File size: 53,405 Bytes
cf7a8a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>

<meta charset="utf-8">
<meta name="generator" content="quarto-1.6.40">

<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">


<title>Similarity Search – Open-Source AI Cookbook</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
  width: 0.8em;
  margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */ 
  vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
  { counter-reset: source-line 0; }
pre.numberSource code > span
  { position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
  { content: counter(source-line);
    position: relative; left: -1em; text-align: right; vertical-align: baseline;
    border: none; display: inline-block;
    -webkit-touch-callout: none; -webkit-user-select: none;
    -khtml-user-select: none; -moz-user-select: none;
    -ms-user-select: none; user-select: none;
    padding: 0 4px; width: 4em;
  }
pre.numberSource { margin-left: 3em;  padding-left: 4px; }
div.sourceCode
  {   }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
</style>


<script src="../site_libs/quarto-nav/quarto-nav.js"></script>
<script src="../site_libs/quarto-nav/headroom.min.js"></script>
<script src="../site_libs/clipboard/clipboard.min.js"></script>
<script src="../site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="../site_libs/quarto-search/fuse.min.js"></script>
<script src="../site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="../">
<script src="../site_libs/quarto-html/quarto.js"></script>
<script src="../site_libs/quarto-html/popper.min.js"></script>
<script src="../site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="../site_libs/quarto-html/anchor.min.js"></script>
<link href="../site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="../site_libs/quarto-html/quarto-syntax-highlighting-549806ee2085284f45b00abea8c6df48.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="../site_libs/bootstrap/bootstrap.min.js"></script>
<link href="../site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="../site_libs/bootstrap/bootstrap-2be10d9e998f81ff6e49e26833438aa5.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
  "location": "sidebar",
  "copy-button": false,
  "collapse-after": 3,
  "panel-placement": "start",
  "type": "textbox",
  "limit": 50,
  "keyboard-shortcut": [
    "f",
    "/",
    "s"
  ],
  "show-item-context": false,
  "language": {
    "search-no-results-text": "No results",
    "search-matching-documents-text": "matching documents",
    "search-copy-link-title": "Copy link to search",
    "search-hide-matches-text": "Hide additional matches",
    "search-more-match-text": "more match in this document",
    "search-more-matches-text": "more matches in this document",
    "search-clear-button-title": "Clear",
    "search-text-placeholder": "",
    "search-detached-cancel-button-title": "Cancel",
    "search-submit-button-title": "Submit",
    "search-label": "Search"
  }
}</script>


