Update utils functions
Browse files- src/utils.py +32 -126
src/utils.py
CHANGED
@@ -1,30 +1,7 @@
|
|
1 |
-
|
2 |
-
import numpy as np
|
3 |
import re
|
4 |
-
|
5 |
-
|
6 |
-
# Use a color map for bounding boxes
|
7 |
-
colormap = [
|
8 |
-
"#0000FF",
|
9 |
-
"#FFA500",
|
10 |
-
"#008000",
|
11 |
-
"#800080",
|
12 |
-
"#A52A2A",
|
13 |
-
"#FFC0CB",
|
14 |
-
"#808080",
|
15 |
-
"#808000",
|
16 |
-
"#00FFFF",
|
17 |
-
"#FF0000",
|
18 |
-
"#00FF00",
|
19 |
-
"#4B0082",
|
20 |
-
"#4B0082",
|
21 |
-
"#EE82EE",
|
22 |
-
"#00FFFF",
|
23 |
-
"#FF00FF",
|
24 |
-
"#FF7F50",
|
25 |
-
"#FFD700",
|
26 |
-
"#87CEEB",
|
27 |
-
]
|
28 |
|
29 |
|
30 |
# Text cleaning function
|
@@ -62,111 +39,40 @@ def clean_text(text):
|
|
62 |
return cleaned_text
|
63 |
|
64 |
|
65 |
-
# Convert hex color to RGBA with the given alpha
|
66 |
-
def hex_to_rgba(hex_color, alpha):
|
67 |
-
"""
|
68 |
-
Convert a hexadecimal color code to RGBA format.
|
69 |
-
|
70 |
-
Args:
|
71 |
-
hex_color (str): The hexadecimal color code (e.g., "#FF0000").
|
72 |
-
alpha (int): The alpha value for the RGBA color (0-255).
|
73 |
-
|
74 |
-
Returns:
|
75 |
-
tuple: A tuple representing the RGBA color values (red, green, blue, alpha).
|
76 |
-
"""
|
77 |
-
hex_color = hex_color.lstrip("#")
|
78 |
-
r, g, b = int(hex_color[0:2], 16), int(hex_color[2:4], 16), int(hex_color[4:6], 16)
|
79 |
-
return (r, g, b, alpha)
|
80 |
-
|
81 |
-
|
82 |
# Draw OCR bounding boxes with enhanced visual elements
|
83 |
-
def draw_ocr_bboxes(image,
|
84 |
"""
|
85 |
-
|
86 |
|
87 |
Args:
|
88 |
-
image (PIL.Image
|
89 |
-
|
90 |
|
91 |
Returns:
|
92 |
-
PIL.Image
|
|
|
93 |
"""
|
94 |
|
95 |
-
#
|
96 |
-
|
97 |
-
|
98 |
-
#
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
(start_x - corner_radius, start_y - corner_radius),
|
119 |
-
(start_x + corner_radius, start_y + corner_radius),
|
120 |
-
],
|
121 |
-
90 + j * 90,
|
122 |
-
180 + j * 90,
|
123 |
-
fill=color,
|
124 |
-
width=box_outline_width,
|
125 |
-
)
|
126 |
-
draw.arc(
|
127 |
-
[
|
128 |
-
(end_x - corner_radius, end_y - corner_radius),
|
129 |
-
(end_x + corner_radius, end_y + corner_radius),
|
130 |
-
],
|
131 |
-
j * 90,
|
132 |
-
90 + j * 90,
|
133 |
-
fill=color,
|
134 |
-
width=box_outline_width,
|
135 |
-
)
|
136 |
-
|
137 |
-
# Draw the lines connecting the arcs
|
138 |
-
if j in [0, 1, 2]:
|
139 |
-
draw.line(
|
140 |
-
[
|
141 |
-
(start_x + corner_radius if j != 1 else start_x, start_y),
|
142 |
-
(end_x - corner_radius if j != 1 else end_x, end_y),
|
143 |
-
],
|
144 |
-
fill=color,
|
145 |
-
width=box_outline_width,
|
146 |
-
)
|
147 |
-
else:
|
148 |
-
draw.line(
|
149 |
-
[
|
150 |
-
(start_x, start_y + corner_radius),
|
151 |
-
(end_x, end_y - corner_radius),
|
152 |
-
],
|
153 |
-
fill=color,
|
154 |
-
width=box_outline_width,
|
155 |
-
)
|
156 |
-
|
157 |
-
# Calculate the position for the text label
|
158 |
-
text_x, text_y = min(new_box[0::2]), min(new_box[1::2]) - 20
|
159 |
-
text_w, text_h = draw.textsize(label)
|
160 |
-
rgba_color = hex_to_rgba(color, 200) # Semi-transparent background for text
|
161 |
-
|
162 |
-
# Draw the background rectangle for the text
|
163 |
-
draw.rectangle(
|
164 |
-
[text_x, text_y, text_x + text_w + 10, text_y + text_h + 10],
|
165 |
-
fill=rgba_color,
|
166 |
-
)
|
167 |
-
|
168 |
-
# Draw the text label
|
169 |
-
draw.text((text_x + 5, text_y + 5), label, fill=(0, 0, 0, 255))
|
170 |
-
|
171 |
-
# Return the image with the OCR boxes drawn
|
172 |
-
return image
|
|
|
1 |
+
# Necessary imports
|
|
|
2 |
import re
|
3 |
+
import supervision as sv
|
4 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
# Text cleaning function
|
|
|
39 |
return cleaned_text
|
40 |
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# Draw OCR bounding boxes with enhanced visual elements
|
43 |
+
def draw_ocr_bboxes(image: Image, detections: sv.Detections) -> Image:
|
44 |
"""
|
45 |
+
Draws bounding boxes and labels on the input image based on the OCR detections.
|
46 |
|
47 |
Args:
|
48 |
+
image (PIL.Image): The input image on which to draw the bounding boxes and labels.
|
49 |
+
detections (sv.Detections): The OCR detections containing the bounding box coordinates and labels.
|
50 |
|
51 |
Returns:
|
52 |
+
PIL.Image: The annotated image with bounding boxes and labels.
|
53 |
+
|
54 |
"""
|
55 |
|
56 |
+
# Copy the input image to avoid modifying the original image
|
57 |
+
annotated_image = image.copy()
|
58 |
+
|
59 |
+
# Calculate the optimal line thickness and text scale based on the image resolution
|
60 |
+
thickness = sv.calculate_optimal_line_thickness(resolution_wh=image.size)
|
61 |
+
text_scale = sv.calculate_optimal_text_scale(resolution_wh=image.size)
|
62 |
+
|
63 |
+
# Initialize the bounding box and label annotators
|
64 |
+
bounding_box_annotator = sv.BoundingBoxAnnotator(
|
65 |
+
color_lookup=sv.ColorLookup.INDEX, thickness=thickness
|
66 |
+
)
|
67 |
+
label_annotator = sv.LabelAnnotator(
|
68 |
+
color_lookup=sv.ColorLookup.INDEX,
|
69 |
+
text_scale=text_scale,
|
70 |
+
text_thickness=thickness,
|
71 |
+
)
|
72 |
+
|
73 |
+
# Annotate the image with bounding boxes and labels
|
74 |
+
annotated_image = bounding_box_annotator.annotate(annotated_image, detections)
|
75 |
+
annotated_image = label_annotator.annotate(annotated_image, detections)
|
76 |
+
|
77 |
+
# Return the annotated image
|
78 |
+
return annotated_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|