vector <span class="op">=</span> embedding_model.embed_query(user_query)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="206f15a0" class="cell" data-execution_count="11">
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> pacmap</span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> numpy <span class="im">as</span> np</span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> plotly.express <span class="im">as</span> px</span>
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-5"><a href="#cb9-5" aria-hidden="true" tabindex="-1"></a>embedding_projector <span class="op">=</span> pacmap.PaCMAP(</span>
<span id="cb9-6"><a href="#cb9-6" aria-hidden="true" tabindex="-1"></a>    n_components<span class="op">=</span><span class="dv">2</span>, n_neighbors<span class="op">=</span><span class="va">None</span>, MN_ratio<span class="op">=</span><span class="fl">0.5</span>, FP_ratio<span class="op">=</span><span class="fl">2.0</span>, random_state<span class="op">=</span><span class="dv">1</span></span>
<span id="cb9-7"><a href="#cb9-7" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb9-8"><a href="#cb9-8" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-9"><a href="#cb9-9" aria-hidden="true" tabindex="-1"></a>embeddings_2d <span class="op">=</span> [</span>
<span id="cb9-10"><a href="#cb9-10" aria-hidden="true" tabindex="-1"></a>    <span class="bu">list</span>(KNOWLEDGE_VECTOR_DATABASE.index.reconstruct_n(idx, <span class="dv">1</span>)[<span class="dv">0</span>])</span>
<span id="cb9-11"><a href="#cb9-11" aria-hidden="true" tabindex="-1"></a>    <span class="cf">for</span> idx <span class="kw">in</span> <span class="bu">range</span>(<span class="bu">len</span>(docs_processed))</span>
<span id="cb9-12"><a href="#cb9-12" aria-hidden="true" tabindex="-1"></a>] <span class="op">+</span> [query_vector]</span>
<span id="cb9-13"><a href="#cb9-13" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb9-14"><a href="#cb9-14" aria-hidden="true" tabindex="-1"></a><span class="co"># fit the data (The index of transformed data corresponds to the index of the original data)</span></span>
<span id="cb9-15"><a href="#cb9-15" aria-hidden="true" tabindex="-1"></a>documents_projected <span class="op">=</span> embedding_projector.fit_transform(np.array(embeddings_2d), init<span class="op">=</span><span class="st">"pca"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="249c7a6b" class="cell" data-execution_count="12">
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>df <span class="op">=</span> pd.DataFrame.from_dict(</span>
<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>    [</span>
<span id="cb10-3"><a href="#cb10-3" aria-hidden="true" tabindex="-1"></a>        {</span>
<span id="cb10-4"><a href="#cb10-4" aria-hidden="true" tabindex="-1"></a>            <span class="st">"x"</span>: documents_projected[i, <span class="dv">0</span>],</span>
<span id="cb10-5"><a href="#cb10-5" aria-hidden="true" tabindex="-1"></a>            <span class="st">"y"</span>: documents_projected[i, <span class="dv">1</span>],</span>
<span id="cb10-6"><a href="#cb10-6" aria-hidden="true" tabindex="-1"></a>            <span class="st">"source"</span>: docs_processed[i].metadata[<span class="st">"source"</span>].split(<span class="st">"/"</span>)[<span class="dv">1</span>],</span>
<span id="cb10-7"><a href="#cb10-7" aria-hidden="true" tabindex="-1"></a>            <span class="st">"extract"</span>: docs_processed[i].page_content[:<span class="dv">100</span>] <span class="op">+</span> <span class="st">"..."</span>,</span>
<span id="cb10-8"><a href="#cb10-8" aria-hidden="true" tabindex="-1"></a>            <span class="st">"symbol"</span>: <span class="st">"circle"</span>,</span>
<span id="cb10-9"><a href="#cb10-9" aria-hidden="true" tabindex="-1"></a>            <span class="st">"size_col"</span>: <span class="dv">4</span>,</span>
<span id="cb10-10"><a href="#cb10-10" aria-hidden="true" tabindex="-1"></a>        }</span>
<span id="cb10-11"><a href="#cb10-11" aria-hidden="true" tabindex="-1"></a>        <span class="cf">for</span> i <span class="kw">in</span> <span class="bu">range</span>(<span class="bu">len</span>(docs_processed))</span>
<span id="cb10-12"><a href="#cb10-12" aria-hidden="true" tabindex="-1"></a>    ]</span>
<span id="cb10-13"><a href="#cb10-13" aria-hidden="true" tabindex="-1"></a>    <span class="op">+</span> [</span>
<span id="cb10-14"><a href="#cb10-14" aria-hidden="true" tabindex="-1"></a>        {</span>
<span id="cb10-15"><a href="#cb10-15" aria-hidden="true" tabindex="-1"></a>            <span class="st">"x"</span>: documents_projected[<span class="op">-</span><span class="dv">1</span>, <span class="dv">0</span>],</span>
<span id="cb10-16"><a href="#cb10-16" aria-hidden="true" tabindex="-1"></a>            <span class="st">"y"</span>: documents_projected[<span class="op">-</span><span class="dv">1</span>, <span class="dv">1</span>],</span>
<span id="cb10-17"><a href="#cb10-17" aria-hidden="true" tabindex="-1"></a>            <span class="st">"source"</span>: <span class="st">"User query"</span>,</span>
<span id="cb10-18"><a href="#cb10-18" aria-hidden="true" tabindex="-1"></a>            <span class="st">"extract"</span>: user_query,</span>
<span id="cb10-19"><a href="#cb10-19" aria-hidden="true" tabindex="-1"></a>            <span class="st">"size_col"</span>: <span class="dv">100</span>,</span>
<span id="cb10-20"><a href="#cb10-20" aria-hidden="true" tabindex="-1"></a>            <span class="st">"symbol"</span>: <span class="st">"star"</span>,</span>
<span id="cb10-21"><a href="#cb10-21" aria-hidden="true" tabindex="-1"></a>        }</span>
<span id="cb10-22"><a href="#cb10-22" aria-hidden="true" tabindex="-1"></a>    ]</span>
<span id="cb10-23"><a href="#cb10-23" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb10-24"><a href="#cb10-24" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb10-25"><a href="#cb10-25" aria-hidden="true" tabindex="-1"></a><span class="co"># visualize the embedding</span></span>
