# Importing necessary libraries import spaces from transformers import AutoProcessor, AutoModelForCausalLM # Load model and processor from Hugging Face model_id = "microsoft/Florence-2-large-ft" model = ( AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).eval().cuda() ) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) @spaces.GPU(duration=120) def run_example(task_prompt, image, text_input=None): """ Runs an example using the given task prompt and image. Args: task_prompt (str): The task prompt for the example. image (PIL.Image.Image): The image to be processed. text_input (str, optional): Additional text input to be appended to the task prompt. Defaults to None. Returns: str: The parsed answer generated by the model. """ # If there is no text input, use the task prompt as the prompt if text_input is None: prompt = task_prompt else: prompt = task_prompt + text_input # Process the image and text input inputs = processor(text=prompt, images=image, return_tensors="pt") # Generate the answer using the model generated_ids = model.generate( input_ids=inputs["input_ids"].cuda(), pixel_values=inputs["pixel_values"].cuda(), max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation( generated_text, task=task_prompt, image_size=(image.width, image.height) ) # Return the parsed answer return parsed_answer