Spaces:
Running
Running
File size: 53,405 Bytes
cf7a8a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 |
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.6.40">
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
<title>Similarity Search – Open-Source AI Cookbook</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
</style>
<script src="../site_libs/quarto-nav/quarto-nav.js"></script>
<script src="../site_libs/quarto-nav/headroom.min.js"></script>
<script src="../site_libs/clipboard/clipboard.min.js"></script>
<script src="../site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="../site_libs/quarto-search/fuse.min.js"></script>
<script src="../site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="../">
<script src="../site_libs/quarto-html/quarto.js"></script>
<script src="../site_libs/quarto-html/popper.min.js"></script>
<script src="../site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="../site_libs/quarto-html/anchor.min.js"></script>
<link href="../site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="../site_libs/quarto-html/quarto-syntax-highlighting-549806ee2085284f45b00abea8c6df48.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="../site_libs/bootstrap/bootstrap.min.js"></script>
<link href="../site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="../site_libs/bootstrap/bootstrap-2be10d9e998f81ff6e49e26833438aa5.min.css" rel="stylesheet" append-hash="true" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "sidebar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "start",
"type": "textbox",
"limit": 50,
"keyboard-shortcut": [
"f",
"/",
"s"
],
"show-item-context": false,
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
"search-text-placeholder": "",
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit",
"search-label": "Search"
}
}</script>
<link rel="stylesheet" href="../styles.css">
</head>
<body class="nav-sidebar docked">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="quarto-secondary-nav">
<div class="container-fluid d-flex">
<button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" role="button" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
<i class="bi bi-layout-text-sidebar-reverse"></i>
</button>
<nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item">Open-Source AI Cookbook</li><li class="breadcrumb-item"><a href="../notebooks/automatic_embedding.html">Additional Techniques</a></li><li class="breadcrumb-item"><a href="../notebooks/faiss.html">FAISS for Efficient Search</a></li></ol></nav>
<a class="flex-grow-1" role="navigation" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
</a>
<button type="button" class="btn quarto-search-button" aria-label="Search" onclick="window.quartoOpenSearch();">
<i class="bi bi-search"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
<!-- sidebar -->
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation docked overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="../">Open-Source AI Cookbook</a>
</div>
</div>
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true">
<span class="menu-text">About</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-1" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-1" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../index.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">About Quarto</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true">
<span class="menu-text">Open-Source AI Cookbook</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-2" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-2" class="collapse list-unstyled sidebar-section depth1 show">
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true">
<span class="menu-text">RAG Techniques</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-3" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-3" class="collapse list-unstyled sidebar-section depth2 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/rag_zephyr_langchain.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">RAG Zephyr & LangChain</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/advanced_rag.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Advanced RAG</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/rag_evaluation.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">RAG Evaluation</span></a>
</div>
</li>
</ul>
</li>
<li class="sidebar-item sidebar-item-section">
<div class="sidebar-item-container">
<a class="sidebar-item-text sidebar-link text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true">
<span class="menu-text">Additional Techniques</span></a>
<a class="sidebar-item-toggle text-start" data-bs-toggle="collapse" data-bs-target="#quarto-sidebar-section-4" role="navigation" aria-expanded="true" aria-label="Toggle section">
<i class="bi bi-chevron-right ms-2"></i>
</a>
</div>