<span id="cb10-26"><a href="#cb10-26" aria-hidden="true" tabindex="-1"></a>fig <span class="op">=</span> px.scatter(</span>
<span id="cb10-27"><a href="#cb10-27" aria-hidden="true" tabindex="-1"></a>    df,</span>
<span id="cb10-28"><a href="#cb10-28" aria-hidden="true" tabindex="-1"></a>    x<span class="op">=</span><span class="st">"x"</span>,</span>
<span id="cb10-29"><a href="#cb10-29" aria-hidden="true" tabindex="-1"></a>    y<span class="op">=</span><span class="st">"y"</span>,</span>
<span id="cb10-30"><a href="#cb10-30" aria-hidden="true" tabindex="-1"></a>    color<span class="op">=</span><span class="st">"source"</span>,</span>
<span id="cb10-31"><a href="#cb10-31" aria-hidden="true" tabindex="-1"></a>    hover_data<span class="op">=</span><span class="st">"extract"</span>,</span>
<span id="cb10-32"><a href="#cb10-32" aria-hidden="true" tabindex="-1"></a>    size<span class="op">=</span><span class="st">"size_col"</span>,</span>
<span id="cb10-33"><a href="#cb10-33" aria-hidden="true" tabindex="-1"></a>    symbol<span class="op">=</span><span class="st">"symbol"</span>,</span>
<span id="cb10-34"><a href="#cb10-34" aria-hidden="true" tabindex="-1"></a>    color_discrete_map<span class="op">=</span>{<span class="st">"User query"</span>: <span class="st">"black"</span>},</span>
<span id="cb10-35"><a href="#cb10-35" aria-hidden="true" tabindex="-1"></a>    width<span class="op">=</span><span class="dv">1000</span>,</span>
<span id="cb10-36"><a href="#cb10-36" aria-hidden="true" tabindex="-1"></a>    height<span class="op">=</span><span class="dv">700</span>,</span>
<span id="cb10-37"><a href="#cb10-37" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb10-38"><a href="#cb10-38" aria-hidden="true" tabindex="-1"></a>fig.update_traces(</span>
<span id="cb10-39"><a href="#cb10-39" aria-hidden="true" tabindex="-1"></a>    marker<span class="op">=</span><span class="bu">dict</span>(opacity<span class="op">=</span><span class="dv">1</span>, line<span class="op">=</span><span class="bu">dict</span>(width<span class="op">=</span><span class="dv">0</span>, color<span class="op">=</span><span class="st">"DarkSlateGrey"</span>)), selector<span class="op">=</span><span class="bu">dict</span>(mode<span class="op">=</span><span class="st">"markers"</span>)</span>
<span id="cb10-40"><a href="#cb10-40" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb10-41"><a href="#cb10-41" aria-hidden="true" tabindex="-1"></a>fig.update_layout(</span>
<span id="cb10-42"><a href="#cb10-42" aria-hidden="true" tabindex="-1"></a>    legend_title_text<span class="op">=</span><span class="st">"&lt;b&gt;Chunk source&lt;/b&gt;"</span>,</span>
<span id="cb10-43"><a href="#cb10-43" aria-hidden="true" tabindex="-1"></a>    title<span class="op">=</span><span class="st">"&lt;b&gt;2D Projection of Chunk Embeddings via PaCMAP&lt;/b&gt;"</span>,</span>
<span id="cb10-44"><a href="#cb10-44" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb10-45"><a href="#cb10-45" aria-hidden="true" tabindex="-1"></a>fig.show()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p><img src="https://huggingface.co/datasets/huggingface/cookbook-images/resolve/main/PaCMAP_embeddings.png" height="700"></p>
<p>➡️ On the graph above, you can see a spatial representation of the kowledge base documents. As the vector embeddings represent the document’s meaning, their closeness in meaning should be reflected in their embedding’s closeness.</p>
<p>The user query’s embedding is also shown : we want to find the <code>k</code> document that have the closest meaning, thus we pick the <code>k</code> closest vectors.</p>
<p>In the LangChain vector database implementation, this search operation is performed by the method <code>vector_database.similarity_search(query)</code>.</p>
<p>Here is the result:</p>
<div id="47319e72" class="cell" data-execution_count="13">
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(<span class="ss">f"</span><span class="ch">\n</span><span class="ss">Starting retrieval for </span><span class="sc">{</span>user_query<span class="op">=</span><span class="sc">}</span><span class="ss">..."</span>)</span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>retrieved_docs <span class="op">=</span> KNOWLEDGE_VECTOR_DATABASE.similarity_search(query<span class="op">=</span>user_query, k<span class="op">=</span><span class="dv">5</span>)</span>
<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(<span class="st">"</span><span class="ch">\n</span><span class="st">==================================Top document=================================="</span>)</span>
<span id="cb11-4"><a href="#cb11-4" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(retrieved_docs[<span class="dv">0</span>].page_content)</span>
<span id="cb11-5"><a href="#cb11-5" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(<span class="st">"==================================Metadata=================================="</span>)</span>
<span id="cb11-6"><a href="#cb11-6" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(retrieved_docs[<span class="dv">0</span>].metadata)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
</section>
</section>
</section>
<section id="reader---llm" class="level1">
<h1>2. Reader - LLM 💬</h1>
<p>In this part, the <strong>LLM Reader reads the retrieved context to formulate its answer.</strong></p>
<p>There are actually substeps that can all be tuned: 1. The content of the retrieved documents is aggregated together into the “context”, with many processing options like <em>prompt compression</em>. 2. The context and the user query are aggregated into a prompt then given to the LLM to generate its answer.</p>
<section id="reader-model" class="level3">
<h3 class="anchored" data-anchor-id="reader-model">2.1. Reader model</h3>
<p>The choice of a reader model is important on a few aspects: - the reader model’s <code>max_seq_length</code> must accomodate our prompt, which includes the context output by the retriever call: the context consists in 5 documents of 512 tokens each, so we aim for a context length of 4k tokens at least. - the reader model</p>
