Spaces:
Running
on
Zero
Running
on
Zero
Update src/model.py
Browse files- src/model.py +63 -62
src/model.py
CHANGED
@@ -1,62 +1,63 @@
|
|
1 |
-
# Importing the requirements
|
2 |
-
import torch
|
3 |
-
from transformers import AutoModel, AutoTokenizer
|
4 |
-
import spaces
|
5 |
-
from src.utils import encode_video
|
6 |
-
|
7 |
-
|
8 |
-
# Device for the model
|
9 |
-
device = "cuda"
|
10 |
-
|
11 |
-
# Load the model and tokenizer
|
12 |
-
model = AutoModel.from_pretrained(
|
13 |
-
"openbmb/MiniCPM-V-2_6",
|
14 |
-
trust_remote_code=True,
|
15 |
-
attn_implementation="sdpa",
|
16 |
-
torch_dtype=torch.bfloat16,
|
17 |
-
)
|
18 |
-
model = model.to(device=device)
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
20 |
-
"openbmb/MiniCPM-V-2_6", trust_remote_code=True
|
21 |
-
)
|
22 |
-
model.eval()
|
23 |
-
|
24 |
-
|
25 |
-
@spaces.GPU()
|
26 |
-
def describe_video(video, question):
|
27 |
-
"""
|
28 |
-
Describes a video by generating an answer to a given question.
|
29 |
-
|
30 |
-
Args:
|
31 |
-
- video (str): The path to the video file.
|
32 |
-
- question (str): The question to be answered about the video.
|
33 |
-
|
34 |
-
Returns:
|
35 |
-
str: The generated answer to the question.
|
36 |
-
"""
|
37 |
-
# Encode the video frames
|
38 |
-
frames = encode_video(video)
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
params
|
45 |
-
|
46 |
-
"
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
1 |
+
# Importing the requirements
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModel, AutoTokenizer
|
4 |
+
import spaces
|
5 |
+
from src.utils import encode_video
|
6 |
+
|
7 |
+
|
8 |
+
# Device for the model
|
9 |
+
device = "cuda"
|
10 |
+
|
11 |
+
# Load the model and tokenizer
|
12 |
+
model = AutoModel.from_pretrained(
|
13 |
+
"openbmb/MiniCPM-V-2_6",
|
14 |
+
trust_remote_code=True,
|
15 |
+
attn_implementation="sdpa",
|
16 |
+
torch_dtype=torch.bfloat16,
|
17 |
+
)
|
18 |
+
model = model.to(device=device)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
20 |
+
"openbmb/MiniCPM-V-2_6", trust_remote_code=True
|
21 |
+
)
|
22 |
+
model.eval()
|
23 |
+
|
24 |
+
|
25 |
+
@spaces.GPU()
|
26 |
+
def describe_video(video, question):
|
27 |
+
"""
|
28 |
+
Describes a video by generating an answer to a given question.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
- video (str): The path to the video file.
|
32 |
+
- question (str): The question to be answered about the video.
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
str: The generated answer to the question.
|
36 |
+
"""
|
37 |
+
# Encode the video frames
|
38 |
+
frames = encode_video(video)
|
39 |
+
frames = list(frames) # Convert generator or any iterable to list
|
40 |
+
|
41 |
+
# Message format for the model
|
42 |
+
msgs = [{"role": "user", "content": frames + [question]}]
|
43 |
+
|
44 |
+
# Set decode params for video
|
45 |
+
params = {
|
46 |
+
"use_image_id": False,
|
47 |
+
"max_slice_nums": 1, # Use 1 if CUDA OOM and video resolution > 448*448
|
48 |
+
}
|
49 |
+
|
50 |
+
# Generate the answer
|
51 |
+
answer = model.chat(
|
52 |
+
image=None,
|
53 |
+
msgs=msgs,
|
54 |
+
tokenizer=tokenizer,
|
55 |
+
sampling=True,
|
56 |
+
temperature=0.7,
|
57 |
+
stream=True,
|
58 |
+
system_prompt="You are an AI assistant specialized in visual content analysis. Given a video and a related question, analyze the video thoroughly and provide a precise and informative answer based on the visible content. Ensure your response is clear, accurate, and directly addresses the question.",
|
59 |
+
**params
|
60 |
+
)
|
61 |
+
|
62 |
+
# Return the answer
|
63 |
+
return answer
|