<ul id="quarto-sidebar-section-4" class="collapse list-unstyled sidebar-section depth2 show">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/automatic_embedding.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Automatic Embedding</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/faiss.html" class="sidebar-item-text sidebar-link active">
<span class="menu-text">FAISS for Efficient Search</span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="../notebooks/single_gpu.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">Single GPU Optimization</span></a>
</div>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</nav>
<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">On this page</h2>
<ul>
<li><a href="#embedding-multimodal-data-for-similarity-search-using-transformers-datasets-and-faiss" id="toc-embedding-multimodal-data-for-similarity-search-using-transformers-datasets-and-faiss" class="nav-link active" data-scroll-target="#embedding-multimodal-data-for-similarity-search-using-transformers-datasets-and-faiss">Embedding multimodal data for similarity search using 🤗 transformers, 🤗 datasets and FAISS</a>
<ul class="collapse">
<li><a href="#querying-the-data-with-text-prompts" id="toc-querying-the-data-with-text-prompts" class="nav-link" data-scroll-target="#querying-the-data-with-text-prompts">Querying the data with text prompts</a></li>
<li><a href="#querying-the-data-with-image-prompts" id="toc-querying-the-data-with-image-prompts" class="nav-link" data-scroll-target="#querying-the-data-with-image-prompts">Querying the data with image prompts</a></li>
<li><a href="#saving-pushing-and-loading-the-embeddings" id="toc-saving-pushing-and-loading-the-embeddings" class="nav-link" data-scroll-target="#saving-pushing-and-loading-the-embeddings">Saving, pushing and loading the embeddings</a></li>
</ul></li>
</ul>
</nav>
</div>
<!-- main -->
<main class="content" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default"><nav class="quarto-page-breadcrumbs quarto-title-breadcrumbs d-none d-lg-block" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item">Open-Source AI Cookbook</li><li class="breadcrumb-item"><a href="../notebooks/automatic_embedding.html">Additional Techniques</a></li><li class="breadcrumb-item"><a href="../notebooks/faiss.html">FAISS for Efficient Search</a></li></ol></nav>
<div class="quarto-title">
<h1 class="title">Similarity Search</h1>
</div>
<div class="quarto-title-meta">
</div>
</header>
<section id="embedding-multimodal-data-for-similarity-search-using-transformers-datasets-and-faiss" class="level1">
<h1>Embedding multimodal data for similarity search using 🤗 transformers, 🤗 datasets and FAISS</h1>
<p><em>Authored by: <a href="https://huggingface.co/merve">Merve Noyan</a></em></p>
<p>Embeddings are semantically meaningful compressions of information. They can be used to do similarity search, zero-shot classification or simply train a new model. Use cases for similarity search include searching for similar products in e-commerce, content search in social media and more. This notebook walks you through using 🤗transformers, 🤗datasets and FAISS to create and index embeddings from a feature extraction model to later use them for similarity search. Let’s install necessary libraries.</p>
<div id="cell-1" class="cell">
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="op">!</span>pip install <span class="op">-</span>q datasets faiss<span class="op">-</span>gpu transformers sentencepiece</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>For this tutorial, we will use <a href="https://huggingface.co/openai/clip-vit-base-patch16">CLIP model</a> to extract the features. CLIP is a revolutionary model that introduced joint training of a text encoder and an image encoder to connect two modalities.</p>
<div id="cell-3" class="cell">
<div class="sourceCode cell-code" id="cb2"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> torch</span>
<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> PIL <span class="im">import</span> Image</span>
<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> transformers <span class="im">import</span> AutoImageProcessor, AutoModel, AutoTokenizer</span>
<span id="cb2-4"><a href="#cb2-4" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> faiss</span>
<span id="cb2-5"><a href="#cb2-5" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> numpy <span class="im">as</span> np</span>
<span id="cb2-6"><a href="#cb2-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-7"><a href="#cb2-7" aria-hidden="true" tabindex="-1"></a>device <span class="op">=</span> torch.device(<span class="st">'cuda'</span> <span class="cf">if</span> torch.cuda.is_available() <span class="cf">else</span> <span class="st">"cpu"</span>)</span>
<span id="cb2-8"><a href="#cb2-8" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb2-9"><a href="#cb2-9" aria-hidden="true" tabindex="-1"></a>model <span class="op">=</span> AutoModel.from_pretrained(<span class="st">"openai/clip-vit-base-patch16"</span>).to(device)</span>
