|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy
|
|
import importlib
|
|
import inspect
|
|
import logging
|
|
import os
|
|
from typing import List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import trimesh
|
|
import yaml
|
|
from PIL import Image
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
from tqdm import tqdm
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
timesteps: Optional[List[int]] = None,
|
|
sigmas: Optional[List[float]] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
Args:
|
|
scheduler (`SchedulerMixin`):
|
|
The scheduler to get timesteps from.
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|
must be `None`.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
|
`num_inference_steps` and `sigmas` must be `None`.
|
|
sigmas (`List[float]`, *optional*):
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
|
`num_inference_steps` and `timesteps` must be `None`.
|
|
|
|
Returns:
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
second element is the number of inference steps.
|
|
"""
|
|
if timesteps is not None and sigmas is not None:
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
|
if timesteps is not None:
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accepts_timesteps:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
elif sigmas is not None:
|
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accept_sigmas:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
def export_to_trimesh(mesh_output):
|
|
if isinstance(mesh_output, list):
|
|
outputs = []
|
|
for mesh in mesh_output:
|
|
if mesh is None:
|
|
outputs.append(None)
|
|
else:
|
|
mesh.mesh_f = mesh.mesh_f[:, ::-1]
|
|
mesh_output = trimesh.Trimesh(mesh.mesh_v, mesh.mesh_f)
|
|
outputs.append(mesh_output)
|
|
return outputs
|
|
else:
|
|
mesh_output.mesh_f = mesh_output.mesh_f[:, ::-1]
|
|
mesh_output = trimesh.Trimesh(mesh_output.mesh_v, mesh_output.mesh_f)
|
|
return mesh_output
|
|
|
|
|
|
def get_obj_from_str(string, reload=False):
|
|
module, cls = string.rsplit(".", 1)
|
|
if reload:
|
|
module_imp = importlib.import_module(module)
|
|
importlib.reload(module_imp)
|
|
return getattr(importlib.import_module(module, package=None), cls)
|
|
|
|
|
|
def instantiate_from_config(config, **kwargs):
|
|
if "target" not in config:
|
|
raise KeyError("Expected key `target` to instantiate.")
|
|
cls = get_obj_from_str(config["target"])
|
|
params = config.get("params", dict())
|
|
kwargs.update(params)
|
|
instance = cls(**kwargs)
|
|
return instance
|
|
|
|
|
|
class Hunyuan3DDiTPipeline:
|
|
@classmethod
|
|
def from_single_file(
|
|
cls,
|
|
ckpt_path,
|
|
config_path,
|
|
device='cuda',
|
|
dtype=torch.float16,
|
|
use_safetensors=None,
|
|
**kwargs,
|
|
):
|
|
|
|
with open(config_path, 'r') as f:
|
|
config = yaml.safe_load(f)
|
|
|
|
|
|
if use_safetensors:
|
|
ckpt_path = ckpt_path.replace('.ckpt', '.safetensors')
|
|
if not os.path.exists(ckpt_path):
|
|
raise FileNotFoundError(f"Model file {ckpt_path} not found")
|
|
logger.info(f"Loading model from {ckpt_path}")
|
|
|
|
if use_safetensors:
|
|
|
|
import safetensors.torch
|
|
safetensors_ckpt = safetensors.torch.load_file(ckpt_path, device='cpu')
|
|
ckpt = {}
|
|
for key, value in safetensors_ckpt.items():
|
|
model_name = key.split('.')[0]
|
|
new_key = key[len(model_name) + 1:]
|
|
if model_name not in ckpt:
|
|
ckpt[model_name] = {}
|
|
ckpt[model_name][new_key] = value
|
|
else:
|
|
ckpt = torch.load(ckpt_path, map_location='cpu')
|
|
|
|
model = instantiate_from_config(config['model'])
|
|
model.load_state_dict(ckpt['model'])
|
|
vae = instantiate_from_config(config['vae'])
|
|
vae.load_state_dict(ckpt['vae'])
|
|
conditioner = instantiate_from_config(config['conditioner'])
|
|
if 'conditioner' in ckpt:
|
|
conditioner.load_state_dict(ckpt['conditioner'])
|
|
image_processor = instantiate_from_config(config['image_processor'])
|
|
scheduler = instantiate_from_config(config['scheduler'])
|
|
|
|
model_kwargs = dict(
|
|
vae=vae,
|
|
model=model,
|
|
scheduler=scheduler,
|
|
conditioner=conditioner,
|
|
image_processor=image_processor,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
model_kwargs.update(kwargs)
|
|
|
|
return cls(
|
|
**model_kwargs
|
|
)
|
|
|
|
@classmethod
|
|
def from_pretrained(
|
|
cls,
|
|
model_path,
|
|
ckpt_name='model.ckpt',
|
|
config_name='config.yaml',
|
|
device='cuda',
|
|
dtype=torch.float16,
|
|
use_safetensors=None,
|
|
**kwargs,
|
|
):
|
|
original_model_path = model_path
|
|
if not os.path.exists(model_path):
|
|
|
|
base_dir = os.environ.get('HY3DGEN_MODELS', '~/.cache/hy3dgen')
|
|
model_path = os.path.expanduser(os.path.join(base_dir, model_path, 'hunyuan3d-dit-v2-0'))
|
|
if not os.path.exists(model_path):
|
|
try:
|
|
import huggingface_hub
|
|
|
|
path = huggingface_hub.snapshot_download(repo_id=original_model_path)
|
|
model_path = os.path.join(path, 'hunyuan3d-dit-v2-0')
|
|
except ImportError:
|
|
logger.warning(
|
|
"You need to install HuggingFace Hub to load models from the hub."
