Spaces:
Sleeping
Sleeping
File size: 29,754 Bytes
7f683f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
# app.py - LangSmith enabled, designed for Replit + Anthropic + OpenAI
import os
import streamlit as st
import time
import traceback
import json
import asyncio
import nest_asyncio
from typing import List, Dict
from dotenv import load_dotenv
load_dotenv()
# ----- SETUP SECRETS AND ENV -----
# Hardcoded (safe): you never need these in secrets!
os.environ["LANGSMITH_ENDPOINT"] = "https://api.smith.langchain.com"
os.environ["LANGSMITH_TRACING"] = "true"
# The following must exist in your Replit secrets:
# OPENAI_API_KEY, ANTHROPIC_API_KEY, LANGSMITH_API_KEY, LANGSMITH_PROJECT
os.environ["OPENAI_API_KEY"] = os.environ["OPENAI_API_KEY"]
os.environ["ANTHROPIC_API_KEY"] = os.environ["ANTHROPIC_API_KEY"]
os.environ["LANGSMITH_API_KEY"] = os.environ["LANGSMITH_API_KEY"]
os.environ["LANGSMITH_PROJECT"] = os.environ["LANGSMITH_PROJECT"]
# ----------------------------------
from langsmith import traceable
nest_asyncio.apply()
from retriever_pinecone import find_similar_paragraphs, check_retriever_status
from analysis_service_anthropic import (
analyze_source_relevance_async,
check_analyzer_status,
ANALYSIS_MODEL as ANTHROPIC_ANALYSIS_MODEL,
)
from generation_service_anthropic import (
generate_response_stream_async as generate_anthropic,
check_generator_status as check_anthropic_generator,
GENERATION_MODEL as ANTHROPIC_GENERATION_MODEL,
)
from generation_service_gemini import (
generate_response_stream_gemini as generate_gemini,
check_gemini_generator_status,
GENERATION_MODEL as GEMINI_GENERATION_MODEL,
)
from validation_service_openai import (
validate_paragraph_relevance_gpt4o,
check_openai_validator_status,
VALIDATION_MODEL as GPT4O_VALIDATION_MODEL,
)
try:
from generation_service_anthropic import format_context_for_prompt
print("Format context function potentially available.")
except ImportError:
print("Warning: format_context_for_prompt not imported.")
st.set_page_config(page_title="Divrey Yoel AI Chat", layout="wide")
st.markdown(
"""<style>
.rtl-text { direction: rtl; text-align: right; }
.hebrew-text { font-family: 'Arial Hebrew', 'David', sans-serif; direction: rtl; text-align: right; font-size: 1.1em; margin-bottom: 5px; }
.source-info { font-size: 0.85em; color: #666; margin-bottom: 8px; }
.expander-content > div { border-bottom: 1px solid #eee; padding-bottom: 15px; margin-bottom: 15px; }
.expander-content > div:last-child { border-bottom: none; margin-bottom: 0; padding-bottom: 0; }
.stChatMessage .stExpander { margin-top: 15px; border-left: 3px solid #ddd; padding-left: 10px; }
.stStatus div[data-testid="stStatusContent"] p { direction: rtl; text-align: right; }
.stButton > button[kind="header"] { direction: rtl; text-align: right; }
.stExpander div[data-testid="stVerticalBlock"] code { display: block; text-align: right; direction: rtl; }
.alert-warning { padding: 0.75rem 1.25rem; margin-bottom: 1rem; border: 1px solid transparent;