<span id="cb2-10"><a href="#cb2-10" aria-hidden="true" tabindex="-1"></a>processor <span class="op">=</span> AutoImageProcessor.from_pretrained(<span class="st">"openai/clip-vit-base-patch16"</span>)</span>
<span id="cb2-11"><a href="#cb2-11" aria-hidden="true" tabindex="-1"></a>tokenizer <span class="op">=</span> AutoTokenizer.from_pretrained(<span class="st">"openai/clip-vit-base-patch16"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>Load the dataset. To keep this notebook light, we will use a small captioning dataset, <a href="https://huggingface.co/datasets/jmhessel/newyorker_caption_contest">jmhessel/newyorker_caption_contest</a>.</p>
<div id="cell-5" class="cell">
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> datasets <span class="im">import</span> load_dataset</span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>ds <span class="op">=</span> load_dataset(<span class="st">"jmhessel/newyorker_caption_contest"</span>, <span class="st">"explanation"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>See an example.</p>
<div id="cell-7" class="cell" data-outputid="682033f9-da37-4cae-e1bc-4a5fbbb7f2fa">
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>ds[<span class="st">"train"</span>][<span class="dv">0</span>][<span class="st">"image"</span>]</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="4">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-5-output-1.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
<div id="cell-8" class="cell" data-outputid="ff7c2ca8-0c6a-49d0-cfd6-4be775e012a1">
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a>ds[<span class="st">"train"</span>][<span class="dv">0</span>][<span class="st">"image_description"</span>]</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display" data-execution_count="5">
<pre><code>'Two women are looking out a window. There is snow outside, and there is a snowman with human arms.'</code></pre>
</div>
</div>
<p>We don’t have to write any function to embed examples or create an index. 🤗 datasets library’s FAISS integration abstracts these processes. We can simply use <code>map</code> method of the dataset to create a new column with the embeddings for each example like below. Let’s create one for text features on the prompt column.</p>
<div id="cell-10" class="cell">
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>dataset <span class="op">=</span> ds[<span class="st">"train"</span>]</span>
<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings <span class="op">=</span> dataset.<span class="bu">map</span>(<span class="kw">lambda</span> example:</span>
<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a> {<span class="st">'embeddings'</span>: model.get_text_features(</span>
<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a> <span class="op">**</span>tokenizer([example[<span class="st">"image_description"</span>]],</span>
<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a> truncation<span class="op">=</span><span class="va">True</span>, return_tensors<span class="op">=</span><span class="st">"pt"</span>)</span>
<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a> .to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()})</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-11" class="cell">
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings.add_faiss_index(column<span class="op">=</span><span class="st">'embeddings'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>We can do the same and get the image embeddings.</p>
<div id="cell-13" class="cell">
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings <span class="op">=</span> ds_with_embeddings.<span class="bu">map</span>(<span class="kw">lambda</span> example:</span>
<span id="cb9-2"><a href="#cb9-2" aria-hidden="true" tabindex="-1"></a> {<span class="st">'image_embeddings'</span>: model.get_image_features(</span>
<span id="cb9-3"><a href="#cb9-3" aria-hidden="true" tabindex="-1"></a> <span class="op">**</span>processor([example[<span class="st">"image"</span>]], return_tensors<span class="op">=</span><span class="st">"pt"</span>)</span>
<span id="cb9-4"><a href="#cb9-4" aria-hidden="true" tabindex="-1"></a> .to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()})</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-14" class="cell">
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings.add_faiss_index(column<span class="op">=</span><span class="st">'image_embeddings'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<section id="querying-the-data-with-text-prompts" class="level2">
<h2 class="anchored" data-anchor-id="querying-the-data-with-text-prompts">Querying the data with text prompts</h2>
<p>We can now query the dataset with text or image to get similar items from it.</p>