|
|
)
|
|
raise RuntimeError(f"Model path {model_path} not found")
|
|
if not os.path.exists(model_path):
|
|
raise FileNotFoundError(f"Model path {original_model_path} not found")
|
|
|
|
config_path = os.path.join(model_path, config_name)
|
|
ckpt_path = os.path.join(model_path, ckpt_name)
|
|
return cls.from_single_file(
|
|
ckpt_path,
|
|
config_path,
|
|
device=device,
|
|
dtype=dtype,
|
|
use_safetensors=use_safetensors,
|
|
**kwargs
|
|
)
|
|
|
|
def __init__(
|
|
self,
|
|
vae,
|
|
model,
|
|
scheduler,
|
|
conditioner,
|
|
image_processor,
|
|
device='cuda',
|
|
dtype=torch.float16,
|
|
**kwargs
|
|
):
|
|
self.vae = vae
|
|
self.model = model
|
|
self.scheduler = scheduler
|
|
self.conditioner = conditioner
|
|
self.image_processor = image_processor
|
|
|
|
self.to(device, dtype)
|
|
|
|
def to(self, device=None, dtype=None):
|
|
if device is not None:
|
|
self.device = torch.device(device)
|
|
self.vae.to(device)
|
|
self.model.to(device)
|
|
self.conditioner.to(device)
|
|
if dtype is not None:
|
|
self.dtype = dtype
|
|
self.vae.to(dtype=dtype)
|
|
self.model.to(dtype=dtype)
|
|
self.conditioner.to(dtype=dtype)
|
|
|
|
def encode_cond(self, image, mask, do_classifier_free_guidance, dual_guidance):
|
|
bsz = image.shape[0]
|
|
cond = self.conditioner(image=image, mask=mask)
|
|
|
|
if do_classifier_free_guidance:
|
|
un_cond = self.conditioner.unconditional_embedding(bsz)
|
|
|
|
if dual_guidance:
|
|
un_cond_drop_main = copy.deepcopy(un_cond)
|
|
un_cond_drop_main['additional'] = cond['additional']
|
|
|
|
def cat_recursive(a, b, c):
|
|
if isinstance(a, torch.Tensor):
|
|
return torch.cat([a, b, c], dim=0).to(self.dtype)
|
|
out = {}
|
|
for k in a.keys():
|
|
out[k] = cat_recursive(a[k], b[k], c[k])
|
|
return out
|
|
|
|
cond = cat_recursive(cond, un_cond_drop_main, un_cond)
|
|
else:
|
|
un_cond = self.conditioner.unconditional_embedding(bsz)
|
|
|
|
def cat_recursive(a, b):
|
|
if isinstance(a, torch.Tensor):
|
|
return torch.cat([a, b], dim=0).to(self.dtype)
|
|
out = {}
|
|
for k in a.keys():
|
|
out[k] = cat_recursive(a[k], b[k])
|
|
return out
|
|
|
|
cond = cat_recursive(cond, un_cond)
|
|
return cond
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def prepare_latents(self, batch_size, dtype, device, generator, latents=None):
|
|
shape = (batch_size, *self.vae.latent_shape)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
|
|
latents = latents * getattr(self.scheduler, 'init_noise_sigma', 1.0)
|
|
return latents
|
|
|
|
def prepare_image(self, image):
|
|
if isinstance(image, str) and not os.path.exists(image):
|
|
raise FileNotFoundError(f"Couldn't find image at path {image}")
|
|
|
|
if not isinstance(image, list):
|
|
image = [image]
|
|
image_pts = []
|
|
mask_pts = []
|
|
for img in image:
|
|
image_pt, mask_pt = self.image_processor(img, return_mask=True)
|
|
image_pts.append(image_pt)
|
|
mask_pts.append(mask_pt)
|
|
|
|
image_pts = torch.cat(image_pts, dim=0).to(self.device, dtype=self.dtype)
|
|
if mask_pts[0] is not None:
|
|
mask_pts = torch.cat(mask_pts, dim=0).to(self.device, dtype=self.dtype)
|
|
else:
|
|
mask_pts = None
|
|
return image_pts, mask_pts
|
|
|
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
|
"""
|
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
|
|
|
Args:
|
|
timesteps (`torch.Tensor`):
|
|