<link rel="stylesheet" href="../styles.css">
</head>

<body class="nav-sidebar docked">

<div id="quarto-search-results"></div>
  <header id="quarto-header" class="headroom fixed-top">
  <nav class="quarto-secondary-nav">
    <div class="container-fluid d-flex">
      <button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
        <i class="bi bi-layout-text-sidebar-reverse"></i>
      </button>
        <nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item">Open-Source AI Cookbook</li><li class="breadcrumb-item"><a href="../notebooks/automatic_embedding.html">Additional Techniques</a></li><li class="breadcrumb-item"><a href="../notebooks/faiss.html">FAISS for Efficient Search</a></li></ol></nav>
        <a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">      
        </a>
      <button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
        <i class="bi bi-search"></i>
      </button>
    </div>
  </nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
<!-- sidebar -->
  <nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation docked overflow-auto">
    <div class="pt-lg-2 mt-2 text-left sidebar-header">
    <div class="sidebar-title mb-0 py-0">
      <a href="../">Open-Source AI Cookbook</a> 
    </div>
      </div>
        <div class="mt-2 flex-shrink-0 align-items-center">
        <div class="sidebar-search">
        <div id="quarto-search" class="" title="Search"></div>
        </div>
        </div>
    <div class="sidebar-menu-container"> 
    <ul class="list-unstyled mt-1">
        <li class="sidebar-item sidebar-item-section">
      <div class="sidebar-item-container"> 
            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
 <span class="menu-text">About</span></a>
          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="Toggle section">
            <i class="bi bi-chevron-right ms-2"></i>
          </a> 
      </div>
      <ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">  
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../index.html" class="sidebar-item-text sidebar-link">
 <span class="menu-text">About Quarto</span></a>
  </div>
</li>
      </ul>
  </li>
        <li class="sidebar-item sidebar-item-section">
      <div class="sidebar-item-container"> 
            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true">
 <span class="menu-text">Open-Source AI Cookbook</span></a>
          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="Toggle section">
            <i class="bi bi-chevron-right ms-2"></i>
          </a> 
      </div>
      <ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">  
          <li class="sidebar-item sidebar-item-section">
      <div class="sidebar-item-container"> 
            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true">
 <span class="menu-text">RAG Techniques</span></a>
          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="Toggle section">
            <i class="bi bi-chevron-right ms-2"></i>
          </a> 
      </div>
      <ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth2 show">  
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../notebooks/rag_zephyr_langchain.html" class="sidebar-item-text sidebar-link">
 <span class="menu-text">RAG Zephyr &amp; LangChain</span></a>
  </div>
</li>
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../notebooks/advanced_rag.html" class="sidebar-item-text sidebar-link">
 <span class="menu-text">Advanced RAG</span></a>
  </div>
</li>
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../notebooks/rag_evaluation.html" class="sidebar-item-text sidebar-link">
 <span class="menu-text">RAG Evaluation</span></a>
  </div>
</li>
      </ul>
  </li>
          <li class="sidebar-item sidebar-item-section">
      <div class="sidebar-item-container"> 
            <a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true">
 <span class="menu-text">Additional Techniques</span></a>
          <a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="Toggle section">
            <i class="bi bi-chevron-right ms-2"></i>
          </a> 
      </div>
      <ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth2 show">  
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../notebooks/automatic_embedding.html" class="sidebar-item-text sidebar-link">
 <span class="menu-text">Automatic Embedding</span></a>
  </div>
</li>
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../notebooks/faiss.html" class="sidebar-item-text sidebar-link active">
 <span class="menu-text">FAISS for Efficient Search</span></a>
  </div>
</li>
          <li class="sidebar-item">
  <div class="sidebar-item-container"> 
  <a href="../notebooks/single_gpu.html" class="sidebar-item-text sidebar-link">
 <span class="menu-text">Single GPU Optimization</span></a>
  </div>
</li>
      </ul>
  </li>
      </ul>
  </li>
    </ul>
    </div>
</nav>
<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
<!-- margin-sidebar -->
    <div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
        <nav id="TOC" role="doc-toc" class="toc-active">
    <h2 id="toc-title">On this page</h2>
   
  <ul>
  <li><a href="#embedding-multimodal-data-for-similarity-search-using-transformers-datasets-and-faiss" id="toc-embedding-multimodal-data-for-similarity-search-using-transformers-datasets-and-faiss" class="nav-link active" data-scroll-target="#embedding-multimodal-data-for-similarity-search-using-transformers-datasets-and-faiss">Embedding multimodal data for similarity search using 🤗 transformers, 🤗 datasets and FAISS</a>
  <ul class="collapse">
  <li><a href="#querying-the-data-with-text-prompts" id="toc-querying-the-data-with-text-prompts" class="nav-link" data-scroll-target="#querying-the-data-with-text-prompts">Querying the data with text prompts</a></li>
  <li><a href="#querying-the-data-with-image-prompts" id="toc-querying-the-data-with-image-prompts" class="nav-link" data-scroll-target="#querying-the-data-with-image-prompts">Querying the data with image prompts</a></li>
  <li><a href="#saving-pushing-and-loading-the-embeddings" id="toc-saving-pushing-and-loading-the-embeddings" class="nav-link" data-scroll-target="#saving-pushing-and-loading-the-embeddings">Saving, pushing and loading the embeddings</a></li>
  </ul></li>
  </ul>
</nav>
    </div>
<!-- main -->
<main class="content" id="quarto-document-content">

<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item">Open-Source AI Cookbook</li><li class="breadcrumb-item"><a href="../notebooks/automatic_embedding.html">Additional Techniques</a></li><li class="breadcrumb-item"><a href="../notebooks/faiss.html">FAISS for Efficient Search</a></li></ol></nav>
<div class="quarto-title">
<h1 class="title">Similarity Search</h1>
</div>



<div class="quarto-title-meta">

    
  