<div id="cell-17" class="cell">
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>prmt <span class="op">=</span> <span class="st">"a snowy day"</span></span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a>prmt_embedding <span class="op">=</span> model.get_text_features(<span class="op">**</span>tokenizer([prmt], return_tensors<span class="op">=</span><span class="st">"pt"</span>, truncation<span class="op">=</span><span class="va">True</span>).to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()</span>
<span id="cb11-3"><a href="#cb11-3" aria-hidden="true" tabindex="-1"></a>scores, retrieved_examples <span class="op">=</span> ds_with_embeddings.get_nearest_examples(<span class="st">'embeddings'</span>, prmt_embedding, k<span class="op">=</span><span class="dv">1</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-18" class="cell" data-outputid="b56009fe-dc99-4cc3-84e5-559fb3625d30">
<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a><span class="kw">def</span> downscale_images(image):</span>
<span id="cb12-2"><a href="#cb12-2" aria-hidden="true" tabindex="-1"></a> width <span class="op">=</span> <span class="dv">200</span></span>
<span id="cb12-3"><a href="#cb12-3" aria-hidden="true" tabindex="-1"></a> ratio <span class="op">=</span> (width <span class="op">/</span> <span class="bu">float</span>(image.size[<span class="dv">0</span>]))</span>
<span id="cb12-4"><a href="#cb12-4" aria-hidden="true" tabindex="-1"></a> height <span class="op">=</span> <span class="bu">int</span>((<span class="bu">float</span>(image.size[<span class="dv">1</span>]) <span class="op">*</span> <span class="bu">float</span>(ratio)))</span>
<span id="cb12-5"><a href="#cb12-5" aria-hidden="true" tabindex="-1"></a> img <span class="op">=</span> image.resize((width, height), Image.Resampling.LANCZOS)</span>
<span id="cb12-6"><a href="#cb12-6" aria-hidden="true" tabindex="-1"></a> <span class="cf">return</span> img</span>
<span id="cb12-7"><a href="#cb12-7" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb12-8"><a href="#cb12-8" aria-hidden="true" tabindex="-1"></a>images <span class="op">=</span> [downscale_images(image) <span class="cf">for</span> image <span class="kw">in</span> retrieved_examples[<span class="st">"image"</span>]]</span>
<span id="cb12-9"><a href="#cb12-9" aria-hidden="true" tabindex="-1"></a><span class="co"># see the closest text and image</span></span>
<span id="cb12-10"><a href="#cb12-10" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(retrieved_examples[<span class="st">"image_description"</span>])</span>
<span id="cb12-11"><a href="#cb12-11" aria-hidden="true" tabindex="-1"></a>display(images[<span class="dv">0</span>])</span>
<span id="cb12-12"><a href="#cb12-12" aria-hidden="true" tabindex="-1"></a></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>['A man is in the snow. A boy with a huge snow shovel is there too. They are outside a house.']</code></pre>
</div>
<div class="cell-output cell-output-display">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-12-output-2.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
</section>
<section id="querying-the-data-with-image-prompts" class="level2">
<h2 class="anchored" data-anchor-id="querying-the-data-with-image-prompts">Querying the data with image prompts</h2>
<p>Image similarity inference is similar, where you just call <code>get_image_features</code>.</p>
<div id="cell-21" class="cell" data-outputid="53478699-5753-4946-90d6-0aa8b76694a6">
<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="im">import</span> requests</span>
<span id="cb14-2"><a href="#cb14-2" aria-hidden="true" tabindex="-1"></a><span class="co"># image of a beaver</span></span>
<span id="cb14-3"><a href="#cb14-3" aria-hidden="true" tabindex="-1"></a>url <span class="op">=</span> <span class="st">"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/beaver.png"</span></span>
<span id="cb14-4"><a href="#cb14-4" aria-hidden="true" tabindex="-1"></a>image <span class="op">=</span> Image.<span class="bu">open</span>(requests.get(url, stream<span class="op">=</span><span class="va">True</span>).raw)</span>
<span id="cb14-5"><a href="#cb14-5" aria-hidden="true" tabindex="-1"></a>display(downscale_images(image))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-13-output-1.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
<p>Search for the similar image.</p>
<div id="cell-23" class="cell">
<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a>img_embedding <span class="op">=</span> model.get_image_features(<span class="op">**</span>processor([image], return_tensors<span class="op">=</span><span class="st">"pt"</span>, truncation<span class="op">=</span><span class="va">True</span>).to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()</span>