generate embedding vectors at these timesteps
|
|
embedding_dim (`int`, *optional*, defaults to 512):
|
|
dimension of the embeddings to generate
|
|
dtype:
|
|
data type of the generated embeddings
|
|
|
|
Returns:
|
|
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
|
"""
|
|
assert len(w.shape) == 1
|
|
w = w * 1000.0
|
|
|
|
half_dim = embedding_dim // 2
|
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
|
emb = w.to(dtype)[:, None] * emb[None, :]
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
|
if embedding_dim % 2 == 1:
|
|
emb = torch.nn.functional.pad(emb, (0, 1))
|
|
assert emb.shape == (w.shape[0], embedding_dim)
|
|
return emb
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
image: Union[str, List[str], Image.Image] = None,
|
|
num_inference_steps: int = 50,
|
|
timesteps: List[int] = None,
|
|
sigmas: List[float] = None,
|
|
eta: float = 0.0,
|
|
guidance_scale: float = 7.5,
|
|
dual_guidance_scale: float = 10.5,
|
|
dual_guidance: bool = True,
|
|
generator=None,
|
|
box_v=1.01,
|
|
octree_resolution=384,
|
|
mc_level=-1 / 512,
|
|
num_chunks=8000,
|
|
mc_algo='mc',
|
|
output_type: Optional[str] = "trimesh",
|
|
enable_pbar=True,
|
|
**kwargs,
|
|
) -> List[List[trimesh.Trimesh]]:
|
|
callback = kwargs.pop("callback", None)
|
|
callback_steps = kwargs.pop("callback_steps", None)
|
|
|
|
device = self.device
|
|
dtype = self.dtype
|
|
do_classifier_free_guidance = guidance_scale >= 0 and \
|
|
getattr(self.model, 'guidance_cond_proj_dim', None) is None
|
|
dual_guidance = dual_guidance_scale >= 0 and dual_guidance
|
|
|
|
image, mask = self.prepare_image(image)
|
|
cond = self.encode_cond(image=image,
|
|
mask=mask,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
dual_guidance=dual_guidance)
|
|
batch_size = image.shape[0]
|
|
|
|
t_dtype = torch.long
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler, num_inference_steps, device, timesteps, sigmas)
|
|
|
|
latents = self.prepare_latents(batch_size, dtype, device, generator)
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
guidance_cond = None
|
|
if getattr(self.model, 'guidance_cond_proj_dim', None) is not None:
|
|
print('Using lcm guidance scale')
|
|
guidance_scale_tensor = torch.tensor(guidance_scale - 1).repeat(batch_size)
|
|
guidance_cond = self.get_guidance_scale_embedding(
|
|
guidance_scale_tensor, embedding_dim=self.model.guidance_cond_proj_dim
|
|
).to(device=device, dtype=latents.dtype)
|
|
|
|
for i, t in enumerate(tqdm(timesteps, disable=not enable_pbar, desc="Diffusion Sampling:", leave=False)):
|
|
|
|
if do_classifier_free_guidance:
|
|
latent_model_input = torch.cat([latents] * (3 if dual_guidance else 2))
|
|
else:
|
|
latent_model_input = latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
|
|
timestep_tensor = torch.tensor([t], dtype=t_dtype, device=device)
|
|
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
|
|
noise_pred = self.model(latent_model_input, timestep_tensor, cond, guidance_cond=guidance_cond)
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
if dual_guidance:
|
|
noise_pred_clip, noise_pred_dino, noise_pred_uncond = noise_pred.chunk(3)
|
|
noise_pred = (
|
|
noise_pred_uncond
|
|
+ guidance_scale * (noise_pred_clip - noise_pred_dino)
|
|
+ dual_guidance_scale * (noise_pred_dino - noise_pred_uncond)
|
|
)
|
|
else:
|
|
noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
|
|
|
|
|
outputs = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)
|
|
latents = outputs.prev_sample
|
|
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, outputs)
|
|
|
|
return self._export(
|
|
latents,
|
|
output_type,
|
|
box_v, mc_level, num_chunks, octree_resolution, mc_algo,
|
|
)
|
|
|
|
def _export(self, latents, output_type, box_v, mc_level, num_chunks, octree_resolution, mc_algo):
|
|
if not output_type == "latent":
|
|
latents = 1. / self.vae.scale_factor * latents
|
|
latents = self.vae(latents)
|
|
outputs = self.vae.latents2mesh(
|
|
latents,
|
|
bounds=box_v,
|
|
mc_level=mc_level,
|
|
num_chunks=num_chunks,
|
|
octree_resolution=octree_resolution,
|
|
mc_algo=mc_algo,
|
|
)
|
|
else:
|
|
outputs = latents
|
|
|
|
if output_type == 'trimesh':
|
|
outputs = export_to_trimesh(outputs)
|
|
|
|
return outputs
|
|
|
|
|
|
class Hunyuan3DDiTFlowMatchingPipeline(Hunyuan3DDiTPipeline):
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
image: Union[str, List[str], Image.Image] = None,
|
|
num_inference_steps: int = 50,
|
|
timesteps: List[int] = None,
|
|
sigmas: List[float] = None,
|
|
eta: float = 0.0,
|
|
guidance_scale: float = 7.5,
|
|
generator=None,
|
|
box_v=1.01,
|
|
octree_resolution=384,
|
|
mc_level=0.0,
|
|
mc_algo='mc',
|
|
num_chunks=8000,
|
|
output_type: Optional[str] = "trimesh",
|
|
enable_pbar=True,
|
|
**kwargs,
|
|
) -> List[List[trimesh.Trimesh]]:
|
|
callback = kwargs.pop("callback", None)
|
|
callback_steps = kwargs.pop("callback_steps", None)
|
|
|
|
device = self.device
|
|
dtype = self.dtype
|
|
do_classifier_free_guidance = guidance_scale >= 0 and not (
|
|
hasattr(self.model, 'guidance_embed') and
|
|
self.model.guidance_embed is True
|
|
)
|
|
|
|
image, mask = self.prepare_image(image)
|
|
cond = self.encode_cond(
|
|
image=image,
|
|
mask=mask,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
dual_guidance=False,
|
|
)
|
|
batch_size = image.shape[0]
|
|
|
|
|
|
|
|
sigmas = np.linspace(0, 1, num_inference_steps) if sigmas is None else sigmas
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler,
|
|
num_inference_steps,
|
|
device,
|
|
sigmas=sigmas,
|
|
)
|
|
latents = self.prepare_latents(batch_size, dtype, device, generator)
|
|
|
|
guidance = None
|
|
if hasattr(self.model, 'guidance_embed') and \
|
|
self.model.guidance_embed is True:
|
|
guidance = torch.tensor([guidance_scale] * batch_size, device=device, dtype=dtype)
|
|
|
|
for i, t in enumerate(tqdm(timesteps, disable=not enable_pbar, desc="Diffusion Sampling:")):
|
|
|
|
if do_classifier_free_guidance:
|
|
latent_model_input = torch.cat([latents] * 2)
|
|
else:
|
|
latent_model_input = latents
|
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]).to(
|
|
latents.dtype) / self.scheduler.config.num_train_timesteps
|
|
noise_pred = self.model(latent_model_input, timestep, cond, guidance=guidance)
|
|
|
|
if do_classifier_free_guidance:
|
|
noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
|
|
|
|
|
outputs = self.scheduler.step(noise_pred, t, latents)
|
|
latents = outputs.prev_sample
|
|
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, outputs)
|
|
|
|
return self._export(
|
|
latents,
|
|
output_type,
|
|
box_v, mc_level, num_chunks, octree_resolution, mc_algo,
|
|
)
|
|
|