VidiQA / app.py
sitammeur's picture
Update app.py
d9e93e5 verified
raw
history blame
1.7 kB
# Importing the requirements
import warnings
warnings.filterwarnings("ignore")
import gradio as gr
from src.app.response import describe_video
# Video and text inputs for the interface
video = gr.Video(label="Video")
query = gr.Textbox(label="Question", placeholder="Enter your question here")
# Output for the interface
response = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True)
# Examples for the interface
examples = [
[
"./videos/sample_video_1.mp4",
"Here are some frames of a video. Describe this video in detail.",
],
[
"./videos/sample_video_2.mp4",
"¿Cuál es el animal de este vídeo? ¿Cuantos animales hay?",
],
["./videos/sample_video_3.mp4", "Que se passe-t-il dans cette vidéo ?"],
]
# Title, description, and article for the interface
title = "Video Question Answering"
description = "Gradio Demo for the MiniCPM-V 2.6 Vision Language Understanding and Generation model. This model can answer questions about videos in natural language. To use it, simply upload your video, type a question, and click 'submit', or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://github.com/OpenBMB/MiniCPM-V' target='_blank'>Model GitHub Repo</a> | <a href='https://huggingface.co/openbmb/MiniCPM-V-2_6' target='_blank'>Model Page</a></p>"
# Launch the interface
interface = gr.Interface(
fn=describe_video,
inputs=[video, query],
outputs=response,
examples=examples,
title=title,
description=description,
article=article,
theme="Soft",
allow_flagging="never",
)
interface.launch(debug=False)