|
|
|
import re |
|
import supervision as sv |
|
from PIL import Image |
|
|
|
|
|
|
|
def clean_text(text): |
|
""" |
|
Cleans the given text by removing unwanted tokens, extra spaces, |
|
and ensures proper spacing between words and after punctuation marks. |
|
|
|
Args: |
|
text (str): The input text to be cleaned. |
|
|
|
Returns: |
|
str: The cleaned and properly formatted text. |
|
""" |
|
|
|
|
|
text = text.replace("<pad>", "").replace("</s>", "").strip() |
|
|
|
|
|
lines = text.split("\n") |
|
cleaned_lines = [line.strip() for line in lines if line.strip()] |
|
|
|
|
|
cleaned_text = " ".join(cleaned_lines) |
|
|
|
|
|
cleaned_text = re.sub( |
|
r"\s+", " ", cleaned_text |
|
) |
|
cleaned_text = re.sub( |
|
r"(?<=[.,!?])(?=[^\s])", r" ", cleaned_text |
|
) |
|
cleaned_text = re.sub( |
|
r"(?<=[a-z])(?=[A-Z])", r" ", cleaned_text |
|
) |
|
cleaned_text = re.sub( |
|
r"(\w)([A-Z][a-z])", r"\1 \2", cleaned_text |
|
) |
|
|
|
|
|
return cleaned_text |
|
|
|
|
|
|
|
def draw_ocr_bboxes(image: Image, detections: sv.Detections) -> Image: |
|
""" |
|
Draws bounding boxes and labels on the input image based on the OCR detections. |
|
|
|
Args: |
|
image (PIL.Image): The input image on which to draw the bounding boxes and labels. |
|
detections (sv.Detections): The OCR detections containing the bounding box coordinates and labels. |
|
|
|
Returns: |
|
PIL.Image: The annotated image with bounding boxes and labels. |
|
|
|
""" |
|
|
|
|
|
annotated_image = image.copy() |
|
|
|
|
|
thickness = sv.calculate_optimal_line_thickness(resolution_wh=image.size) |
|
text_scale = sv.calculate_optimal_text_scale(resolution_wh=image.size) |
|
|
|
|
|
bounding_box_annotator = sv.BoundingBoxAnnotator( |
|
color_lookup=sv.ColorLookup.INDEX, thickness=thickness |
|
) |
|
label_annotator = sv.LabelAnnotator( |
|
color_lookup=sv.ColorLookup.INDEX, |
|
text_scale=text_scale, |
|
text_thickness=thickness, |
|
) |
|
|
|
|
|
annotated_image = bounding_box_annotator.annotate(annotated_image, detections) |
|
annotated_image = label_annotator.annotate(annotated_image, detections) |
|
|
|
|
|
return annotated_image |
|
|