border-radius: 0.25rem; color: #856404; background-color: #fff3cd; border-color: #ffeeba;}
</style>""",
unsafe_allow_html=True,
)
st.markdown("<h1 class='rtl-text'>Divrey Yoel AI Chat</h1>", unsafe_allow_html=True)
st.markdown("<p class='rtl-text'>חיפוש בטקסטים חסידיים באמצעות RAG</p>", unsafe_allow_html=True)
# --- Status Checks & Sidebar ---
retriever_ready, retriever_msg = check_retriever_status()
anthropic_analyzer_ready, anthropic_analyzer_msg = check_analyzer_status()
anthropic_generator_ready, anthropic_generator_msg = check_anthropic_generator()
gemini_generator_ready, gemini_generator_msg = check_gemini_generator_status()
openai_validator_ready, openai_validator_msg = check_openai_validator_status()
st.sidebar.markdown("<h3 class='rtl-text'>מצב המערכת</h3>", unsafe_allow_html=True)
st.sidebar.markdown(
f"<p class='rtl-text'><strong>מאחזר (Pinecone):</strong> {'✅' if retriever_ready else '❌'}</p>",
unsafe_allow_html=True,
)
if not retriever_ready:
st.sidebar.markdown(
f"<div class='alert alert-warning rtl-text' role='alert'>{retriever_msg}</div>", unsafe_allow_html=True
)
st.markdown(
"<p class='rtl-text' style='color: red;'><strong>שירות האחזור (Pinecone) אינו זמין. לא ניתן להמשיך.</strong></p>",
unsafe_allow_html=True,
)
st.stop()
st.sidebar.markdown("<hr>", unsafe_allow_html=True)
st.sidebar.markdown(
f"<p class='rtl-text'><strong>מנתח (Anthropic):</strong> {'✅ <small>(נדרש לשיטת Anthropic)</small>' if anthropic_analyzer_ready else '❌ <small>(נדרש לשיטת Anthropic)</small>'}</p>",
unsafe_allow_html=True,
)
st.sidebar.markdown(
f"<p class='rtl-text'><strong>מאמת (GPT-4o):</strong> {'✅ <small>(נדרש לשיטת GPT-4o)</small>' if openai_validator_ready else '❌ <small>(נדרש לשיטת GPT-4o)</small>'}</p>",
unsafe_allow_html=True,
)
st.sidebar.markdown(
f"<p class='rtl-text'><strong>מחולל (Anthropic):</strong> {'✅ <small>(נדרש לשיטות Anthropic/GPT-4o)</small>' if anthropic_generator_ready else '❌ <small>(נדרש לשיטות Anthropic/GPT-4o)</small>'}</p>",
unsafe_allow_html=True,
)
st.sidebar.markdown(
f"<p class='rtl-text'><strong>מחולל (Gemini):</strong> {'✅ <small>(נדרש לשיטת Gemini)</small>' if gemini_generator_ready else '❌ <small>(נדרש לשיטת Gemini)</small>'}</p>",
unsafe_allow_html=True,
)
st.sidebar.markdown("<hr>", unsafe_allow_html=True)
st.sidebar.markdown("<h3 class='rtl-text'>הגדרות RAG</h3>", unsafe_allow_html=True)
pipeline_method = st.sidebar.selectbox(
"בחר שיטת עיבוד:",
options=[
"Anthropic (ניתוח וסינון פרטני)",
"Gemini (אחזור ויצירה ישירה)",
"GPT-4o Paragraph Validator + Claude Synthesizer",
],
index=2,
)
is_anthropic_pipeline = pipeline_method == "Anthropic (ניתוח וסינון פרטני)"
is_gemini_pipeline = pipeline_method == "Gemini (אחזור ויצירה ישירה)"
is_gpt4o_para_pipeline = pipeline_method == "GPT-4o Paragraph Validator + Claude Synthesizer"
n_retrieve = st.sidebar.slider(
"מספר פסקאות לאחזור (Retrieve)", 1, 300, 100,
help="כמה פסקאות לאחזר ראשונית (משותף לכל השיטות)."