    
  </div>
  


</header>


<section id="embedding-multimodal-data-for-similarity-search-using-transformers-datasets-and-faiss" class="level1">
<h1>Embedding multimodal data for similarity search using 🤗 transformers, 🤗 datasets and FAISS</h1>
<p><em>Authored by: <a href="https://huggingface.co/merve">Merve Noyan</a></em></p>
<p>Embeddings are semantically meaningful compressions of information. They can be used to do similarity search, zero-shot classification or simply train a new model. Use cases for similarity search include searching for similar products in e-commerce, content search in social media and more. This notebook walks you through using 🤗transformers, 🤗datasets and FAISS to create and index embeddings from a feature extraction model to later use them for similarity search. Let’s install necessary libraries.</p>
<div id="cell-1" class="cell">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="op">!</span>pip install <span class="op">-</span>q datasets faiss<span class="op">-</span>gpu transformers sentencepiece</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>For this tutorial, we will use <a href="https://huggingface.co/openai/clip-vit-base-patch16">CLIP model</a> to extract the features. CLIP is a revolutionary model that introduced joint training of a text encoder and an image encoder to connect two modalities.</p>
<div id="cell-3" class="cell">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> torch</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> PIL <span class="im">import</span> Image</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> transformers <span class="im">import</span> AutoImageProcessor, AutoModel, AutoTokenizer</span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> faiss</span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> numpy <span class="im">as</span> np</span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>device <span class="op">=</span> torch.device(<span class="st">'cuda'</span> <span class="cf">if</span> torch.cuda.is_available() <span class="cf">else</span> <span class="st">"cpu"</span>)</span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>model <span class="op">=</span> AutoModel.from_pretrained(<span class="st">"openai/clip-vit-base-patch16"</span>).to(device)</span>
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>processor <span class="op">=</span> AutoImageProcessor.from_pretrained(<span class="st">"openai/clip-vit-base-patch16"</span>)</span>
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>tokenizer <span class="op">=</span> AutoTokenizer.from_pretrained(<span class="st">"openai/clip-vit-base-patch16"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>Load the dataset. To keep this notebook light, we will use a small captioning dataset, <a href="https://huggingface.co/datasets/jmhessel/newyorker_caption_contest">jmhessel/newyorker_caption_contest</a>.</p>
<div id="cell-5" class="cell">
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> datasets <span class="im">import</span> load_dataset</span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>ds <span class="op">=</span> load_dataset(<span class="st">"jmhessel/newyorker_caption_contest"</span>, <span class="st">"explanation"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>See an example.</p>
<div id="cell-7" class="cell" data-outputid="682033f9-da37-4cae-e1bc-4a5fbbb7f2fa">
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>ds[<span class="st">"train"</span>][<span class="dv">0</span>][<span class="st">"image"</span>]</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="4">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-5-output-1.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
<div id="cell-8" class="cell" data-outputid="ff7c2ca8-0c6a-49d0-cfd6-4be775e012a1">
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>ds[<span class="st">"train"</span>][<span class="dv">0</span>][<span class="st">"image_description"</span>]</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="5">
<pre><code>'Two women are looking out a window. There is snow outside, and there is a snowman with human arms.'</code></pre>
</div>
</div>
<p>We don’t have to write any function to embed examples or create an index. 🤗 datasets library’s FAISS integration abstracts these processes. We can simply use <code>map</code> method of the dataset to create a new column with the embeddings for each example like below. Let’s create one for text features on the prompt column.</p>
<div id="cell-10" class="cell">
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>dataset <span class="op">=</span> ds[<span class="st">"train"</span>]</span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings <span class="op">=</span> dataset.<span class="bu">map</span>(<span class="kw">lambda</span> example:</span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a>                                {<span class="st">'embeddings'</span>: model.get_text_features(</span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a>                                    <span class="op">**</span>tokenizer([example[<span class="st">"image_description"</span>]],</span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a>                                                truncation<span class="op">=</span><span class="va">True</span>, return_tensors<span class="op">=</span><span class="st">"pt"</span>)</span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a>                                    .to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()})</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-11" class="cell">
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings.add_faiss_index(column<span class="op">=</span><span class="st">'embeddings'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>We can do the same and get the image embeddings.</p>
<div id="cell-13" class="cell">
