sitammeur commited on
Commit
6b25170
1 Parent(s): 423792e

Upload the requirements file and app.py file

Browse files
Files changed (2) hide show
  1. app.py +59 -0
  2. requirements.txt +5 -0
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Necessary imports
2
+ import gradio as gr
3
+ from transformers import pipeline
4
+
5
+ # Load the zero-shot classification model
6
+ classifier = pipeline(
7
+ "zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v2.0"
8
+ )
9
+
10
+
11
+ # Function to perform zero-shot classification
12
+ def ZeroShotTextClassification(text_input, candidate_labels):
13
+ """
14
+ Performs zero-shot classification on the given text input using the provided candidate labels.
15
+
16
+ Args:
17
+ text_input (str): The input text to classify.
18
+ candidate_labels (str): A comma-separated string of candidate labels.
19
+
20
+ Returns:
21
+ dict: A dictionary containing the predicted labels as keys and their corresponding scores as values.
22
+ """
23
+
24
+ # Split the candidate labels
25
+ labels = [label.strip(" ") for label in candidate_labels.split(",")]
26
+
27
+ # Output dictionary to store the predicted labels and their scores
28
+ output = {}
29
+
30
+ # Perform zero-shot classification
31
+ prediction = classifier(text_input, labels)
32
+
33
+ # Create a dictionary with the predicted labels and their corresponding scores
34
+ for i in range(len(prediction["labels"])):
35
+ output[prediction["labels"][i]] = prediction["scores"][i]
36
+
37
+ # Return the output
38
+ return output
39
+
40
+
41
+ # Examples to display in the interface
42
+ examples = [
43
+ ["I love to play the guitar", "music, artist, food, travel"],
44
+ ["I am a software engineer at Google", "technology, engineering, art, science"],
45
+ ["I am a professional basketball player", "sports, athlete, chef, politics"],
46
+ ]
47
+
48
+ # Launch the interface
49
+ demo = gr.Interface(
50
+ fn=ZeroShotTextClassification,
51
+ inputs=[gr.Textbox(label="Input"), gr.Textbox(label="Candidate Labels")],
52
+ outputs=gr.Label(label="Classification"),
53
+ title="Zero Shot Text Classification",
54
+ description="Classify text using zero-shot classification with DeBERTa-v3-large-zeroshot model! Provide a text input and a list of candidate labels separated by commas.",
55
+ examples=examples,
56
+ theme="Soft",
57
+ allow_flagging="never",
58
+ )
59
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ gradio
2
+ torch
3
+ timm
4
+ sentencepiece
5
+ transformers