)
n_analyze = st.sidebar.slider(
"מספר פסקאות לניתוח (Anthropic בלבד)", 1, min(n_retrieve, 50), min(21, n_retrieve, 50),
help="כמה פסקאות יישלחו לניתוח רלוונטיות פרטני ע'י Claude.",
disabled=not is_anthropic_pipeline
)
relevance_thresh = st.sidebar.slider(
"סף רלוונטיות (Anthropic בלבד)", 1, 10, 5,
help="הציון המינימלי (1-10) שפסקה צריכה לקבל מ-Claude כדי להיחשב רלוונטית.",
disabled=not is_anthropic_pipeline
)
n_validate = st.sidebar.slider(
"מספר פסקאות לאימות (GPT-4o בלבד)", 1, min(n_retrieve, 100), min(50, n_retrieve),
help="כמה מהפסקאות שאוחזרו יישלחו לאימות רלוונטיות פרטני ע'י GPT-4o.",
disabled=not is_gpt4o_para_pipeline
)
n_final_context = st.sidebar.slider(
"פסקאות מקסימום להקשר סופי (Gemini/Anthropic)", 1, n_retrieve, min(21, n_retrieve),
help="Gemini/Anthropic: כמה מהפסקאות הטובות ביותר יישלחו ליצירה. GPT-4o: לא בשימוש ישיר (הקשר נקבע ע'י האימות).",
disabled=is_gpt4o_para_pipeline
)
services_ready = (
retriever_ready and
((anthropic_analyzer_ready and anthropic_generator_ready) if is_anthropic_pipeline else True) and
(gemini_generator_ready if is_gemini_pipeline else True) and
((openai_validator_ready and anthropic_generator_ready) if is_gpt4o_para_pipeline else True)
)
if not services_ready and retriever_ready:
st.markdown(
f"<div class='alert alert-warning rtl-text' role='alert'>שירות(ים) חסרים. ודא שכל השירותים דרושים זמינים.</div>",
unsafe_allow_html=True,
)
@traceable
def run_rag_pipeline(pipeline_prompt: str, selected_pipeline_method: str, status_container=None):
is_anthropic_pipeline = selected_pipeline_method == "Anthropic (ניתוח וסינון פרטני)"
is_gemini_pipeline = selected_pipeline_method == "Gemini (אחזור ויצירה ישירה)"
is_gpt4o_para_pipeline = selected_pipeline_method == "GPT-4o Paragraph Validator + Claude Synthesizer"
result = {
"full_response": "", "final_docs_data": [], "status_updates": [],
"error": None, "analysis_flow": selected_pipeline_method
}
current_status_label = "מתחיל עיבוד..."
message_placeholder = st.empty()
try:
current_status_label = f"1. מאחזר עד {n_retrieve} פסקאות מ-Pinecone..."
start_retrieval = time.time()
if status_container: status_container.update(label=current_status_label)
retrieved_docs = find_similar_paragraphs(query_text=pipeline_prompt, n_results=n_retrieve)
retrieval_time = time.time() - start_retrieval
status_msg = f"אוחזרו {len(retrieved_docs)} פסקאות ב-{retrieval_time:.2f} שניות."
result["status_updates"].append(f"1. {status_msg}")
current_status_label = f"1. {status_msg}"
if status_container: status_container.update(label=current_status_label)
if not retrieved_docs:
result["full_response"] = "<div class='rtl-text'>לא אותרו מקורות רלוונטיים לשאילתה.</div>"
if status_container: status_container.update(label="לא נמצאו מסמכים.", state="complete")
message_placeholder.markdown(result["full_response"], unsafe_allow_html=True)
return result
docs_for_generator = []
generator_name = ""
if is_anthropic_pipeline:
generator_name = "Anthropic"
analysis_count = min(len(retrieved_docs), n_analyze)
current_status_label = f"2. [Anthropic] מנתח רלוונטיות פרטנית ({analysis_count} פסקאות)..."