<p>For this example, we chose <a href="https://huggingface.co/HuggingFaceH4/zephyr-7b-beta"><code>HuggingFaceH4/zephyr-7b-beta</code></a>, a small but powerful model.</p>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center">
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
Note
</div>
</div>
<div class="callout-body-container callout-body">
<p>With many models being released every week, you may want to substitute this model to the latest and greatest. The best way to keep track of open source LLMs is to check the <a href="https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard">Open-source LLM leaderboard</a>.</p>
</div>
</div>
<p>To make inference faster, we will load the quantized version of the model:</p>
<div id="eaf2beef" class="cell" data-execution_count="14">
<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> transformers <span class="im">import</span> pipeline</span>
<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> torch</span>
<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> transformers <span class="im">import</span> AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig</span>
<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>READER_MODEL_NAME <span class="op">=</span> <span class="st">"HuggingFaceH4/zephyr-7b-beta"</span></span>
<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a>bnb_config <span class="op">=</span> BitsAndBytesConfig(</span>
<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>    load_in_4bit<span class="op">=</span><span class="va">True</span>,</span>
<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a>    bnb_4bit_use_double_quant<span class="op">=</span><span class="va">True</span>,</span>
<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a>    bnb_4bit_quant_type<span class="op">=</span><span class="st">"nf4"</span>,</span>
<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>    bnb_4bit_compute_dtype<span class="op">=</span>torch.bfloat16,</span>
<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb12-13"><a href="#cb12-13" aria-hidden="true" tabindex="-1"></a>model <span class="op">=</span> AutoModelForCausalLM.from_pretrained(READER_MODEL_NAME, quantization_config<span class="op">=</span>bnb_config)</span>
<span id="cb12-14"><a href="#cb12-14" aria-hidden="true" tabindex="-1"></a>tokenizer <span class="op">=</span> AutoTokenizer.from_pretrained(READER_MODEL_NAME)</span>
<span id="cb12-15"><a href="#cb12-15" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb12-16"><a href="#cb12-16" aria-hidden="true" tabindex="-1"></a>READER_LLM <span class="op">=</span> pipeline(</span>
<span id="cb12-17"><a href="#cb12-17" aria-hidden="true" tabindex="-1"></a>    model<span class="op">=</span>model,</span>
<span id="cb12-18"><a href="#cb12-18" aria-hidden="true" tabindex="-1"></a>    tokenizer<span class="op">=</span>tokenizer,</span>
<span id="cb12-19"><a href="#cb12-19" aria-hidden="true" tabindex="-1"></a>    task<span class="op">=</span><span class="st">"text-generation"</span>,</span>
<span id="cb12-20"><a href="#cb12-20" aria-hidden="true" tabindex="-1"></a>    do_sample<span class="op">=</span><span class="va">True</span>,</span>
<span id="cb12-21"><a href="#cb12-21" aria-hidden="true" tabindex="-1"></a>    temperature<span class="op">=</span><span class="fl">0.2</span>,</span>
<span id="cb12-22"><a href="#cb12-22" aria-hidden="true" tabindex="-1"></a>    repetition_penalty<span class="op">=</span><span class="fl">1.1</span>,</span>
<span id="cb12-23"><a href="#cb12-23" aria-hidden="true" tabindex="-1"></a>    return_full_text<span class="op">=</span><span class="va">False</span>,</span>
<span id="cb12-24"><a href="#cb12-24" aria-hidden="true" tabindex="-1"></a>    max_new_tokens<span class="op">=</span><span class="dv">500</span>,</span>
<span id="cb12-25"><a href="#cb12-25" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="f6f72fd3" class="cell" data-execution_count="15">
<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>READER_LLM(<span class="st">"What is 4+4? Answer:"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="prompt" class="level3">
<h3 class="anchored" data-anchor-id="prompt">2.2. Prompt</h3>
<p>The RAG prompt template below is what we will feed to the Reader LLM: it is important to have it formatted in the Reader LLM’s chat template.</p>
<p>We give it our context and the user’s question.</p>
<div id="e28bd1d6" class="cell" data-execution_count="16">
<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a>prompt_in_chat_format <span class="op">=</span> [</span>
<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a>    {</span>
<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>        <span class="st">"role"</span>: <span class="st">"system"</span>,</span>
<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>        <span class="st">"content"</span>: <span class="st">"""Using the information contained in the context,</span></span>
<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a><span class="st">give a comprehensive answer to the question.</span></span>
<span id="cb14-6"><a href="#cb14-6" aria-hidden="true" tabindex="-1"></a><span class="st">Respond only to the question asked, response should be concise and relevant to the question.</span></span>
<span id="cb14-7"><a href="#cb14-7" aria-hidden="true" tabindex="-1"></a><span class="st">Provide the number of the source document when relevant.</span></span>
<span id="cb14-8"><a href="#cb14-8" aria-hidden="true" tabindex="-1"></a><span class="st">If the answer cannot be deduced from the context, do not give an answer."""</span>,</span>
<span id="cb14-9"><a href="#cb14-9" aria-hidden="true" tabindex="-1"></a>    },</span>
<span id="cb14-10"><a href="#cb14-10" aria-hidden="true" tabindex="-1"></a>    {</span>
<span id="cb14-11"><a href="#cb14-11" aria-hidden="true" tabindex="-1"></a>        <span class="st">"role"</span>: <span class="st">"user"</span>,</span>
<span id="cb14-12"><a href="#cb14-12" aria-hidden="true" tabindex="-1"></a>        <span class="st">"content"</span>: <span class="st">"""Context:</span></span>
