Spaces:
Running
Running
import streamlit as st | |
from streamlit.logger import get_logger | |
import datasets | |
import pandas as pd | |
from langchain_huggingface.embeddings import HuggingFaceEmbeddings | |
from langchain_openai import ChatOpenAI | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.messages import HumanMessage, SystemMessage | |
from sentence_transformers import util | |
from torch import tensor | |
LOGGER = get_logger(__name__) | |
def get_df() ->object: | |
ds = datasets.load_dataset('sivan22/yalkut-yosef-embeddings') | |
df = pd.DataFrame.from_dict(ds['train']) | |
return df | |
def get_model()->object: | |
model_name = "intfloat/multilingual-e5-large" | |
model_kwargs = {'device': 'cpu'} #'cpu' or 'cuda' | |
encode_kwargs = {'normalize_embeddings': False} | |
embeddings_model = HuggingFaceEmbeddings( | |
model_name=model_name, | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs | |
) | |
return embeddings_model | |
def get_chat_api(api_key:str): | |
chat = ChatOpenAI(model="gpt-3.5-turbo-16k", api_key=api_key) | |
return chat | |
def get_results(embeddings_model,input,df,num_of_results) -> pd.DataFrame: | |
embeddings = embeddings_model.embed_query('query: '+ input) | |
hits = util.semantic_search(tensor(embeddings), tensor(df['embeddings'].tolist()), top_k=num_of_results) | |
hit_list = [hit['corpus_id'] for hit in hits[0]] | |
return df.iloc[hit_list] | |
def get_llm_results(query,chat,results): | |
prompt_template = PromptTemplate.from_template( | |
""" | |
your misssion is to rank the given answers based on their relevance to the given question. | |
Provide a relevancy score between 0 (not relevant) and 1 (highly relevant) for each possible answer. | |
the results should be in the following JSON format: "answer": "score", "answer": "score" while answer is the possible answer's text and score is the relevancy score. | |
the question is: {query} | |
the possible answers are: | |
{answers} | |
""" ) | |
messages = [ | |
SystemMessage(content=""" | |
You're a helpful assistant. | |
Return a JSON formatted string. | |
"""), | |
HumanMessage(content=prompt_template.format(query=query, answers=str.join('\n', results['text'].head(10).tolist()))), | |
] | |
response = chat.invoke(messages) | |
llm_results_df = pd.read_json(response.content, orient='index') | |
llm_results_df.rename(columns={0: 'score'}, inplace=True) | |
llm_results_df.sort_values(by='score', ascending=False, inplace=True) | |
return llm_results_df | |
def run(): | |
st.set_page_config( | |
page_title=" ืืืคืืฉ ืกืื ืื ืืืืงืื ืืืกืฃ", | |
page_icon="๐", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
st.write("# ืืืคืืฉ ืืื ืืกืคืจ ืืืงืื ืืืกืฃ ืงืืฆืืจ ืฉืืืื ืขืจืื") | |
embeddings_model = get_model() | |
df = get_df() | |
user_input = st.text_input('ืืชืื ืืื ืืช ืฉืืืชื', placeholder='ืืื ื ืจืืช ืืืืืงืื ืืื ืืืื ืืืืืืช ืืื ืืื') | |
num_of_results = st.sidebar.slider('ืืกืคืจ ืืชืืฆืืืช ืฉืืจืฆืื ื ืืืฆืื:',1,25,5) | |
use_llm = st.sidebar.checkbox("ืืฉืชืืฉ ืืืืื ืฉืคื ืืื ืืฉืคืจ ืชืืฆืืืช", False) | |
openAikey = st.sidebar.text_input("OpenAI API key", type="password") | |
if (st.button('ืืคืฉ') or user_input) and user_input!="": | |
results = get_results(embeddings_model,user_input,df,num_of_results) | |
if use_llm: | |
if openAikey == None or openAikey=="": | |
st.write("ืื ืืืื ืก ืืคืชื ืฉื OpenAI") | |
else: | |
chat = get_chat_api(openAikey) | |
llm_results = get_llm_results(user_input,chat,results) | |
st.write(llm_results) | |
else: | |
st.write(results[['siman','sek','text']].head(10)) | |
if __name__ == "__main__": | |
run() | |