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings <span class="op">=</span> ds_with_embeddings.<span class="bu">map</span>(<span class="kw">lambda</span> example:</span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a>                                          {<span class="st">'image_embeddings'</span>: model.get_image_features(</span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a>                                              <span class="op">**</span>processor([example[<span class="st">"image"</span>]], return_tensors<span class="op">=</span><span class="st">"pt"</span>)</span>
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a>                                              .to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()})</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-14" class="cell">
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings.add_faiss_index(column<span class="op">=</span><span class="st">'image_embeddings'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<section id="querying-the-data-with-text-prompts" class="level2">
<h2 class="anchored" data-anchor-id="querying-the-data-with-text-prompts">Querying the data with text prompts</h2>
<p>We can now query the dataset with text or image to get similar items from it.</p>
<div id="cell-17" class="cell">
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>prmt <span class="op">=</span> <span class="st">"a snowy day"</span></span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>prmt_embedding <span class="op">=</span> model.get_text_features(<span class="op">**</span>tokenizer([prmt], return_tensors<span class="op">=</span><span class="st">"pt"</span>, truncation<span class="op">=</span><span class="va">True</span>).to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()</span>
<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>scores, retrieved_examples <span class="op">=</span> ds_with_embeddings.get_nearest_examples(<span class="st">'embeddings'</span>, prmt_embedding, k<span class="op">=</span><span class="dv">1</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-18" class="cell" data-outputid="b56009fe-dc99-4cc3-84e5-559fb3625d30">
<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="kw">def</span> downscale_images(image):</span>
<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a>  width <span class="op">=</span> <span class="dv">200</span></span>
<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a>  ratio <span class="op">=</span> (width <span class="op">/</span> <span class="bu">float</span>(image.size[<span class="dv">0</span>]))</span>
<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a>  height <span class="op">=</span> <span class="bu">int</span>((<span class="bu">float</span>(image.size[<span class="dv">1</span>]) <span class="op">*</span> <span class="bu">float</span>(ratio)))</span>
<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a>  img <span class="op">=</span> image.resize((width, height), Image.Resampling.LANCZOS)</span>
<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a>  <span class="cf">return</span> img</span>
<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>images <span class="op">=</span> [downscale_images(image) <span class="cf">for</span> image <span class="kw">in</span> retrieved_examples[<span class="st">"image"</span>]]</span>
<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a><span class="co">#&nbsp;see the closest text and image</span></span>
<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(retrieved_examples[<span class="st">"image_description"</span>])</span>
<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>display(images[<span class="dv">0</span>])</span>
<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>['A man is in the snow. A boy with a huge snow shovel is there too. They are outside a house.']</code></pre>
</div>
<div class="cell-output cell-output-display">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-12-output-2.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
</section>
<section id="querying-the-data-with-image-prompts" class="level2">
<h2 class="anchored" data-anchor-id="querying-the-data-with-image-prompts">Querying the data with image prompts</h2>
<p>Image similarity inference is similar, where you just call <code>get_image_features</code>.</p>
<div id="cell-21" class="cell" data-outputid="53478699-5753-4946-90d6-0aa8b76694a6">
<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> requests</span>
<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="co">#&nbsp;image of a beaver</span></span>
<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>url <span class="op">=</span> <span class="st">"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/beaver.png"</span></span>
<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>image <span class="op">=</span> Image.<span class="bu">open</span>(requests.get(url, stream<span class="op">=</span><span class="va">True</span>).raw)</span>
<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a>display(downscale_images(image))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-13-output-1.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
<p>Search for the similar image.</p>
<div id="cell-23" class="cell">
<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>img_embedding <span class="op">=</span> model.get_image_features(<span class="op">**</span>processor([image], return_tensors<span class="op">=</span><span class="st">"pt"</span>, truncation<span class="op">=</span><span class="va">True</span>).to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()</span>
<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>scores, retrieved_examples <span class="op">=</span> ds_with_embeddings.get_nearest_examples(<span class="st">'image_embeddings'</span>, img_embedding, k<span class="op">=</span><span class="dv">1</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>Display the most similar image to the beaver image.</p>
