Spaces:
Running
Running
Upload the requirements file and app.py file
Browse files- app.py +59 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Necessary imports
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Load the zero-shot classification model
|
6 |
+
classifier = pipeline(
|
7 |
+
"zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v2.0"
|
8 |
+
)
|
9 |
+
|
10 |
+
|
11 |
+
# Function to perform zero-shot classification
|
12 |
+
def ZeroShotTextClassification(text_input, candidate_labels):
|
13 |
+
"""
|
14 |
+
Performs zero-shot classification on the given text input using the provided candidate labels.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
text_input (str): The input text to classify.
|
18 |
+
candidate_labels (str): A comma-separated string of candidate labels.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
dict: A dictionary containing the predicted labels as keys and their corresponding scores as values.
|
22 |
+
"""
|
23 |
+
|
24 |
+
# Split the candidate labels
|
25 |
+
labels = [label.strip(" ") for label in candidate_labels.split(",")]
|
26 |
+
|
27 |
+
# Output dictionary to store the predicted labels and their scores
|
28 |
+
output = {}
|
29 |
+
|
30 |
+
# Perform zero-shot classification
|
31 |
+
prediction = classifier(text_input, labels)
|
32 |
+
|
33 |
+
# Create a dictionary with the predicted labels and their corresponding scores
|
34 |
+
for i in range(len(prediction["labels"])):
|
35 |
+
output[prediction["labels"][i]] = prediction["scores"][i]
|
36 |
+
|
37 |
+
# Return the output
|
38 |
+
return output
|
39 |
+
|
40 |
+
|
41 |
+
# Examples to display in the interface
|
42 |
+
examples = [
|
43 |
+
["I love to play the guitar", "music, artist, food, travel"],
|
44 |
+
["I am a software engineer at Google", "technology, engineering, art, science"],
|
45 |
+
["I am a professional basketball player", "sports, athlete, chef, politics"],
|
46 |
+
]
|
47 |
+
|
48 |
+
# Launch the interface
|
49 |
+
demo = gr.Interface(
|
50 |
+
fn=ZeroShotTextClassification,
|
51 |
+
inputs=[gr.Textbox(label="Input"), gr.Textbox(label="Candidate Labels")],
|
52 |
+
outputs=gr.Label(label="Classification"),
|
53 |
+
title="Zero Shot Text Classification",
|
54 |
+
description="Classify text using zero-shot classification with DeBERTa-v3-large-zeroshot model! Provide a text input and a list of candidate labels separated by commas.",
|
55 |
+
examples=examples,
|
56 |
+
theme="Soft",
|
57 |
+
allow_flagging="never",
|
58 |
+
)
|
59 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
timm
|
4 |
+
sentencepiece
|
5 |
+
transformers
|