analysis_start_time = time.time()
if status_container: status_container.update(label=current_status_label)
async def run_anthropic_analysis():
docs_to_analyze_local = retrieved_docs[:analysis_count]
tasks = [analyze_source_relevance_async(d.get('hebrew_text',''), '', pipeline_prompt) for d in docs_to_analyze_local]
analysis_results = await asyncio.gather(*tasks, return_exceptions=True)
return docs_to_analyze_local, analysis_results
try:
loop = asyncio.get_event_loop_policy().get_event_loop()
if loop.is_running(): nest_asyncio.apply(); loop = asyncio.get_event_loop_policy().get_event_loop()
docs_analyzed, analysis_raw_results = loop.run_until_complete(run_anthropic_analysis())
except Exception as loop_err: raise
processed_for_filter = []; analysis_success_count = 0; analysis_fail_count = 0;
for i, doc in enumerate(docs_analyzed):
res = analysis_raw_results[i]
if isinstance(res, dict) and 'relevance' in res:
doc['analysis'] = res; processed_for_filter.append(doc); analysis_success_count += 1
elif isinstance(res, Exception): analysis_fail_count += 1;
else: analysis_fail_count += 1;
analysis_time = time.time() - analysis_start_time
status_msg = f"ניתוח Anthropic פרטני הושלם ({analysis_success_count} הצלחות, {analysis_fail_count} כשלונות) ב-{analysis_time:.2f} שניות."
result["status_updates"].append(f"2. {status_msg}")
current_status_label = f"2. {status_msg}"
if status_container: status_container.update(label=current_status_label)
current_status_label = "3. [Anthropic] סינון לפי ציון רלוונטיות..."
if status_container: status_container.update(label=current_status_label)
filtered_docs = []
for doc in processed_for_filter:
try:
score = int(doc.get('analysis', {}).get('relevance', {}).get('relevance_score', '0'))
doc['analysis']['relevance']['numeric_score'] = score
if score >= relevance_thresh: filtered_docs.append(doc)
except Exception as filter_err: pass
filtered_docs.sort(key=lambda d: d.get('analysis',{}).get('relevance',{}).get('numeric_score', 0), reverse=True)
docs_for_generator = filtered_docs[:n_final_context]
status_msg = f"נבחרו {len(docs_for_generator)} פסקאות לאחר סינון Anthropic (סף: {relevance_thresh}, מקס': {n_final_context})."
result["status_updates"].append(f"3. {status_msg}")
current_status_label = f"3. {status_msg}"
if status_container: status_container.update(label=current_status_label)
if not docs_for_generator:
result["full_response"] = "<div class='rtl-text'>לא נמצאו פסקאות רלוונטיות מספיק לאחר סינון Anthropic פרטני.</div>"
if status_container: status_container.update(label="לא נמצאו פסקאות מסוננות.", state="complete")
message_placeholder.markdown(result["full_response"], unsafe_allow_html=True)
return result
elif is_gemini_pipeline:
generator_name = "Gemini"
status_msg = "2. דילוג על שלב ניתוח/סינון (שיטת Gemini)."; result["status_updates"].append(status_msg)
current_status_label = status_msg;
if status_container: status_container.update(label=current_status_label)
docs_for_generator = retrieved_docs[:n_final_context]
status_msg = f"3. נבחרו {len(docs_for_generator)} פסקאות מובילות (לפי אחזור) להקשר עבור Gemini (מקס': {n_final_context})."
result["status_updates"].append(status_msg)
current_status_label = status_msg
if status_container: status_container.update(label=current_status_label)
if not docs_for_generator:
result["full_response"] = "<div class='rtl-text'>לא אותרו מסמכים כלל (שגיאה פנימית).</div>"
if status_container: status_container.update(label="שגיאה בבחירת הקשר.", state="error")
message_placeholder.markdown(result["full_response"], unsafe_allow_html=True)
return result
elif is_gpt4o_para_pipeline:
generator_name = "Anthropic"
docs_to_validate = retrieved_docs[:n_validate]
num_to_validate = len(docs_to_validate)
if not docs_to_validate:
result["full_response"] = "<div class='rtl-text'>שגיאה: אין מסמכים לאימות (לאחר אחזור).</div>"
if status_container: status_container.update(label="שגיאה לפני אימות.", state="error")
message_placeholder.markdown(result["full_response"], unsafe_allow_html=True)
return result
status_msg = f"2. נבחרו {num_to_validate} פסקאות מובילות לאימות פרטני (מתוך {len(retrieved_docs)})."