<div id="cell-25" class="cell" data-outputid="fa620b08-4435-4929-f67f-32b3f8f46b70">
<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>images <span class="op">=</span> [downscale_images(image) <span class="cf">for</span> image <span class="kw">in</span> retrieved_examples[<span class="st">"image"</span>]]</span>
<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a><span class="co">#&nbsp;see the closest text and image</span></span>
<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(retrieved_examples[<span class="st">"image_description"</span>])</span>
<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a>display(images[<span class="dv">0</span>])</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>['Salmon swim upstream but they see a grizzly bear and are in shock. The bear has a smug look on his face when he sees the salmon.']</code></pre>
</div>
<div class="cell-output cell-output-display">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-15-output-2.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
</section>
<section id="saving-pushing-and-loading-the-embeddings" class="level2">
<h2 class="anchored" data-anchor-id="saving-pushing-and-loading-the-embeddings">Saving, pushing and loading the embeddings</h2>
<p>We can save the dataset with embeddings with <code>save_faiss_index</code>.</p>
<div id="cell-27" class="cell">
<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings.save_faiss_index(<span class="st">'embeddings'</span>, <span class="st">'embeddings/embeddings.faiss'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-28" class="cell">
<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings.save_faiss_index(<span class="st">'image_embeddings'</span>, <span class="st">'embeddings/image_embeddings.faiss'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>It’s a good practice to store the embeddings in a dataset repository, so we will create one and push our embeddings there to pull later. We will login to Hugging Face Hub, create a dataset repository there and push our indexes there and load using <code>snapshot_download</code>.</p>
<div id="cell-30" class="cell">
<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> huggingface_hub <span class="im">import</span> HfApi, notebook_login, snapshot_download</span>
<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a>notebook_login()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-31" class="cell">
<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> huggingface_hub <span class="im">import</span> HfApi</span>
<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a>api <span class="op">=</span> HfApi()</span>
<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a>api.create_repo(<span class="st">"merve/faiss_embeddings"</span>, repo_type<span class="op">=</span><span class="st">"dataset"</span>)</span>
<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a>api.upload_folder(</span>
<span id="cb21-5"><a href="#cb21-5" aria-hidden="true" tabindex="-1"></a>    folder_path<span class="op">=</span><span class="st">"./embeddings"</span>,</span>
<span id="cb21-6"><a href="#cb21-6" aria-hidden="true" tabindex="-1"></a>    repo_id<span class="op">=</span><span class="st">"merve/faiss_embeddings"</span>,</span>
<span id="cb21-7"><a href="#cb21-7" aria-hidden="true" tabindex="-1"></a>    repo_type<span class="op">=</span><span class="st">"dataset"</span>,</span>
<span id="cb21-8"><a href="#cb21-8" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-32" class="cell">
<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a>snapshot_download(repo_id<span class="op">=</span><span class="st">"merve/faiss_embeddings"</span>, repo_type<span class="op">=</span><span class="st">"dataset"</span>,</span>
<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a>                  local_dir<span class="op">=</span><span class="st">"downloaded_embeddings"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>We can load the embeddings to the dataset with no embeddings using <code>load_faiss_index</code>.</p>
<div id="cell-34" class="cell">
<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a>ds <span class="op">=</span> ds[<span class="st">"train"</span>]</span>
<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a>ds.load_faiss_index(<span class="st">'embeddings'</span>, <span class="st">'./downloaded_embeddings/embeddings.faiss'</span>)</span>
<span id="cb23-3"><a href="#cb23-3" aria-hidden="true" tabindex="-1"></a><span class="co">#&nbsp;infer again</span></span>
<span id="cb23-4"><a href="#cb23-4" aria-hidden="true" tabindex="-1"></a>prmt <span class="op">=</span> <span class="st">"people under the rain"</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-35" class="cell">
<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a>prmt_embedding <span class="op">=</span> model.get_text_features(</span>
<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a>                        <span class="op">**</span>tokenizer([prmt], return_tensors<span class="op">=</span><span class="st">"pt"</span>, truncation<span class="op">=</span><span class="va">True</span>)</span>
<span id="cb24-3"><a href="#cb24-3" aria-hidden="true" tabindex="-1"></a>                        .to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()</span>
<span id="cb24-4"><a href="#cb24-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb24-5"><a href="#cb24-5" aria-hidden="true" tabindex="-1"></a>scores, retrieved_examples <span class="op">=</span> ds.get_nearest_examples(<span class="st">'embeddings'</span>, prmt_embedding, k<span class="op">=</span><span class="dv">1</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-36" class="cell" data-outputid="8d5008b4-ab8f-4b42-92e7-b29e57c126cb">
<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a>display(retrieved_examples[<span class="st">"image"</span>][<span class="dv">0</span>])</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-23-output-1.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>


