File size: 966 Bytes
c8cff61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
# Importing the requirements
from transformers import BlipProcessor, BlipForQuestionAnswering
# Load the model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
# Function to answer the question
def answer_question(image, text):
"""
Generates an answer to a given question based on the provided image and text.
Args:
image (str): The path to the image file.
text (str): The question text.
Returns:
str: The generated answer to the question.
"""
# Process the inputs and generate the ids
inputs = processor(images=image, text=text, return_tensors="pt")
generated_ids = model.generate(**inputs, max_length=50)
# Decode the generated IDs
generated_answer = processor.batch_decode(generated_ids, skip_special_tokens=True)
# Return the generated answer
return generated_answer[0]
|