<span id="cb15-2"><a href="#cb15-2" aria-hidden="true" tabindex="-1"></a>scores, retrieved_examples <span class="op">=</span> ds_with_embeddings.get_nearest_examples(<span class="st">'image_embeddings'</span>, img_embedding, k<span class="op">=</span><span class="dv">1</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>Display the most similar image to the beaver image.</p>
<div id="cell-25" class="cell" data-outputid="fa620b08-4435-4929-f67f-32b3f8f46b70">
<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>images <span class="op">=</span> [downscale_images(image) <span class="cf">for</span> image <span class="kw">in</span> retrieved_examples[<span class="st">"image"</span>]]</span>
<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a><span class="co"># see the closest text and image</span></span>
<span id="cb16-3"><a href="#cb16-3" aria-hidden="true" tabindex="-1"></a><span class="bu">print</span>(retrieved_examples[<span class="st">"image_description"</span>])</span>
<span id="cb16-4"><a href="#cb16-4" aria-hidden="true" tabindex="-1"></a>display(images[<span class="dv">0</span>])</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-stdout">
<pre><code>['Salmon swim upstream but they see a grizzly bear and are in shock. The bear has a smug look on his face when he sees the salmon.']</code></pre>
</div>
<div class="cell-output cell-output-display">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-15-output-2.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
</section>
<section id="saving-pushing-and-loading-the-embeddings" class="level2">
<h2 class="anchored" data-anchor-id="saving-pushing-and-loading-the-embeddings">Saving, pushing and loading the embeddings</h2>
<p>We can save the dataset with embeddings with <code>save_faiss_index</code>.</p>
<div id="cell-27" class="cell">
<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings.save_faiss_index(<span class="st">'embeddings'</span>, <span class="st">'embeddings/embeddings.faiss'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-28" class="cell">
<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a>ds_with_embeddings.save_faiss_index(<span class="st">'image_embeddings'</span>, <span class="st">'embeddings/image_embeddings.faiss'</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>It’s a good practice to store the embeddings in a dataset repository, so we will create one and push our embeddings there to pull later. We will login to Hugging Face Hub, create a dataset repository there and push our indexes there and load using <code>snapshot_download</code>.</p>
<div id="cell-30" class="cell">
<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> huggingface_hub <span class="im">import</span> HfApi, notebook_login, snapshot_download</span>
<span id="cb20-2"><a href="#cb20-2" aria-hidden="true" tabindex="-1"></a>notebook_login()</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-31" class="cell">
<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a><span class="im">from</span> huggingface_hub <span class="im">import</span> HfApi</span>
<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a>api <span class="op">=</span> HfApi()</span>
<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a>api.create_repo(<span class="st">"merve/faiss_embeddings"</span>, repo_type<span class="op">=</span><span class="st">"dataset"</span>)</span>
<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a>api.upload_folder(</span>
<span id="cb21-5"><a href="#cb21-5" aria-hidden="true" tabindex="-1"></a> folder_path<span class="op">=</span><span class="st">"./embeddings"</span>,</span>
<span id="cb21-6"><a href="#cb21-6" aria-hidden="true" tabindex="-1"></a> repo_id<span class="op">=</span><span class="st">"merve/faiss_embeddings"</span>,</span>
<span id="cb21-7"><a href="#cb21-7" aria-hidden="true" tabindex="-1"></a> repo_type<span class="op">=</span><span class="st">"dataset"</span>,</span>
<span id="cb21-8"><a href="#cb21-8" aria-hidden="true" tabindex="-1"></a>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-32" class="cell">
<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a>snapshot_download(repo_id<span class="op">=</span><span class="st">"merve/faiss_embeddings"</span>, repo_type<span class="op">=</span><span class="st">"dataset"</span>,</span>
<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a> local_dir<span class="op">=</span><span class="st">"downloaded_embeddings"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<p>We can load the embeddings to the dataset with no embeddings using <code>load_faiss_index</code>.</p>
<div id="cell-34" class="cell">
<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a>ds <span class="op">=</span> ds[<span class="st">"train"</span>]</span>
<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a>ds.load_faiss_index(<span class="st">'embeddings'</span>, <span class="st">'./downloaded_embeddings/embeddings.faiss'</span>)</span>