</section>
</section>

</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
  const toggleBodyColorMode = (bsSheetEl) => {
    const mode = bsSheetEl.getAttribute("data-mode");
    const bodyEl = window.document.querySelector("body");
    if (mode === "dark") {
      bodyEl.classList.add("quarto-dark");
      bodyEl.classList.remove("quarto-light");
    } else {
      bodyEl.classList.add("quarto-light");
      bodyEl.classList.remove("quarto-dark");
    }
  }
  const toggleBodyColorPrimary = () => {
    const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
    if (bsSheetEl) {
      toggleBodyColorMode(bsSheetEl);
    }
  }
  toggleBodyColorPrimary();  
  const icon = "";
  const anchorJS = new window.AnchorJS();
  anchorJS.options = {
    placement: 'right',
    icon: icon
  };
  anchorJS.add('.anchored');
  const isCodeAnnotation = (el) => {
    for (const clz of el.classList) {
      if (clz.startsWith('code-annotation-')) {                     
        return true;
      }
    }
    return false;
  }
  const onCopySuccess = function(e) {
    // button target
    const button = e.trigger;
    // don't keep focus
    button.blur();
    // flash "checked"
    button.classList.add('code-copy-button-checked');
    var currentTitle = button.getAttribute("title");
    button.setAttribute("title", "Copied!");
    let tooltip;
    if (window.bootstrap) {
      button.setAttribute("data-bs-toggle", "tooltip");
      button.setAttribute("data-bs-placement", "left");
      button.setAttribute("data-bs-title", "Copied!");
      tooltip = new bootstrap.Tooltip(button, 
        { trigger: "manual", 
          customClass: "code-copy-button-tooltip",
          offset: [0, -8]});
      tooltip.show();    
    }
    setTimeout(function() {
      if (tooltip) {
        tooltip.hide();
        button.removeAttribute("data-bs-title");
        button.removeAttribute("data-bs-toggle");
        button.removeAttribute("data-bs-placement");
      }
      button.setAttribute("title", currentTitle);
      button.classList.remove('code-copy-button-checked');
    }, 1000);
    // clear code selection
    e.clearSelection();
  }
  const getTextToCopy = function(trigger) {
      const codeEl = trigger.previousElementSibling.cloneNode(true);
      for (const childEl of codeEl.children) {
        if (isCodeAnnotation(childEl)) {
          childEl.remove();
        }
      }
      return codeEl.innerText;
  }
  const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
    text: getTextToCopy
  });
  clipboard.on('success', onCopySuccess);
  if (window.document.getElementById('quarto-embedded-source-code-modal')) {
    const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
      text: getTextToCopy,
      container: window.document.getElementById('quarto-embedded-source-code-modal')
    });
    clipboardModal.on('success', onCopySuccess);
  }
    var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
    var mailtoRegex = new RegExp(/^mailto:/);
      var filterRegex = new RegExp('/' + window.location.host + '/');
    var isInternal = (href) => {
        return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
    }
    // Inspect non-navigation links and adorn them if external
 	var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
    for (var i=0; i<links.length; i++) {
      const link = links[i];
      if (!isInternal(link.href)) {
        // undo the damage that might have been done by quarto-nav.js in the case of
        // links that we want to consider external
        if (link.dataset.originalHref !== undefined) {
          link.href = link.dataset.originalHref;
        }
      }
    }
  function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
    const config = {
      allowHTML: true,
      maxWidth: 500,
      delay: 100,
      arrow: false,
      appendTo: function(el) {
          return el.parentElement;
      },
      interactive: true,
      interactiveBorder: 10,
      theme: 'quarto',
      placement: 'bottom-start',
    };
    if (contentFn) {
      config.content = contentFn;
    }
    if (onTriggerFn) {
      config.onTrigger = onTriggerFn;
    }
    if (onUntriggerFn) {
      config.onUntrigger = onUntriggerFn;
    }
    window.tippy(el, config); 
  }
  const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
  for (var i=0; i<noterefs.length; i++) {
    const ref = noterefs[i];
    tippyHover(ref, function() {
      // use id or data attribute instead here
      let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
      try { href = new URL(href).hash; } catch {}
      const id = href.replace(/^#\/?/, "");
      const note = window.document.getElementById(id);
      if (note) {
        return note.innerHTML;
      } else {
        return "";
      }
    });
  }