<span id="cb14-13"><a href="#cb14-13" aria-hidden="true" tabindex="-1"></a><span class="sc">{context}</span></span>
<span id="cb14-14"><a href="#cb14-14" aria-hidden="true" tabindex="-1"></a><span class="st">---</span></span>
<span id="cb14-15"><a href="#cb14-15" aria-hidden="true" tabindex="-1"></a><span class="st">Now here is the question you need to answer.</span></span>
<span id="cb14-16"><a href="#cb14-16" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb14-17"><a href="#cb14-17" aria-hidden="true" tabindex="-1"></a><span class="st">Question: </span><span class="sc">{question}</span><span class="st">"""</span>,</span>
<span id="cb14-18"><a href="#cb14-18" aria-hidden="true" tabindex="-1"></a>    },</span>
<span id="cb14-19"><a href="#cb14-19" aria-hidden="true" tabindex="-1"></a>]</span>
<span id="cb14-20"><a href="#cb14-20" aria-hidden="true" tabindex="-1"></a>RAG_PROMPT_TEMPLATE <span class="op">=</span> tokenizer.apply_chat_template(</span>
<span id="cb14-21"><a href="#cb14-21" aria-hidden="true" tabindex="-1"></a>    prompt_in_chat_format, tokenize<span class="op">=</span><span class="va">False</span>, add_generation_prompt<span class="op">=</span><span class="va">True</span></span>
<span id="cb14-22"><a href="#cb14-22" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb14-23"><a href="#cb14-23" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(RAG_PROMPT_TEMPLATE)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>Let’s test our Reader on our previously retrieved documents!</p>
<div id="96c062d3" class="cell" data-execution_count="17">
<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>retrieved_docs_text <span class="op">=</span> [</span>
<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>    doc.page_content <span class="cf">for</span> doc <span class="kw">in</span> retrieved_docs</span>
<span id="cb15-3"><a href="#cb15-3" aria-hidden="true" tabindex="-1"></a>]  <span class="co"># we only need the text of the documents</span></span>
<span id="cb15-4"><a href="#cb15-4" aria-hidden="true" tabindex="-1"></a>context <span class="op">=</span> <span class="st">"</span><span class="ch">\n</span><span class="st">Extracted documents:</span><span class="ch">\n</span><span class="st">"</span></span>
<span id="cb15-5"><a href="#cb15-5" aria-hidden="true" tabindex="-1"></a>context <span class="op">+=</span> <span class="st">""</span>.join([<span class="ss">f"Document </span><span class="sc">{</span><span class="bu">str</span>(i)<span class="sc">}</span><span class="ss">:::</span><span class="ch">\n</span><span class="ss">"</span> <span class="op">+</span> doc <span class="cf">for</span> i, doc <span class="kw">in</span> <span class="bu">enumerate</span>(retrieved_docs_text)])</span>
<span id="cb15-6"><a href="#cb15-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb15-7"><a href="#cb15-7" aria-hidden="true" tabindex="-1"></a>final_prompt <span class="op">=</span> RAG_PROMPT_TEMPLATE.<span class="bu">format</span>(</span>
<span id="cb15-8"><a href="#cb15-8" aria-hidden="true" tabindex="-1"></a>    question<span class="op">=</span><span class="st">"How to create a pipeline object?"</span>, context<span class="op">=</span>context</span>
<span id="cb15-9"><a href="#cb15-9" aria-hidden="true" tabindex="-1"></a>)</span>
<span id="cb15-10"><a href="#cb15-10" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb15-11"><a href="#cb15-11" aria-hidden="true" tabindex="-1"></a><span class="co"># Redact an answer</span></span>
<span id="cb15-12"><a href="#cb15-12" aria-hidden="true" tabindex="-1"></a>answer <span class="op">=</span> READER_LLM(final_prompt)[<span class="dv">0</span>][<span class="st">"generated_text"</span>]</span>
<span id="cb15-13"><a href="#cb15-13" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(answer)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
<section id="reranking" class="level3">
<h3 class="anchored" data-anchor-id="reranking">2.3. Reranking</h3>
<p>A good option for RAG is to retrieve more documents than you want in the end, then rerank the results with a more powerful retrieval model before keeping only the <code>top_k</code>.</p>
<p>For this, <a href="https://arxiv.org/abs/2112.01488">Colbertv2</a> is a great choice: instead of a bi-encoder like our classical embedding models, it is a cross-encoder that computes more fine-grained interactions between the query tokens and each document’s tokens.</p>
<p>It is easily usable thanks to <a href="https://github.com/bclavie/RAGatouille">the RAGatouille library</a>.</p>
<div id="c0298337" class="cell" data-execution_count="18">
<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> ragatouille <span class="im">import</span> RAGPretrainedModel</span>
<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a>RERANKER <span class="op">=</span> RAGPretrainedModel.from_pretrained(<span class="st">"colbert-ir/colbertv2.0"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
</section>
</section>
<section id="assembling-it-all" class="level1">
<h1>3. Assembling it all!</h1>
<div id="f7d2b29a" class="cell" data-execution_count="19">
<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> transformers <span class="im">import</span> Pipeline</span>
<span id="cb17-2"><a href="#cb17-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-3"><a href="#cb17-3" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-4"><a href="#cb17-4" aria-hidden="true" tabindex="-1"></a><span class="kw">def</span> answer_with_rag(</span>
<span id="cb17-5"><a href="#cb17-5" aria-hidden="true" tabindex="-1"></a>    question: <span class="bu">str</span>,</span>
<span id="cb17-6"><a href="#cb17-6" aria-hidden="true" tabindex="-1"></a>    llm: Pipeline,</span>
<span id="cb17-7"><a href="#cb17-7" aria-hidden="true" tabindex="-1"></a>    knowledge_index: FAISS,</span>
<span id="cb17-8"><a href="#cb17-8" aria-hidden="true" tabindex="-1"></a>    reranker: Optional[RAGPretrainedModel] <span class="op">=</span> <span class="va">None</span>,</span>