<span id="cb23-3"><a href="#cb23-3" aria-hidden="true" tabindex="-1"></a><span class="co"># infer again</span></span>
<span id="cb23-4"><a href="#cb23-4" aria-hidden="true" tabindex="-1"></a>prmt <span class="op">=</span> <span class="st">"people under the rain"</span></span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-35" class="cell">
<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a>prmt_embedding <span class="op">=</span> model.get_text_features(</span>
<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a> <span class="op">**</span>tokenizer([prmt], return_tensors<span class="op">=</span><span class="st">"pt"</span>, truncation<span class="op">=</span><span class="va">True</span>)</span>
<span id="cb24-3"><a href="#cb24-3" aria-hidden="true" tabindex="-1"></a> .to(<span class="st">"cuda"</span>))[<span class="dv">0</span>].detach().cpu().numpy()</span>
<span id="cb24-4"><a href="#cb24-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb24-5"><a href="#cb24-5" aria-hidden="true" tabindex="-1"></a>scores, retrieved_examples <span class="op">=</span> ds.get_nearest_examples(<span class="st">'embeddings'</span>, prmt_embedding, k<span class="op">=</span><span class="dv">1</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<div id="cell-36" class="cell" data-outputid="8d5008b4-ab8f-4b42-92e7-b29e57c126cb">
<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode python code-with-copy"><code class="sourceCode python"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a>display(retrieved_examples[<span class="st">"image"</span>][<span class="dv">0</span>])</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output cell-output-display">
<div>
<figure class="figure">
<p><img src="faiss_files/figure-html/cell-23-output-1.png" class="img-fluid figure-img"></p>
</figure>
</div>
</div>
</div>
</section>
</section>
</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const onCopySuccess = function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
}
const getTextToCopy = function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
const clipboard = new window.ClipboardJS('.code-copy-button:not([data-in-quarto-modal])', {
text: getTextToCopy
});
clipboard.on('success', onCopySuccess);
if (window.document.getElementById('quarto-embedded-source-code-modal')) {
const clipboardModal = new window.ClipboardJS('.code-copy-button[data-in-quarto-modal]', {
text: getTextToCopy,
container: window.document.getElementById('quarto-embedded-source-code-modal')
});
clipboardModal.on('success', onCopySuccess);
}
var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
var mailtoRegex = new RegExp(/^mailto:/);
var filterRegex = new RegExp('/' + window.location.host + '/');
var isInternal = (href) => {
return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
}
// Inspect non-navigation links and adorn them if external
var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool):not(.about-link)');
for (var i=0; i<links.length; i++) {
const link = links[i];
if (!isInternal(link.href)) {
// undo the damage that might have been done by quarto-nav.js in the case of
// links that we want to consider external
if (link.dataset.originalHref !== undefined) {
link.href = link.dataset.originalHref;
}
}
}
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
const config = {
allowHTML: true,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
placement: 'bottom-start',
};
if (contentFn) {
config.content = contentFn;
}
if (onTriggerFn) {
config.onTrigger = onTriggerFn;
}
if (onUntriggerFn) {
config.onUntrigger = onUntriggerFn;
}
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note) {
return note.innerHTML;
} else {
return "";
}
});
}
const xrefs = window.document.querySelectorAll('a.quarto-xref');
const processXRef = (id, note) => {
// Strip column container classes
const stripColumnClz = (el) => {
el.classList.remove("page-full", "page-columns");
if (el.children) {
for (const child of el.children) {
stripColumnClz(child);
}
}
}
stripColumnClz(note)
if (id === null || id.startsWith('sec-')) {
// Special case sections, only their first couple elements
const container = document.createElement("div");
if (note.children && note.children.length > 2) {
container.appendChild(note.children[0].cloneNode(true));
for (let i = 1; i < note.children.length; i++) {
const child = note.children[i];
if (child.tagName === "P" && child.innerText === "") {
continue;
} else {
container.appendChild(child.cloneNode(true));
break;
}
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(container);
}
return container.innerHTML
} else {
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
return note.innerHTML;
}
} else {
// Remove any anchor links if they are present
const anchorLink = note.querySelector('a.anchorjs-link');
if (anchorLink) {
anchorLink.remove();
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