result["status_updates"].append(status_msg)
current_status_label = status_msg
if status_container: status_container.update(label=current_status_label)
current_status_label = f"3. [GPT-4o] מתחיל אימות מקבילי של {num_to_validate} פסקאות..."
validation_start_time = time.time()
if status_container: status_container.update(label=current_status_label)
tasks = [validate_paragraph_relevance_gpt4o(doc, pipeline_prompt, i) for i, doc in enumerate(docs_to_validate)]
validation_results = []
try:
loop = asyncio.get_event_loop_policy().get_event_loop()
if loop.is_running(): nest_asyncio.apply(); loop = asyncio.get_event_loop_policy().get_event_loop()
validation_results = loop.run_until_complete(asyncio.gather(*tasks, return_exceptions=True))
except Exception as gather_err:
result["error"] = f"שגיאה בביצוע האימות המקבילי: {gather_err}"
result["full_response"] = f"<div class='rtl-text'>אירעה שגיאה קריטית בשלב אימות המידע.</div>";
if status_container: status_container.update(label="שגיאה באימות!", state="error")
message_placeholder.markdown(result["full_response"], unsafe_allow_html=True)
return result
validation_time = time.time() - validation_start_time
passed_count = 0; failed_count = 0; filtered_paragraphs = []
current_status_label = "4. [GPT-4o] סינון פסקאות לפי תוצאות האימות..."
if status_container: status_container.update(label=current_status_label)
for i, res in enumerate(validation_results):
para_num = i + 1
if isinstance(res, Exception): failed_count += 1;
elif isinstance(res, dict) and res.get("validation"):
if res["validation"].get("contains_relevant_info") is True:
passed_count += 1; filtered_paragraphs.append(res.get("paragraph_data", {}))
else: failed_count += 1;
filtered_paragraphs = [p for p in filtered_paragraphs if p]
status_msg_val = f"אימות GPT-4o פרטני הושלם ({passed_count} עברו, {num_to_validate - passed_count - failed_count} נדחו, {failed_count} נכשלו) ב-{validation_time:.2f} שניות."
result["status_updates"].append(f"3. {status_msg_val}")
status_msg_filter = f"נאספו {len(filtered_paragraphs)} פסקאות רלוונטיות לאחר אימות."
result["status_updates"].append(f"4. {status_msg_filter}")
current_status_label = f"4. {status_msg_filter}"
if status_container: status_container.update(label=current_status_label)
if not filtered_paragraphs:
result["full_response"] = "<div class='rtl-text'>לא נמצא מידע רלוונטי בפסקאות שנבדקו ע'י GPT-4o.</div>"
if status_container: status_container.update(label="לא נמצא מידע רלוונטי.", state="complete")
message_placeholder.markdown(result["full_response"], unsafe_allow_html=True)
return result
docs_for_generator = filtered_paragraphs
else:
raise ValueError(f"שיטת עיבוד לא ידועה: {selected_pipeline_method}")
current_status_label = f"5. מכין הקשר ({len(docs_for_generator)} פסקאות) ומחולל תשובה סופית ({generator_name})..."
result["status_updates"].append(f"5. מכין הקשר ומחולל תשובה ({generator_name})...")