<span id="cb17-9"><a href="#cb17-9" aria-hidden="true" tabindex="-1"></a>    num_retrieved_docs: <span class="bu">int</span> <span class="op">=</span> <span class="dv">30</span>,</span>
<span id="cb17-10"><a href="#cb17-10" aria-hidden="true" tabindex="-1"></a>    num_docs_final: <span class="bu">int</span> <span class="op">=</span> <span class="dv">5</span>,</span>
<span id="cb17-11"><a href="#cb17-11" aria-hidden="true" tabindex="-1"></a>) <span class="op">-&gt;</span> Tuple[<span class="bu">str</span>, List[LangchainDocument]]:</span>
<span id="cb17-12"><a href="#cb17-12" aria-hidden="true" tabindex="-1"></a>    <span class="co"># Gather documents with retriever</span></span>
<span id="cb17-13"><a href="#cb17-13" aria-hidden="true" tabindex="-1"></a>    <span class="bu">print</span>(<span class="st">"=&gt; Retrieving documents..."</span>)</span>
<span id="cb17-14"><a href="#cb17-14" aria-hidden="true" tabindex="-1"></a>    relevant_docs <span class="op">=</span> knowledge_index.similarity_search(query<span class="op">=</span>question, k<span class="op">=</span>num_retrieved_docs)</span>
<span id="cb17-15"><a href="#cb17-15" aria-hidden="true" tabindex="-1"></a>    relevant_docs <span class="op">=</span> [doc.page_content <span class="cf">for</span> doc <span class="kw">in</span> relevant_docs]  <span class="co"># keep only the text</span></span>
<span id="cb17-16"><a href="#cb17-16" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-17"><a href="#cb17-17" aria-hidden="true" tabindex="-1"></a>    <span class="co"># Optionally rerank results</span></span>
<span id="cb17-18"><a href="#cb17-18" aria-hidden="true" tabindex="-1"></a>    <span class="cf">if</span> reranker:</span>
<span id="cb17-19"><a href="#cb17-19" aria-hidden="true" tabindex="-1"></a>        <span class="bu">print</span>(<span class="st">"=&gt; Reranking documents..."</span>)</span>
<span id="cb17-20"><a href="#cb17-20" aria-hidden="true" tabindex="-1"></a>        relevant_docs <span class="op">=</span> reranker.rerank(question, relevant_docs, k<span class="op">=</span>num_docs_final)</span>
<span id="cb17-21"><a href="#cb17-21" aria-hidden="true" tabindex="-1"></a>        relevant_docs <span class="op">=</span> [doc[<span class="st">"content"</span>] <span class="cf">for</span> doc <span class="kw">in</span> relevant_docs]</span>
<span id="cb17-22"><a href="#cb17-22" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-23"><a href="#cb17-23" aria-hidden="true" tabindex="-1"></a>    relevant_docs <span class="op">=</span> relevant_docs[:num_docs_final]</span>
<span id="cb17-24"><a href="#cb17-24" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-25"><a href="#cb17-25" aria-hidden="true" tabindex="-1"></a>    <span class="co"># Build the final prompt</span></span>
<span id="cb17-26"><a href="#cb17-26" aria-hidden="true" tabindex="-1"></a>    context <span class="op">=</span> <span class="st">"</span><span class="ch">\n</span><span class="st">Extracted documents:</span><span class="ch">\n</span><span class="st">"</span></span>
<span id="cb17-27"><a href="#cb17-27" aria-hidden="true" tabindex="-1"></a>    context <span class="op">+=</span> <span class="st">""</span>.join([<span class="ss">f"Document </span><span class="sc">{</span><span class="bu">str</span>(i)<span class="sc">}</span><span class="ss">:::</span><span class="ch">\n</span><span class="ss">"</span> <span class="op">+</span> doc <span class="cf">for</span> i, doc <span class="kw">in</span> <span class="bu">enumerate</span>(relevant_docs)])</span>
<span id="cb17-28"><a href="#cb17-28" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-29"><a href="#cb17-29" aria-hidden="true" tabindex="-1"></a>    final_prompt <span class="op">=</span> RAG_PROMPT_TEMPLATE.<span class="bu">format</span>(question<span class="op">=</span>question, context<span class="op">=</span>context)</span>
<span id="cb17-30"><a href="#cb17-30" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-31"><a href="#cb17-31" aria-hidden="true" tabindex="-1"></a>    <span class="co"># Redact an answer</span></span>
<span id="cb17-32"><a href="#cb17-32" aria-hidden="true" tabindex="-1"></a>    <span class="bu">print</span>(<span class="st">"=&gt; Generating answer..."</span>)</span>
<span id="cb17-33"><a href="#cb17-33" aria-hidden="true" tabindex="-1"></a>    answer <span class="op">=</span> llm(final_prompt)[<span class="dv">0</span>][<span class="st">"generated_text"</span>]</span>
<span id="cb17-34"><a href="#cb17-34" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb17-35"><a href="#cb17-35" aria-hidden="true" tabindex="-1"></a>    <span class="cf">return</span> answer, relevant_docs</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>Let’s see how our RAG pipeline answers a user query.</p>
<div id="06ccd294" class="cell" data-execution_count="20">
<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>question <span class="op">=</span> <span class="st">"how to create a pipeline object?"</span></span>
<span id="cb18-2"><a href="#cb18-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb18-3"><a href="#cb18-3" aria-hidden="true" tabindex="-1"></a>answer, relevant_docs <span class="op">=</span> answer_with_rag(</span>
<span id="cb18-4"><a href="#cb18-4" aria-hidden="true" tabindex="-1"></a>    question, READER_LLM, KNOWLEDGE_VECTOR_DATABASE, reranker<span class="op">=</span>RERANKER</span>
<span id="cb18-5"><a href="#cb18-5" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="f6ece0d2" class="cell" data-execution_count="21">
<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(<span class="st">"==================================Answer=================================="</span>)</span>
<span id="cb19-2"><a href="#cb19-2" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(<span class="ss">f"</span><span class="sc">{</span>answer<span class="sc">}</span><span class="ss">"</span>)</span>
<span id="cb19-3"><a href="#cb19-3" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(<span class="st">"==================================Source docs=================================="</span>)</span>