  const xrefs = window.document.querySelectorAll('a.quarto-xref');
  const processXRef = (id, note) => {
    // Strip column container classes
    const stripColumnClz = (el) => {
      el.classList.remove("page-full", "page-columns");
      if (el.children) {
        for (const child of el.children) {
          stripColumnClz(child);
        }
      }
    }
    stripColumnClz(note)
    if (id === null || id.startsWith('sec-')) {
      // Special case sections, only their first couple elements
      const container = document.createElement("div");
      if (note.children && note.children.length > 2) {
        container.appendChild(note.children[0].cloneNode(true));
        for (let i = 1; i < note.children.length; i++) {
          const child = note.children[i];
          if (child.tagName === "P" && child.innerText === "") {
            continue;
          } else {
            container.appendChild(child.cloneNode(true));
            break;
          }
        }
        if (window.Quarto?.typesetMath) {
          window.Quarto.typesetMath(container);
        }
        return container.innerHTML
      } else {
        if (window.Quarto?.typesetMath) {
          window.Quarto.typesetMath(note);
        }
        return note.innerHTML;
      }
    } else {
      // Remove any anchor links if they are present
      const anchorLink = note.querySelector('a.anchorjs-link');
      if (anchorLink) {
        anchorLink.remove();
      }
      if (window.Quarto?.typesetMath) {
        window.Quarto.typesetMath(note);
      }
      if (note.classList.contains("callout")) {
        return note.outerHTML;
      } else {
        return note.innerHTML;
      }
    }
  }
  for (var i=0; i<xrefs.length; i++) {
    const xref = xrefs[i];
    tippyHover(xref, undefined, function(instance) {
      instance.disable();
      let url = xref.getAttribute('href');
      let hash = undefined; 
      if (url.startsWith('#')) {
        hash = url;
      } else {
        try { hash = new URL(url).hash; } catch {}
      }
      if (hash) {
        const id = hash.replace(/^#\/?/, "");
        const note = window.document.getElementById(id);
        if (note !== null) {
          try {
            const html = processXRef(id, note.cloneNode(true));
            instance.setContent(html);
          } finally {
            instance.enable();
            instance.show();
          }
        } else {
          // See if we can fetch this
          fetch(url.split('#')[0])
          .then(res => res.text())
          .then(html => {
            const parser = new DOMParser();
            const htmlDoc = parser.parseFromString(html, "text/html");
            const note = htmlDoc.getElementById(id);
            if (note !== null) {
              const html = processXRef(id, note);
              instance.setContent(html);
            } 
          }).finally(() => {
            instance.enable();
            instance.show();
          });
        }
      } else {
        // See if we can fetch a full url (with no hash to target)
        // This is a special case and we should probably do some content thinning / targeting
        fetch(url)
        .then(res => res.text())
        .then(html => {
          const parser = new DOMParser();
          const htmlDoc = parser.parseFromString(html, "text/html");
          const note = htmlDoc.querySelector('main.content');
          if (note !== null) {
            // This should only happen for chapter cross references
            // (since there is no id in the URL)
            // remove the first header
            if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
              note.children[0].remove();
            }
            const html = processXRef(null, note);
            instance.setContent(html);
          } 
        }).finally(() => {
          instance.enable();
          instance.show();
        });
      }
    }, function(instance) {
    });
  }
      let selectedAnnoteEl;
      const selectorForAnnotation = ( cell, annotation) => {
        let cellAttr = 'data-code-cell="' + cell + '"';
        let lineAttr = 'data-code-annotation="' +  annotation + '"';
        const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
        return selector;
      }
      const selectCodeLines = (annoteEl) => {
        const doc = window.document;
        const targetCell = annoteEl.getAttribute("data-target-cell");
        const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
        const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
        const lines = annoteSpan.getAttribute("data-code-lines").split(",");
        const lineIds = lines.map((line) => {
          return targetCell + "-" + line;
        })
        let top = null;
        let height = null;
        let parent = null;
        if (lineIds.length > 0) {