if status_container: status_container.update(label=current_status_label)
start_generation = time.time()
final_response_text = ""
generation_error_details = None
result["final_docs_data"] = docs_for_generator
try:
if generator_name == "Gemini":
generator_stream = generate_gemini(query=pipeline_prompt, context_documents=docs_for_generator)
response_chunks = []
for chunk in generator_stream:
if isinstance(chunk, str) and chunk.strip().startswith("--- שגיאה"):
generation_error_details = chunk.strip()
break
response_chunks.append(str(chunk))
temp_stream_response = "".join(response_chunks)
message_placeholder.markdown(f"<div class='rtl-text'>{temp_stream_response}▌</div>", unsafe_allow_html=True)
if generation_error_details is None: final_response_text = "".join(response_chunks)
elif generator_name == "Anthropic":
async def consume_anthropic_stream():
history = [{"role": "user", "content": pipeline_prompt}]
local_chunks = []
async for chunk in generate_anthropic(messages=history, context_documents=docs_for_generator):
if isinstance(chunk, str) and chunk.strip().startswith("--- שגיאה"):
raise RuntimeError(f"Error yielded from Anthropic generator: {chunk.strip()}")
local_chunks.append(str(chunk))
temp_response = "".join(local_chunks)
message_placeholder.markdown(f"<div class='rtl-text'>{temp_response}▌</div>", unsafe_allow_html=True)
return "".join(local_chunks)
try:
loop = asyncio.get_event_loop_policy().get_event_loop()
if loop.is_running(): nest_asyncio.apply(); loop = asyncio.get_event_loop_policy().get_event_loop()
final_response_text = loop.run_until_complete(consume_anthropic_stream())
except Exception as consume_err:
generation_error_details = f"{type(consume_err).__name__}: {str(consume_err)}"
else:
raise RuntimeError(f"Generator name '{generator_name}' not recognized.")
except Exception as gen_err:
generation_error_details = f"{type(gen_err).__name__}: {str(gen_err)}"
generation_time = time.time() - start_generation
if generation_error_details:
result["error"] = f"שגיאה במהלך יצירת התשובה ({generator_name}): {generation_error_details}"
result["full_response"] = f"<div class='rtl-text'><strong>שגיאה ביצירת התשובה.</strong><br>פרטים: {generation_error_details}</div>"
message_placeholder.markdown(result["full_response"], unsafe_allow_html=True)
else:
lines_to_remove = ["יהי רצון שנזכה לגאולה השלמה במהרה בימינו אמן.", "יהי רצון שנזכה...", "הכותב וחותם לכבוד התורה ולומדיה", "הכותב וחותם לכבוד התורה...", "בכבוד רב,", "בברכה,"]
response_lines = final_response_text.strip().split('\n'); cleaned_lines = response_lines[:]
while cleaned_lines:
last_line = cleaned_lines[-1].strip()
if any(last_line.lower() == ltr.lower() or last_line.lower().startswith(ltr.lower().replace('...','')) for ltr in lines_to_remove): cleaned_lines.pop()
else: break
final_response_text = "\n".join(cleaned_lines).strip()
result["full_response"] = final_response_text
message_placeholder.markdown(f"<div class='rtl-text'>{final_response_text}</div>", unsafe_allow_html=True)
except Exception as e:
pipeline_error_type = type(e).__name__; pipeline_error_msg = str(e)
result["error"] = f"שגיאה בזמן הריצה: {pipeline_error_type}: {pipeline_error_msg}"
result["full_response"] = f"<div class='rtl-text'><strong>שגיאה במהלך העיבוד ({pipeline_error_type})</strong><br>אנא נסה שוב מאוחר יותר.<details><summary>פרטים טכניים</summary><pre>{traceback.format_exc()}</pre></details></div>"
message_placeholder.markdown(result["full_response"], unsafe_allow_html=True)
if status_container: status_container.update(label="שגיאה בעיבוד!", state="error")
return result
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
content_display = message['content']
