File size: 2,369 Bytes
b3f14a4
 
 
 
 
 
 
 
9e82615
b3f14a4
 
9e82615
 
c1c214c
9e82615
 
 
 
 
b3f14a4
9e82615
 
 
b3f14a4
9e82615
b3f14a4
9e82615
 
b3f14a4
 
 
 
9e82615
24e0ce1
b3f14a4
9e82615
1ecefe5
9e82615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3f14a4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import streamlit as st
from streamlit.logger import get_logger
from transformers import  pipeline
import datasets
import pandas as pd
from huggingface_hub import login


LOGGER = get_logger(__name__)


@st.cache_data
def get_df() ->object:
    ds = datasets.load_dataset('sivan22/orach-chaim')
    df = ds['train'].to_pandas()
    def clean(s)->str:
        return s.replace(" ","")
    df['seif']= df['seif'].apply(clean)
    return df

@st.cache_resource
def get_model()->object:
    model = "sivan22/halacha-siman-seif-classifier"
    classifier = pipeline("text-classification",model=model,top_k=None)
    return classifier

def get_predicts(classifier,input)->str:
    predicts = classifier(input)
    return predicts

def run():
    st.set_page_config(
        page_title="ื—ื™ืคื•ืฉ ื—ื›ื ื‘ืฉื•ืœื—ืŸ ืขืจื•ืš",
        page_icon="๐Ÿ“š",
    )
    st.write("# ื—ื™ืคื•ืฉ ื—ื›ื ื‘ืฉื•ืœื—ืŸ ืขืจื•ืš")
    st.write("ื”ื—ื™ืคื•ืฉ ืžืชื‘ืฆืข ืขืœ ื™ื“ื™ ืžื•ื“ืœ ืฉืคื” ืฉืื•ืžืŸ ื‘ืžื™ื•ื—ื“ ืœืžืฉื™ืžื” ืฉืœ ืกื™ื•ื•ื’ (ืงืœืกื™ืคื™ืงืฆื™ื”). ื”ื•ื ืžืกื•ื•ื’ ื›ืœ ืžืฉืคื˜ ืœืื—ื“ ืžืืจื‘ืขืช ืืœืคื™ื ื”ืกืขื™ืคื™ื ืฉื‘ืฉื•ืœื—ืŸ ืขืจื•ืš ืื•ืจื— ื—ื™ื™ื. ื”ื“ืื˜ื”-ืกื˜ ืขืœื™ื• ื”ื•ื ื”ืชืืžืŸ ื›ืœืœ ืขืฉืจื•ืช ืืœืคื™ ืงื˜ืขื™ ืคืจืฉื ื•ืช ืœืฉื•ืœื—ืŸ ืขืจื•ืš, ื•ื›ืŸ ื›ืžื” ืืœืคื™ื ืฉืœ ืฉืืœื•ืช ื‘ืฉืคื” ื—ื•ืคืฉื™ืช.")
    
    classifier = get_model()    
    df = get_df()
    
    user_input = st.text_input('ื›ืชื•ื‘ ื›ืืŸ ืืช ืฉืืœืชืš', placeholder='ื›ืžื” ื ืจื•ืช ืžื“ืœื™ืงื™ื ื‘ื›ืœ ืœื™ืœื” ืžืœื™ืœื•ืช ื”ื—ื ื•ื›ื”')    
    num_of_results = st.sidebar.slider('ืžืกืคืจ ื”ืชื•ืฆืื•ืช ืฉื‘ืจืฆื•ื ืš ืœื”ืฆื™ื’:',1,25,5)
    
    if st.button('ื—ืคืฉ') and user_input!="":
        for prediction in get_predicts(classifier,user_input)[0][:num_of_results]:
            siman = prediction['label'].split(' ')[0]
            seif = prediction['label'].split(' ')[1]
            rows = df[((df["bookname"] == " ืฉืœื—ืŸ ืขืจื•ืš - ืื•ืจื— ื—ื™ื™ื ") | (df["bookname"] ==" ืžืฉื ื” ื‘ืจื•ืจื”")) &
                      (df["siman"] == siman) &
                      (df["seif"] == seif) ]
            rows = rows.sort_values(["bookname"],ascending=False) 
            st.write(('ืกื™ืžืŸ ' + siman + ' ืกืขื™ืฃ ' + seif), rows[['text','bookname','sek','seif','siman',]])

    

if __name__ == "__main__":
    run()