            //compute the position of the single el (top and bottom and make a div)
            const el = window.document.getElementById(lineIds[0]);
            top = el.offsetTop;
            height = el.offsetHeight;
            parent = el.parentElement.parentElement;
          if (lineIds.length > 1) {
            const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
            const bottom = lastEl.offsetTop + lastEl.offsetHeight;
            height = bottom - top;
          }
          if (top !== null && height !== null && parent !== null) {
            // cook up a div (if necessary) and position it 
            let div = window.document.getElementById("code-annotation-line-highlight");
            if (div === null) {
              div = window.document.createElement("div");
              div.setAttribute("id", "code-annotation-line-highlight");
              div.style.position = 'absolute';
              parent.appendChild(div);
            }
            div.style.top = top - 2 + "px";
            div.style.height = height + 4 + "px";
            div.style.left = 0;
            let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
            if (gutterDiv === null) {
              gutterDiv = window.document.createElement("div");
              gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
              gutterDiv.style.position = 'absolute';
              const codeCell = window.document.getElementById(targetCell);
              const gutter = codeCell.querySelector('.code-annotation-gutter');
              gutter.appendChild(gutterDiv);
            }
            gutterDiv.style.top = top - 2 + "px";
            gutterDiv.style.height = height + 4 + "px";
          }
          selectedAnnoteEl = annoteEl;
        }
      };
      const unselectCodeLines = () => {
        const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
        elementsIds.forEach((elId) => {
          const div = window.document.getElementById(elId);
          if (div) {
            div.remove();
          }
        });
        selectedAnnoteEl = undefined;
      };
        // Handle positioning of the toggle
    window.addEventListener(
      "resize",
      throttle(() => {
        elRect = undefined;
        if (selectedAnnoteEl) {
          selectCodeLines(selectedAnnoteEl);
        }
      }, 10)
    );
    function throttle(fn, ms) {
    let throttle = false;
    let timer;
      return (...args) => {
        if(!throttle) { // first call gets through
            fn.apply(this, args);
            throttle = true;
        } else { // all the others get throttled
            if(timer) clearTimeout(timer); // cancel #2
            timer = setTimeout(() => {
              fn.apply(this, args);
              timer = throttle = false;
            }, ms);
        }
      };
    }
      // Attach click handler to the DT
      const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
      for (const annoteDlNode of annoteDls) {
        annoteDlNode.addEventListener('click', (event) => {
          const clickedEl = event.target;
          if (clickedEl !== selectedAnnoteEl) {
            unselectCodeLines();
            const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
            if (activeEl) {
              activeEl.classList.remove('code-annotation-active');
            }
            selectCodeLines(clickedEl);
            clickedEl.classList.add('code-annotation-active');
          } else {
            // Unselect the line
            unselectCodeLines();
            clickedEl.classList.remove('code-annotation-active');
          }
        });
      }
  const findCites = (el) => {
    const parentEl = el.parentElement;
    if (parentEl) {
      const cites = parentEl.dataset.cites;
      if (cites) {
        return {
          el,
          cites: cites.split(' ')
        };
      } else {
        return findCites(el.parentElement)
      }
    } else {
      return undefined;
    }
  };
  var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
  for (var i=0; i<bibliorefs.length; i++) {
    const ref = bibliorefs[i];
    const citeInfo = findCites(ref);
    if (citeInfo) {
      tippyHover(citeInfo.el, function() {
        var popup = window.document.createElement('div');
        citeInfo.cites.forEach(function(cite) {
          var citeDiv = window.document.createElement('div');
          citeDiv.classList.add('hanging-indent');
          citeDiv.classList.add('csl-entry');
          var biblioDiv = window.document.getElementById('ref-' + cite);
          if (biblioDiv) {
            citeDiv.innerHTML = biblioDiv.innerHTML;
          }
          popup.appendChild(citeDiv);
        });
        return popup.innerHTML;
      });
    }
  }
});
</script>
</div> <!-- /content -->




</body></html>