if (note.classList.contains("callout")) {
return note.outerHTML;
} else {
return note.innerHTML;
}
}
}
for (var i=0; i<xrefs.length; i++) {
const xref = xrefs[i];
tippyHover(xref, undefined, function(instance) {
instance.disable();
let url = xref.getAttribute('href');
let hash = undefined;
if (url.startsWith('#')) {
hash = url;
} else {
try { hash = new URL(url).hash; } catch {}
}
if (hash) {
const id = hash.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note !== null) {
try {
const html = processXRef(id, note.cloneNode(true));
instance.setContent(html);
} finally {
instance.enable();
instance.show();
}
} else {
// See if we can fetch this
fetch(url.split('#')[0])
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.getElementById(id);
if (note !== null) {
const html = processXRef(id, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
} else {
// See if we can fetch a full url (with no hash to target)
// This is a special case and we should probably do some content thinning / targeting
fetch(url)
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.querySelector('main.content');
if (note !== null) {
// This should only happen for chapter cross references
// (since there is no id in the URL)
// remove the first header
if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
note.children[0].remove();
}
const html = processXRef(null, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
}, function(instance) {
});
}
let selectedAnnoteEl;
const selectorForAnnotation = ( cell, annotation) => {
let cellAttr = 'data-code-cell="' + cell + '"';
let lineAttr = 'data-code-annotation="' + annotation + '"';
const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
return selector;
}
const selectCodeLines = (annoteEl) => {
const doc = window.document;
const targetCell = annoteEl.getAttribute("data-target-cell");
const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
const lines = annoteSpan.getAttribute("data-code-lines").split(",");
const lineIds = lines.map((line) => {
return targetCell + "-" + line;
})
let top = null;
let height = null;
let parent = null;
if (lineIds.length > 0) {
//compute the position of the single el (top and bottom and make a div)
const el = window.document.getElementById(lineIds[0]);
top = el.offsetTop;
height = el.offsetHeight;
parent = el.parentElement.parentElement;
if (lineIds.length > 1) {
const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
const bottom = lastEl.offsetTop + lastEl.offsetHeight;
height = bottom - top;
}
if (top !== null && height !== null && parent !== null) {
// cook up a div (if necessary) and position it
let div = window.document.getElementById("code-annotation-line-highlight");
if (div === null) {
div = window.document.createElement("div");
div.setAttribute("id", "code-annotation-line-highlight");
div.style.position = 'absolute';
parent.appendChild(div);
}
div.style.top = top - 2 + "px";
div.style.height = height + 4 + "px";
div.style.left = 0;
let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
if (gutterDiv === null) {
gutterDiv = window.document.createElement("div");
gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
gutterDiv.style.position = 'absolute';
const codeCell = window.document.getElementById(targetCell);
const gutter = codeCell.querySelector('.code-annotation-gutter');
gutter.appendChild(gutterDiv);
}
gutterDiv.style.top = top - 2 + "px";
gutterDiv.style.height = height + 4 + "px";
}
selectedAnnoteEl = annoteEl;
}
};
const unselectCodeLines = () => {
const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
elementsIds.forEach((elId) => {
const div = window.document.getElementById(elId);
if (div) {
div.remove();
}
});
selectedAnnoteEl = undefined;
};
// Handle positioning of the toggle
window.addEventListener(
"resize",
throttle(() => {
elRect = undefined;
if (selectedAnnoteEl) {
selectCodeLines(selectedAnnoteEl);
}
}, 10)
);
function throttle(fn, ms) {
let throttle = false;
let timer;
return (...args) => {
if(!throttle) { // first call gets through
fn.apply(this, args);
throttle = true;
} else { // all the others get throttled
if(timer) clearTimeout(timer); // cancel #2
timer = setTimeout(() => {
fn.apply(this, args);
timer = throttle = false;
}, ms);
}
};
}
// Attach click handler to the DT
const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
for (const annoteDlNode of annoteDls) {
annoteDlNode.addEventListener('click', (event) => {
const clickedEl = event.target;
if (clickedEl !== selectedAnnoteEl) {
unselectCodeLines();
const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
if (activeEl) {
activeEl.classList.remove('code-annotation-active');
}
selectCodeLines(clickedEl);
clickedEl.classList.add('code-annotation-active');
} else {
// Unselect the line
unselectCodeLines();
clickedEl.classList.remove('code-annotation-active');
}
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
</div> <!-- /content -->
</body></html> |