<span id="cb19-4"><a href="#cb19-4" aria-hidden="true" tabindex="-1"></a><span class="cf">for</span> i, doc <span class="kw">in</span> <span class="bu">enumerate</span>(relevant_docs):</span>
<span id="cb19-5"><a href="#cb19-5" aria-hidden="true" tabindex="-1"></a>    <span class="bu">print</span>(<span class="ss">f"Document </span><span class="sc">{</span>i<span class="sc">}</span><span class="ss">------------------------------------------------------------"</span>)</span>
<span id="cb19-6"><a href="#cb19-6" aria-hidden="true" tabindex="-1"></a>    <span class="bu">print</span>(doc)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>✅ We now have a fully functional, performant RAG sytem. That’s it for today! Congratulations for making it to the end 🥳</p>
</section>
<section id="to-go-further" class="level1">
<h1>To go further 🗺️</h1>
<p>This is not the end of the journey! You can try many steps to improve your RAG system. We recommend doing so in an iterative way: bring small changes to the system and see what improves performance.</p>
<section id="setting-up-an-evaluation-pipeline" class="level3">
<h3 class="anchored" data-anchor-id="setting-up-an-evaluation-pipeline">Setting up an evaluation pipeline</h3>
<ul>
<li>💬 “You cannot improve the model performance that you do not measure”, said Gandhi… or at least Llama2 told me he said it. Anyway, you should absolutely start by measuring performance: this means building a small evaluation dataset, then monitor the performance of your RAG system on this evaluation dataset.</li>
</ul>
</section>
<section id="improving-the-retriever" class="level3">
<h3 class="anchored" data-anchor-id="improving-the-retriever">Improving the retriever</h3>
<p>🛠️ <strong>You can use these options to tune the results:</strong></p>
<ul>
<li>Tune the chunking method:
<ul>
<li>Size of the chunks</li>
<li>Method: split on different separators, use <a href="https://python.langchain.com/docs/modules/data_connection/document_transformers/semantic-chunker">semantic chunking</a></li>
</ul></li>
<li>Change the embedding model</li>
</ul>
<p>👷‍♀️ <strong>More could be considered:</strong> - Try another chunking method, like semantic chunking - Change the index used (here, FAISS) - Query expansion: reformulate the user query in slightly different ways to retrieve more documents.</p>
</section>
<section id="improving-the-reader" class="level3">
<h3 class="anchored" data-anchor-id="improving-the-reader">Improving the reader</h3>
<p>🛠️ <strong>Here you can try the following options to improve results:</strong> - Tune the prompt - Switch reranking on/off - Choose a more powerful reader model</p>
<p>💡 <strong>Many options could be considered here to further improve the results:</strong> - Compress the retrieved context to keep only the most relevant parts to answer the query. - Extend the RAG system to make it more user-friendly: - cite source - make conversational</p>


</section>
</section>

</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
  const toggleBodyColorMode = (bsSheetEl) => {
    const mode = bsSheetEl.getAttribute("data-mode");
    const bodyEl = window.document.querySelector("body");
    if (mode === "dark") {
      bodyEl.classList.add("quarto-dark");
      bodyEl.classList.remove("quarto-light");
    } else {
      bodyEl.classList.add("quarto-light");
      bodyEl.classList.remove("quarto-dark");
    }
  }
  const toggleBodyColorPrimary = () => {
    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
    if (bsSheetEl) {
      toggleBodyColorMode(bsSheetEl);
    }
  }
  toggleBodyColorPrimary();  
  const icon = "";
  const anchorJS = new window.AnchorJS();
  anchorJS.options = {
    placement: 'right',
    icon: icon
  };
  anchorJS.add('.anchored');
  const isCodeAnnotation = (el) => {
    for (const clz of el.classList) {
      if (clz.startsWith('code-annotation-')) {                     
        return true;
      }
    }
    return false;
  }
  const onCopySuccess = function(e) {
    // button target
    const button = e.trigger;
    // don't keep focus
    button.blur();
    // flash "checked"
    button.classList.add('code-copy-button-checked');
    var currentTitle = button.getAttribute("title");
    button.setAttribute("title", "Copied!");
    let tooltip;
    if (window.bootstrap) {
      button.setAttribute("data-bs-toggle", "tooltip");
      button.setAttribute("data-bs-placement", "left");
      button.setAttribute("data-bs-title", "Copied!");
      tooltip = new bootstrap.Tooltip(button, 
        { trigger: "manual", 
          customClass: "code-copy-button-tooltip",
          offset: [0, -8]});
      tooltip.show();    
    }
    setTimeout(function() {
      if (tooltip) {
        tooltip.hide();
        button.removeAttribute("data-bs-title");
        button.removeAttribute("data-bs-toggle");
        button.removeAttribute("data-bs-placement");
      }
      button.setAttribute("title", currentTitle);
      button.classList.remove('code-copy-button-checked');
    }, 1000);
    // clear code selection
    e.clearSelection();
  }
  const getTextToCopy = function(trigger) {
      const codeEl = trigger.previousElementSibling.cloneNode(true);
      for (const childEl of codeEl.children) {
        if (isCodeAnnotation(childEl)) {
          childEl.remove();
        }
      }
      return codeEl.innerText;
  }
  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
    text: getTextToCopy
  });
  clipboard.on('success', onCopySuccess);
  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
      text: getTextToCopy,
      container: window.document.getElementById('quarto-embedded-source-code-modal')
    });
    clipboardModal.on('success', onCopySuccess);
  }
    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
    var mailtoRegex = new RegExp(/^mailto:/);
      var filterRegex = new RegExp('/' + window.location.host + '/');
    var isInternal = (href) => {
        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
    }
    // Inspect non-navigation links and adorn them if external
 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
    for (var i=0; i<links.length; i++) {