if not content_display.strip().startswith(('<div', '<p', '<strong', '<details')):
content_display = f"<div class='rtl-text'>{content_display}</div>"
st.markdown(content_display, unsafe_allow_html=True)
if message["role"] == "assistant" and "final_docs" in message and message["final_docs"]:
final_docs_data = message.get("final_docs", [])
pipeline_flow_used = message.get("analysis_flow", "לא ידוע")
if final_docs_data:
st.expander("מסמכים שנמצאו", expanded=False).write(final_docs_data)
expander_title_text = f"הצג {len(final_docs_data)} פסקאות מקור שנשלחו למחולל"
if pipeline_flow_used == "Anthropic (ניתוח וסינון פרטני)":
expander_title_text += " (לאחר סינון Anthropic פרטני)"
elif pipeline_flow_used == "Gemini (אחזור ויצירה ישירה)":
expander_title_text += " (ללא סינון נוסף)"
elif pipeline_flow_used == "GPT-4o Paragraph Validator + Claude Synthesizer":
expander_title_text += " (לאחר אימות GPT-4o פרטני)"
else:
expander_title_text += " (לאחר עיבוד)"
expander_title = f"<span class='rtl-text'>{expander_title_text}</span>"
with st.expander(expander_title, expanded=False):
st.markdown("<div class='expander-content'>", unsafe_allow_html=True)
for i, doc in enumerate(final_docs_data):
score_info = ""
source_name = doc.get('source_name', 'לא ידוע')
original_id = doc.get('original_id', 'N/A')
hebrew_text = doc.get('hebrew_text', 'טקסט המקור חסר')
st.markdown(
f"<div class='source-info rtl-text'><strong>מקור {i+1}:</strong> ספר: {source_name}, ID: {original_id}{score_info}</div>",
unsafe_allow_html=True,
)
st.markdown(f"<div class='hebrew-text'>{hebrew_text}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
if prompt := st.chat_input("שאל שאלה בענייני חסידות...", disabled=not services_ready, key="chat_input"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(f"<div class='rtl-text'>{prompt}</div>", unsafe_allow_html=True)
with st.chat_message("assistant"):
status_control_asst = None
rag_result_asst = None
try:
status_label = f"<span class='rtl-text'>מעבד בקשה באמצעות '{pipeline_method}'...</span>"
with st.status(status_label, expanded=True) as status:
status_control_asst = status
rag_result_asst = run_rag_pipeline(
pipeline_prompt=prompt,
selected_pipeline_method=pipeline_method,
status_container=status_control_asst,
)
if rag_result_asst and isinstance(rag_result_asst, dict):
pipeline_error_value = rag_result_asst.get("error")
final_docs_value = rag_result_asst.get("final_docs_data", [])
final_docs_to_store = []
if pipeline_error_value is None:
final_docs_to_store = final_docs_value
flow_to_store = rag_result_asst.get("analysis_flow", "Error")
if pipeline_error_value is not None:
flow_to_store = "Error"
st.session_state.messages.append({
"role": "assistant",
"content": rag_result_asst.get("full_response", "..."),
"final_docs": final_docs_to_store,
"analysis_flow": flow_to_store,
})
if rag_result_asst.get("status_updates"):
expander_label = "<span class='rtl-text'>הצג שלבי עיבוד</span>"
with st.expander(expander_label, expanded=False):
for update in rag_result_asst["status_updates"]:
st.markdown(f"<div class='rtl-text'><code>- {update}</code></div>", unsafe_allow_html=True)
else:
fallback_err_msg_html = "<div class='rtl-text'><strong>שגיאה בלתי צפויה בתקשורת עם מנגנון העיבוד (fallback).</strong></div>"
st.session_state.messages.append({
"role": "assistant",
"content": fallback_err_msg_html,
"final_docs": [],
"analysis_flow": "Error",
})
except Exception as e:
error_display_html = f"<div class='rtl-text'><strong>שגיאה קריטית!</strong><br><pre>{traceback.format_exc()}</pre></div>"
st.error(error_display_html, icon="🔥")
st.session_state.messages.append({
"role": "assistant",
"content": error_display_html,
"final_docs": [],
"analysis_flow": "Critical Error",
})
|