Spaces:
Running
on
Zero
Running
on
Zero
Update src/app/response.py
Browse files- src/app/response.py +79 -79
src/app/response.py
CHANGED
@@ -1,79 +1,79 @@
|
|
1 |
-
# Necessary imports
|
2 |
-
import sys
|
3 |
-
from typing import Any, Dict
|
4 |
-
import spaces
|
5 |
-
|
6 |
-
# Local imports
|
7 |
-
from src.utils.video_processing import encode_video
|
8 |
-
from src.config import (
|
9 |
-
device,
|
10 |
-
model_name,
|
11 |
-
system_prompt,
|
12 |
-
sampling,
|
13 |
-
stream,
|
14 |
-
top_p,
|
15 |
-
top_k,
|
16 |
-
temperature,
|
17 |
-
repetition_penalty,
|
18 |
-
max_new_tokens,
|
19 |
-
)
|
20 |
-
from src.app.model import load_model_and_tokenizer
|
21 |
-
from src.logger import logging
|
22 |
-
from src.exception import CustomExceptionHandling
|
23 |
-
|
24 |
-
|
25 |
-
# Model and tokenizer
|
26 |
-
model, tokenizer = load_model_and_tokenizer(model_name, device)
|
27 |
-
|
28 |
-
|
29 |
-
@spaces.GPU()
|
30 |
-
def describe_video(video: str, question: str) -> str:
|
31 |
-
"""
|
32 |
-
Describes a video by generating an answer to a given question.
|
33 |
-
|
34 |
-
Args:
|
35 |
-
- video (str): The path to the video file.
|
36 |
-
- question (str): The question to be answered about the video.
|
37 |
-
|
38 |
-
Returns:
|
39 |
-
str: The generated answer to the question.
|
40 |
-
"""
|
41 |
-
try:
|
42 |
-
# Encode the video frames
|
43 |
-
frames = encode_video(video)
|
44 |
-
|
45 |
-
# Message format for the model
|
46 |
-
msgs = [{"role": "user", "content": frames + [question]}]
|
47 |
-
|
48 |
-
# Set decode params for video
|
49 |
-
params: Dict[str, Any] = {
|
50 |
-
"use_image_id": False,
|
51 |
-
"max_slice_nums": 1, # Use 1 if CUDA OOM and video resolution > 448*448
|
52 |
-
}
|
53 |
-
|
54 |
-
# Generate the answer
|
55 |
-
answer = model.chat(
|
56 |
-
image=None,
|
57 |
-
msgs=msgs,
|
58 |
-
tokenizer=tokenizer,
|
59 |
-
sampling=sampling,
|
60 |
-
stream=stream,
|
61 |
-
top_p=top_p,
|
62 |
-
top_k=top_k,
|
63 |
-
temperature=temperature,
|
64 |
-
repetition_penalty=repetition_penalty,
|
65 |
-
max_new_tokens=max_new_tokens,
|
66 |
-
system_prompt=system_prompt,
|
67 |
-
**params
|
68 |
-
)
|
69 |
-
|
70 |
-
# Log the successful generation of the answer
|
71 |
-
logging.info("Answer generated successfully.")
|
72 |
-
|
73 |
-
# Return the answer
|
74 |
-
return " ".join(answer)
|
75 |
-
|
76 |
-
# Handle exceptions that may occur during answer generation
|
77 |
-
except Exception as e:
|
78 |
-
# Custom exception handling
|
79 |
-
raise CustomExceptionHandling(e, sys) from e
|
|
|
1 |
+
# Necessary imports
|
2 |
+
import sys
|
3 |
+
from typing import Any, Dict
|
4 |
+
import spaces
|
5 |
+
|
6 |
+
# Local imports
|
7 |
+
from src.utils.video_processing import encode_video
|
8 |
+
from src.config import (
|
9 |
+
device,
|
10 |
+
model_name,
|
11 |
+
system_prompt,
|
12 |
+
sampling,
|
13 |
+
stream,
|
14 |
+
top_p,
|
15 |
+
top_k,
|
16 |
+
temperature,
|
17 |
+
repetition_penalty,
|
18 |
+
max_new_tokens,
|
19 |
+
)
|
20 |
+
from src.app.model import load_model_and_tokenizer
|
21 |
+
from src.logger import logging
|
22 |
+
from src.exception import CustomExceptionHandling
|
23 |
+
|
24 |
+
|
25 |
+
# Model and tokenizer
|
26 |
+
model, tokenizer = load_model_and_tokenizer(model_name, device)
|
27 |
+
|
28 |
+
|
29 |
+
@spaces.GPU(duration=120)
|
30 |
+
def describe_video(video: str, question: str) -> str:
|
31 |
+
"""
|
32 |
+
Describes a video by generating an answer to a given question.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
- video (str): The path to the video file.
|
36 |
+
- question (str): The question to be answered about the video.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
str: The generated answer to the question.
|
40 |
+
"""
|
41 |
+
try:
|
42 |
+
# Encode the video frames
|
43 |
+
frames = encode_video(video)
|
44 |
+
|
45 |
+
# Message format for the model
|
46 |
+
msgs = [{"role": "user", "content": frames + [question]}]
|
47 |
+
|
48 |
+
# Set decode params for video
|
49 |
+
params: Dict[str, Any] = {
|
50 |
+
"use_image_id": False,
|
51 |
+
"max_slice_nums": 1, # Use 1 if CUDA OOM and video resolution > 448*448
|
52 |
+
}
|
53 |
+
|
54 |
+
# Generate the answer
|
55 |
+
answer = model.chat(
|
56 |
+
image=None,
|
57 |
+
msgs=msgs,
|
58 |
+
tokenizer=tokenizer,
|
59 |
+
sampling=sampling,
|
60 |
+
stream=stream,
|
61 |
+
top_p=top_p,
|
62 |
+
top_k=top_k,
|
63 |
+
temperature=temperature,
|
64 |
+
repetition_penalty=repetition_penalty,
|
65 |
+
max_new_tokens=max_new_tokens,
|
66 |
+
system_prompt=system_prompt,
|
67 |
+
**params
|
68 |
+
)
|
69 |
+
|
70 |
+
# Log the successful generation of the answer
|
71 |
+
logging.info("Answer generated successfully.")
|
72 |
+
|
73 |
+
# Return the answer
|
74 |
+
return " ".join(answer)
|
75 |
+
|
76 |
+
# Handle exceptions that may occur during answer generation
|
77 |
+
except Exception as e:
|
78 |
+
# Custom exception handling
|
79 |
+
raise CustomExceptionHandling(e, sys) from e
|