      const link = links[i];
      if (!isInternal(link.href)) {
        // undo the damage that might have been done by quarto-nav.js in the case of
        // links that we want to consider external
        if (link.dataset.originalHref !== undefined) {
          link.href = link.dataset.originalHref;
        }
      }
    }
  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
    const config = {
      allowHTML: true,
      maxWidth: 500,
      delay: 100,
      arrow: false,
      appendTo: function(el) {
          return el.parentElement;
      },
      interactive: true,
      interactiveBorder: 10,
      theme: 'quarto',
      placement: 'bottom-start',
    };
    if (contentFn) {
      config.content = contentFn;
    }
    if (onTriggerFn) {
      config.onTrigger = onTriggerFn;
    }
    if (onUntriggerFn) {
      config.onUntrigger = onUntriggerFn;
    }
    window.tippy(el, config); 
  }
  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
  for (var i=0; i<noterefs.length; i++) {
    const ref = noterefs[i];
    tippyHover(ref, function() {
      // use id or data attribute instead here
      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
      try { href = new URL(href).hash; } catch {}
      const id = href.replace(/^#\/?/, "");
      const note = window.document.getElementById(id);
      if (note) {
        return note.innerHTML;
      } else {
        return "";
      }
    });
  }
  const xrefs = window.document.querySelectorAll('a.quarto-xref');
  const processXRef = (id, note) => {
    // Strip column container classes
    const stripColumnClz = (el) => {
      el.classList.remove("page-full", "page-columns");
      if (el.children) {
        for (const child of el.children) {
          stripColumnClz(child);
        }
      }
    }
    stripColumnClz(note)
    if (id === null || id.startsWith('sec-')) {
      // Special case sections, only their first couple elements
      const container = document.createElement("div");
      if (note.children && note.children.length > 2) {
        container.appendChild(note.children[0].cloneNode(true));
        for (let i = 1; i < note.children.length; i++) {
          const child = note.children[i];
          if (child.tagName === "P" && child.innerText === "") {
            continue;
          } else {
            container.appendChild(child.cloneNode(true));
            break;
          }
        }
        if (window.Quarto?.typesetMath) {
          window.Quarto.typesetMath(container);
        }
        return container.innerHTML
      } else {
        if (window.Quarto?.typesetMath) {
          window.Quarto.typesetMath(note);
        }
        return note.innerHTML;
      }
    } else {
      // Remove any anchor links if they are present
      const anchorLink = note.querySelector('a.anchorjs-link');
      if (anchorLink) {
        anchorLink.remove();
      }
      if (window.Quarto?.typesetMath) {
        window.Quarto.typesetMath(note);
      }
      if (note.classList.contains("callout")) {
        return note.outerHTML;
      } else {
        return note.innerHTML;
      }
    }
  }
  for (var i=0; i<xrefs.length; i++) {
    const xref = xrefs[i];
    tippyHover(xref, undefined, function(instance) {
      instance.disable();
      let url = xref.getAttribute('href');
      let hash = undefined; 
      if (url.startsWith('#')) {
        hash = url;
      } else {
        try { hash = new URL(url).hash; } catch {}
      }
      if (hash) {
        const id = hash.replace(/^#\/?/, "");
        const note = window.document.getElementById(id);
        if (note !== null) {
          try {
            const html = processXRef(id, note.cloneNode(true));
            instance.setContent(html);
          } finally {
            instance.enable();
            instance.show();
          }
        } else {
          // See if we can fetch this
          fetch(url.split('#')[0])
          .then(res => res.text())
          .then(html => {
            const parser = new DOMParser();
            const htmlDoc = parser.parseFromString(html, "text/html");
            const note = htmlDoc.getElementById(id);
            if (note !== null) {
              const html = processXRef(id, note);
              instance.setContent(html);
            } 
          }).finally(() => {
            instance.enable();
            instance.show();
          });
        }
      } else {
        // See if we can fetch a full url (with no hash to target)
        // This is a special case and we should probably do some content thinning / targeting
        fetch(url)
        .then(res => res.text())
        .then(html => {
          const parser = new DOMParser();
          const htmlDoc = parser.parseFromString(html, "text/html");
          const note = htmlDoc.querySelector('main.content');
          if (note !== null) {
            // This should only happen for chapter cross references
            // (since there is no id in the URL)
            // remove the first header
            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
              note.children[0].remove();
            }
            const html = processXRef(null, note);
            instance.setContent(html);
          } 
        }).finally(() => {
          instance.enable();
          instance.show();
        });
      }
    }, function(instance) {
    });
  }
      let selectedAnnoteEl;
      const selectorForAnnotation = ( cell, annotation) => {
        let cellAttr = 'data-code-cell="' + cell + '"';
        let lineAttr = 'data-code-annotation="' +  annotation + '"';
        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
        return selector;
      }
      const selectCodeLines = (annoteEl) => {
        const doc = window.document;
        const targetCell = annoteEl.getAttribute("data-target-cell");
        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
        const lineIds = lines.map((line) => {
          return targetCell + "-" + line;
        })
        let top = null;
        let height = null;
        let parent = null;
        if (lineIds.length > 0) {
            //compute the position of the single el (top and bottom and make a div)
            const el = window.document.getElementById(lineIds[0]);
            top = el.offsetTop;
            height = el.offsetHeight;
            parent = el.parentElement.parentElement;
          if (lineIds.length > 1) {
            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
            height = bottom - top;
          }
          if (top !== null && height !== null && parent !== null) {
            // cook up a div (if necessary) and position it 
            let div = window.document.getElementById("code-annotation-line-highlight");
            if (div === null) {
              div = window.document.createElement("div");
              div.setAttribute("id", "code-annotation-line-highlight");
              div.style.position = 'absolute';
              parent.appendChild(div);
            }
            div.style.top = top - 2 + "px";
            div.style.height = height + 4 + "px";
            div.style.left = 0;
            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
            if (gutterDiv === null) {
              gutterDiv = window.document.createElement("div");
              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
              gutterDiv.style.position = 'absolute';
              const codeCell = window.document.getElementById(targetCell);
              const gutter = codeCell.querySelector('.code-annotation-gutter');
              gutter.appendChild(gutterDiv);
            }
            gutterDiv.style.top = top - 2 + "px";
            gutterDiv.style.height = height + 4 + "px";
          }
          selectedAnnoteEl = annoteEl;
        }
      };
      const unselectCodeLines = () => {
        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
        elementsIds.forEach((elId) => {
          const div = window.document.getElementById(elId);
          if (div) {
            div.remove();
          }
        });
        selectedAnnoteEl = undefined;
      };
        // Handle positioning of the toggle
    window.addEventListener(
      "resize",
      throttle(() => {
        elRect = undefined;
        if (selectedAnnoteEl) {
          selectCodeLines(selectedAnnoteEl);
        }
      }, 10)
    );
    function throttle(fn, ms) {
    let throttle = false;
    let timer;
      return (...args) => {
        if(!throttle) { // first call gets through
            fn.apply(this, args);
            throttle = true;
        } else { // all the others get throttled
            if(timer) clearTimeout(timer); // cancel #2
            timer = setTimeout(() => {
              fn.apply(this, args);
              timer = throttle = false;
            }, ms);
        }
      };
    }
      const annoteTargets = window.document.querySelectorAll('.code-annotation-anchor');
      for (let i=0; i<annoteTargets.length; i++) {
        const annoteTarget = annoteTargets[i];
        const targetCell = annoteTarget.getAttribute("data-target-cell");
        const targetAnnotation = annoteTarget.getAttribute("data-target-annotation");
        const contentFn = () => {
          const content = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
          if (content) {
            const tipContent = content.cloneNode(true);
            tipContent.classList.add("code-annotation-tip-content");
            return tipContent.outerHTML;
          }
        }
        const config = {
          allowHTML: true,
          content: contentFn,
          onShow: (instance) => {
            selectCodeLines(instance.reference);
            instance.reference.classList.add('code-annotation-active');
            window.tippy.hideAll();
          },
          onHide: (instance) => {
            unselectCodeLines();
            instance.reference.classList.remove('code-annotation-active');
          },
          maxWidth: 300,
          delay: [50, 0],
          duration: [200, 0],
          offset: [5, 10],
          arrow: true,
          appendTo: function(el) {
            return el.parentElement.parentElement.parentElement;
          },
          interactive: true,
          interactiveBorder: 10,
          theme: 'quarto',
          placement: 'right',
          popperOptions: {
            modifiers: [
            {
              name: 'flip',
              options: {
                flipVariations: false, // true by default
                allowedAutoPlacements: ['right'],
                fallbackPlacements: ['right', 'top', 'top-start', 'top-end', 'bottom', 'bottom-start', 'bottom-end', 'left'],
              },
            },
            {
              name: 'preventOverflow',
              options: {
                mainAxis: false,
                altAxis: false
              }
            }
            ]        
          }      
        };
        window.tippy(annoteTarget, config); 
      }
  const findCites = (el) => {
    const parentEl = el.parentElement;
    if (parentEl) {
      const cites = parentEl.dataset.cites;
      if (cites) {
        return {
          el,
          cites: cites.split(' ')
        };
      } else {
        return findCites(el.parentElement)
      }
    } else {
      return undefined;
    }
  };
  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
  for (var i=0; i<bibliorefs.length; i++) {
    const ref = bibliorefs[i];
    const citeInfo = findCites(ref);
    if (citeInfo) {
      tippyHover(citeInfo.el, function() {
        var popup = window.document.createElement('div');
        citeInfo.cites.forEach(function(cite) {
          var citeDiv = window.document.createElement('div');
          citeDiv.classList.add('hanging-indent');
          citeDiv.classList.add('csl-entry');
          var biblioDiv = window.document.getElementById('ref-' + cite);
          if (biblioDiv) {
            citeDiv.innerHTML = biblioDiv.innerHTML;
          }
          popup.appendChild(citeDiv);
        });
        return popup.innerHTML;
      });
    }
  }
});
</script>
</div> <!-- /content -->




</body></html>